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Abstract

Glycolate oxidase (GO) is a peroxisomal flavoenzyme which catalyses the oxidation of 

short chain a-hydroxy acids, notably glycolate. The reaction product, glyoxylate, is an 

oxalate precursor and GO is thus of potential interest for its role in the pathogenesis of 

the primary hyperoxalurias. The project aims were to identify human GO, characterise 

the kinetics and substrate specificity of the enzyme and establish methods for the 

analysis of relevant metabolic pathways in vitro.

The gene for human GO was cloned from liver and expressed in bacterial cells. The 

cDNA is 1128 bp in length and has a 1113 bp open reading frame encoding a 372 amino 

acid protein. The genomic sequence comprises eight exons and spans -57 kb of 

chromosome 20pl2.

Recombinant human GO protein shares 53% and 89% sequence similarity to GO from 

spinach and rat respectively, shows a-hydroxy acid oxidase activity in vitro and has 

been purified to homogeneity. Polyclonal anti-GO antibody detects a band of 43 kDa in 

human liver and, consistent with northern blot analysis, expression is not detected in 

other tissues including kidney and leucocytes.

Kinetic analysis with a range of a-hydroxy acids indicates GO has highest affinity for 

glycolate as substrate (K^ = 0.54 mM) and 10 fold less affinity for glyoxylate (K^,= 5.1 

mM). Site directed mutagenesis of active site residues demonstrates the importance of 

chain length for substrate affinity. Thus mutation of a Trp residue, conserved between



spinach and human GO to a less bulky amino acid, permits the catalysis of longer chain 

length a-hydroxy acids.

HPLC methods were developed for the separation and quantitation of glyoxylate, 

hydroxypyruvate and pyruvate, enabling analysis of metabolites produced by GO and 

neighboring enzymes in the metabolic pathway. These assays will be invaluable for 

future studies in which the pathways of glyoxylate metabolism are constructed in vitro.



Abbreviations

Enzymes and EC numbers:

AGT alanine:glyoxylate aminotransferase (EC 2.6.1.44)

ALDH aldehyde dehydrogenase (EC 1.2.1.21)

CL 2-oxoglutarate:glyoxylate carboligase (EC 4.1.3.15)

DAO D-amino acid oxidase (EC 1.4.3.3)

D-GDH D-glycerate dehydrogenase (EC 1.1.1.29)

DGK D-glycerate kinase (EC 2.7.1.31)

FCBz flavocytochrome hi (EC 1.1.2.3)

GDH glycolate dehydrogenase (EC 1.1.99.14)

GGT glutamate:glyoxylate aminotransferase (EC 2.6.1.4)

GO glycolate oxidase (EC 1.1.3.15)

GR glyoxylate reductase (EC 1.1.1.79)

HAO A hydroxy acid oxidase type A (EC 1.1.3.15)

HAO B hydroxy acid oxidase type B (EC 1.1.3.15)

HPD hydroxypyruvate dehydrogenase (EC 4.1.1.40)

HPR hydroxypyruvate reductase (EC 1.1.1.79)

LDH lactate dehydrogenase (EC 1.1.1.27)

LMO lactate mono-oxygenase (EC 1.13.12.4)

MDH mandelate dehydrogenase (EC 1.1.2.3)



PGDH phosphoglycerate dehydrogenase (EC 1.1.1.95)

PGI phosphoglycerate isomerase (EC 5.4.2.1 )

PSA phosphoserine transaminase (EC 2.6.1.52)

PSP phosphoserine phosphatase (EC 3.1.3.3)

RUBISCO ribulose bisphosphate carboxylase/oxygenase (EC 4.1.1.39)

SPT serineipyruvate aminotransferase (EC 2.6.1.51)

XAO xanthine oxidase (EC 1.1.3.22)



General abbreviations:

cDNA complementary DNA

DNA deoxyribonucleic acid

dNTP deoxynucleoside triphosphate

EDTA ethylenediaminetetra-acetic acid

FMN flavin mononucleotide

HPLC high performance liquid chromatography

mRNA messenger RNA

NAD+ p-Nicotinamide adenine dinucleotide

NADH p-Nicotinamide adenine dinucleotide, reduced form

NADP+ p-Nicotinamide adenine dinucleotide phosphate

NADPH

OPD

PHI

PH2

PHZ

PTS

PAGE

RNA

p-Nicotinamide adenine dinucleotide phosphate, reduced form

o-phenylenediamine

primary hyperoxaluria type 1 

primary hyperoxaluria type 2

phenylhydrazine hydrochloride

peroxisomal targeting signal 

polyacrylamide gel electrophoresis

ribonucleic acid

RT-PCR Reverse transcriptase polymerase chain reaction

SDS sodium dodecyl sulphate
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Oxalate, a dicarboxylic acid, is an end product of metabolism that is almost entirely 

excreted through the kidney. The anion is of pathological interest, because of its high 

affinity for calcium and its role in calcium oxalate stone disease. The metabolic 

pathways contributing to endogenous oxalate production are unclear. However, the 

observation of various inherited or acquired disorders leading to raised urinary oxalate 

has highlighted some of the enzymes involved.

The practical work of this thesis characterises human glycolate oxidase (GO, EC 

1.1.3.15), an enzyme with a potentially pivotal role in oxalate synthesis in health and 

disease. Before focusing upon this enzyme in detail, a wider view of oxalate will be 

presented.

1.1 Oxalate

Oxalate (Figure 1.1) is found throughout nature, usually as the crystalline form of 

calcium oxalate, and has been ascribed various functions in both bacteria and plants. 

For example, it may play structural (Franceschi and Homer, 1980) and defensive 

(Hodgkinson, 1977) roles in plants and may provide an intracellular calcium pool 

(Kirkby and Pilbeam, 1984). In some bacteria, such as Oxalobacter formigenes, oxalate 

is an important carbon source (Allison et a l, 1995). In contrast, oxalate is an end point 

of metabolism in mammals where it appears to serve no apparent purpose and is 

generally regarded as a pathological nuisance. This pathology is due to the insolubility 

of its calcium salt at physiological pH, as reflected by the observation that calcium 

oxalate is a constituent of 67% of renal stones in the western world (Samuell and 

Kasidas, 1995).
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Figure 1.1 Oxalate

In humans oxalate is derived from both exogenous and endogenous sources. There is no 

apparent mechanism to metabolise oxalate, and it is therefore excreted in the urine. 

Hence, increased levels of oxalate in the body will lead to increased levels in the urine 

i.e. hyperoxaluria. Factors determining the level of oxalate in the urine include dietary 

intake, gut absorption, renal handling and endogenous production (Williams and 

Wilson, 1990). In normal subjects the majority of urinary oxalate is derived from 

endogenous sources, with the diet contributing 10-20 % (Wandzilak and Williams, 

1990). The metabolic pathways influencing endogenous oxalate production are 

discussed in detail in section 1.2. The exogenous factors that determine urinary oxalate 

levels are discussed below.

1.1.1 Dietary Intake and absorption of oxalate

A normal diet contains 70-930 mg/day of oxalate, but in countries with a large amount 

of vegetables in the diet, intake may be up to 2000 mg/day (Williams and Wilson,

1990). Oxalate rich foods include spinach, rhubarb and chocolate (Kasidas and Rose, 

1980), although only a small percentage of ingested oxalate is actually absorbed from 

the gastro-intestinal tract. The bulk of dietary oxalate is excreted in the faeces 

complexed to calcium or is degraded by gut flora such as Oxalobacter formigenes 

(Allison et al, 1986). The extent to which oxalate is soluble in the gut lumen appears

17



to determine its absorption, for example sodium oxalate, the more soluble form of 

oxalate, is more easily absorbed (Williams and Wilson, 1990).

Oxalate absorption appears to occur along the whole of the gastrointestinal tract, 

including the stomach (Hautman, 1993). Early studies suggested this absorption was by 

a non energy-dependent passive process (Binder, 1974). However, more recent work 

has demonstrated that the absorption of oxalate can occur by an active transport process. 

For example, oxalate absorption in exchange for hydroxyl and chloride anions has been 

shown in the brush border membrane of the rabbit ileum (Hatch and Vaziri, 1994; Hatch 

et al., 1994). Oxalate transport in the colon may be influenced by the oxalate 

concentration gradient across the membrane and both secretory and absorptive processes 

have been documented. For instance, rats with experimentally induced chronic renal 

failure were found to secrete oxalate into the colon, suggesting this may be another route 

for oxalate removal (Hatch et al, 1999). This process may also be aided by oxalate 

degrading microbes in the gut, scavenging dietary oxalate and creating a transepithelial 

gradient favouring oxalate secretion by the colon (Hatch and Freel, 1995).

1.1.2 Renal handling of oxalate

Oxalate is freely filtered by the glomerulus, although evidence is conflicting as to 

whether there is net tubular secretion or absorption. Early studies using oxalate to 

determine oxalate:creatinine ratios yielded mean values of 1.4 to 1.9 indicating net 

secretion (Williams et a/., 1971; Prenan et a l, 1981). More recent studies have shown 

net absorption in normal subjects, for example Kasidas and colleagues obtained a mean 

ratio of 0.59 in 24 hour urine collections (Kasidas et al, 1990). The reasons for these
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discrepancies are unclear, although individuals’ oxalate:creatinine clearance ratios can 

vary widely on a daily basis (Kasidas et a l, 1990).

Oxalate transport across the apical (facing tubule lumen) and basolateral (facing blood 

supply) membranes of the kidney proximal tubules is mediated by anion-exchange 

mechanisms. Several transport proteins capable of oxalate transport have been 

identified in mammalian proximal tubules. These include a sulphate/oxalate exchanger, 

chloride/oxalate exchanger and hydroxyl/oxalate exchanger on the apical membrane 

(Kamiski and Aronson, 1987; Kuo and Aronson, 1996) and a sulphate/oxalate 

exchanger on the basolateral membrane (Kuo and Aronson, 1988). Studies using 

isolated membrane vesicles from rat and rabbit have shown that oxalate may participate 

in transcellular NaCl reabsorption in the tubules (reviewed in Aronson and Giebisch,

1997). However, whether oxalate exchangers play a role in maintaining salt 

reabsorption along the nephron in vivo remains to be established.
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1.2 Endogenous Oxalate Production

Glyoxylate (Figure 1.2) is produced in peroxisomes from glycolate by the action of GO. 

This anion is the major endogenous precursor of oxalate, and it has been estimated that 

as much as 50-60 % of urinary oxalate is synthesised in the liver from glyoxylate 

(Wandzilak and Williams, 1990). Hence, the investigation of glyoxylate metabolism is 

central to the field of hyperoxaluria, as demonstrated by the huge overproduction of 

oxalate that ensues in inborn errors affecting glyoxylate metabolism. These inherited 

diseases, the primary hyperoxalurias, are caused by a fimctional deficiency of either of 

two enzymes important for glyoxylate detoxification, namely alanine: glyoxylate 

aminotransferase (AGT, EC 2.6.1.44) and glyoxylate reductase /hydroxypyruvate 

reductase (GRHPR, EC 1.1.1.79) (Danpure and Jennings, 1986; Mistry et a l, 1988). 

The chemical structures of the 2 and 3 carbon compounds of glyoxylate metabolism are 

depicted in Figure 1.2.
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Figure 1.2 Chemical structures o f the 2/3 carbon compounds o f  glyoxylate 

metabolism.

1.2.1 Glyoxylate synthesis

Glycolate and glycine are the immediate precursors of glyoxylate, their metabolism 

catalysed by GO (also known as L-a-hydroxy acid oxidase A) and D-amino acid 

oxidase (DAO or glycine oxidase, EC 1.4.3.3) respectively. Both enzymes are 

peroxisomal flavin oxidases and yield hydrogen peroxide as a reaction product, which is 

rapidly removed by peroxisomal catalase. The relative importance of the enzymes is not
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clear, but it has been reported for human liver that the activity of DAO is higher than 

GO (Danpure and Purdue, 1995). However, studies with these enzymes purified from 

hog kidney found DAO to have a Km of 60 mM for glycine as substrate (Neims and 

Hellerman, 1962), and GO a Km of 0.3 mM for glycolate as substrate (Tokushige and 

Sizer, 1967). Studies in isolated peroxisomes from guinea pig liver found that glycine 

oxidation contributed 5% to glyoxylate and oxalate production, relative to the oxidation 

of glycolate (Poore et a l, 1997). Furthermore, in isolated perfused rat liver 60% of 

absorbed glycolate was converted to oxalate compared to 4% of absorbed glycine (Liao 

and Richardson, 1972). These findings suggest that DAO activity does not make a 

significant contribution to the glyoxylate pool and that glycolate is the more important 

precursor of glyoxylate.

The existence of some minor carbohydrate pathways leading to glyoxylate synthesis has 

been highlighted by a number of iatrogenic instances involving administration of xylitol, 

fructose and sorbitol. These sugars have in the past all been used in parenteral nutrition 

and they have been linked with hyperoxaluria and oxalosis (Thomas et a l, 1972;

Ludwig et al, 1984; Pfeiffer et al, 1984). While these pathways have not been fully 

resolved, it is thought that the production of glycolaldéhyde, a glycolate precursor, is 

involved. A xylulose pathway (James et a l, 1982) has been proposed in which D- 

xylulose formed from xylitol is phosphorylated by phosphofructokinase producing 

xylulose-1-phosphate. The xylulose-1 -phosphate is then converted to glycolaldéhyde, in 

a reaction catalysed by fructose-bisphosphate aldolase. The formation of glycolate from 

glycolaldéhyde is catalysed by aldehyde dehydrogenase (EC 1.2.1.5) (Greenfield and 

Pietruszko, 1977). This reaction becomes significant in cases of ethylene glycol
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poisoning, when large quantities of glycolaldéhyde are formed by the action of alcohol 

dehydrogenase (EC 1.1.1.1) (Liao and Richardson, 1972). Inhibition of the latter 

enzyme with alcohol or fomepizole prevents excess glycolaldéhyde synthesis and 

therefore inhibits oxalate production, following ingestion of ethylene glycol (Brent et 

al, 1999; Jacobsen, 1999).

Several minor reactions may contribute to glyoxylate production in the liver, an example 

being hydroxyproline catabolism. This pathway yields 4-hydroxy-2-ketoglutarate, 

which is cleaved by 4-hydroxy-2-ketoglutarate aldolase (EC 4.1.3.16), a mitochondrial 

enzyme, to pyruvate and glyoxylate (Maitra and Dekker, 1964). Whether this pathway 

is of significance in man is unknown. Subjects given a large dose of hydroxyproline did 

not show a significant increase in oxalate excretion, although urinary glycolate and 

glyoxylate excretion did show a modest increase (Hockaday et a l, 1965). Hyperoxaluria 

is not observed in patients with conditions associated with increased collagen turnover, a 

finding that suggests hydroxyproline is not a significant oxalate precursor.

The aromatic amino acids tryptophan, phenylalanine and tyrosine may be metabolised to 

glyoxylate via glycine, but this contribution is minimal (Gambardella and Richardson,

1977). Hydroxypyruvate, an intermediate of serine metabolism, may be decarboxylated 

to form glycolaldéhyde in a reaction catalysed by hydroxypyruvate decarboxylase (EC 

4.1.1.40). The activity of this enzyme has been found localised in the mitochondria and 

cytosol of rat liver (Rofe et a l, 1986). Serine is also a source of the glycolaldéhyde 

precursor ethanolamine. The glycolaldéhyde produced as a result of these reactions is 

converted to glycolate by the action of aldehyde dehydrogenase. The significance of
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these minor pathways in human liver is not known as they have only been studied in 

rats. The pathways of mammalian glyoxylate metabolism are summarised in Figure 1.3.
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In plants, glyoxylate is produced as an intermediate in the glyoxylate cycle as depicted 

in Figure 1.4.
Malate

dehydrogenase

Fatty acids

Oxaloacetate MalateP-oxidation

Citrate
synthase Malate

synthase
Acetyl-CoA

GlyoxylateCitrate

Isocitrate
lyase

Aconitase
Isocitrate
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Figure 1.4 The glyoxylate cycle.
i

Glucose

This cycle bypasses the decarboxylation steps of the tricarboxylic acid cycle and takes 

place in specialised peroxisomes known as glyoxysomes. These microbodies develop in 

lipid rich seeds, and contain enzymes that participate in the conversion of stored lipid to 

glucose. In glyoxysomes the p-oxidation of fatty acids is tightly coupled to the 

glyoxylate cycle to ensure a very high preservation of carbon derived from fatty acid 

breakdown and its conversion to glucose during seed germination. Once the plant 

acquires an ability to photosynthesise, glyoxysomes are replaced by peroxisomes 

lacking the glyoxylate cycle enzymes (Masters, 1997). Glyoxylate is formed from 

isocitrate by isocitrate lyase (EC 4.1.3.1) in a reaction that also produces succinate. The
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glyoxylate is converted to malate in a reaction catalysed by malate synthase (EC 4.1.3.2) 

and the succinate is converted to hexose sugars (Tolbert, 1981).

While the glyoxylate cycle functions in bacteria and fungi as well as plants, it is 

generally accepted that it does not function in animals (Tolbert, 1981). However, there 

are several reports in the literature of the existence of isocitrate lyase and malate 

synthase in animal tissues. These studies include detection of enzyme activities in the 

brown adipose tissue of the hibernating black bear (Davis et a l, 1990) and in the livers 

of starved rats (Popov et a l, 1996) and rats with alloxan induced diabetes (Popov et al,

1998). However, another study could find no evidence of either enzyme in the livers of 

guinea pig, rat or chick embryo (Holmes, 1993). The activities of both glyoxylate cycle 

enzymes have been detected in human liver and malate synthase was found to be 

immunolocalised to the peroxisome (Davis and Goodman, 1992). These findings 

suggest that some animals may possess the capacity to convert lipid to glucose by the 

glyoxylate cycle. However, whether this pathway plays a significant role in human 

glyoxylate metabolism is not known.

1.2.2 Glyoxylate utilisation

Several enzymes capable of the oxidation of glyoxylate to oxalate are present in the 

mammalian cell. These are peroxisomal GO and xanthine oxidase (XAO, EC 1.1.3.22) 

and the cytosolic enzyme lactate dehydrogenase (LDH, EC 1.1.1.27). If glyoxylate is 

allowed to accumulate it may be oxidised to oxalate, a toxic end product of metabolism, 

by the action of these enzymes. Glyoxylate itself is a very reactive and potentially 

biochemically toxic molecule, for instance it interferes with ribulose bisphosphate
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carboxylase/oxygenase (RUBISCO, EC 4.1.1.39) in plants (Campbell and Ogren, 1990) 

and has been found to be toxic to animals (Barnes and Lemer, 1943). Therefore, it is 

essential that pathways exist for glyoxylate removal. Under normal circumstances, two 

enzymes appear to play a role in minimising oxalate synthesis from glyoxylate by 

diverting it along other pathways. These enzymes are peroxisomal AGT and cytosolic 

GRHPR, deficiencies of which cause primary hyperoxaluria types 1 and 2 respectively 

(Danpure and Jennings, 1986; Mistry et a l, 1988). A third enzyme, glutamate: 

glyoxylate aminotransferase (GGT, EC 2.6.1.4 ), localised in the cytosol, may also play 

a role in preventing glyoxylate accumulation and therefore oxalate production 

(Thompson and Richardson, 1966).

The glyoxylate produced by the GO catalysed oxidation of glycolate is converted to 

glycine, in a reaction catalysed by the pyridoxine-5’phosphate dependent enzyme AGT 

(Thompson and Richardson, 1967). This is a transamination reaction in which 

glyoxylate acts as an amino acceptor from alanine, the latter being deaminated to form 

pyruvate. AGT also catalyses the transfer of an amino group from serine to pyruvate 

(SPT activity) forming the gluconeogenic precursor hydroxypyruvate (Noguchi et al,

1978). In humans AGT is liver specific (Kamoda et a l, 1980) and is normally located 

within the peroxisome (Cooper et al, 1988). This intracellular location allows it to 

remove potentially toxic glyoxylate efficiently by its conversion to glycine. The Km of 

pure recombinant human AGT for glyoxylate has been found to be 0.23 mM (Lumb and 

Danpure, 2000) in comparison to a Km of 3.54 mM for GO purified from human liver 

(Fry and Richardson, 1979a). Therefore, it seems unlikely that GO would contribute to 

oxalate production providing adequate AGT were available to utilise the glyoxylate.
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The sub-cellular location of AGT is species dependent and appears to be correlated with 

dietary habits. In herbivores such as rabbit it is entirely peroxisomal (Danpure et al,

1990), whereas in carnivores, for example dog, it is entirely mitochondrial (Okuno et a l,

1979). In some rodents AGT is found in the peroxisome and mitochondria (Noguchi et 

al, 1979). Mitochondrial AGT is induced by glucagon (Oda et a l, 1982) and is thought 

to play an important role in gluconeogenesis. In comparison, peroxisomal AGT is 

thought to be important in the detoxification of glyoxylate (Danpure and Jennings,

1986). However, in vivo studies in rabbit have shown that peroxisomal AGT activity 

contributes as much as 90% towards gluconeogenesis from serine (Xue et a l, 1999).

The peroxisomal enzyme therefore appears to have a dual role, producing gluconeogenic 

precursors from serine and removing glyoxylate, thereby preventing harmful over 

production of oxalate (Xue et al, 1999). An herbivorous diet gives an increased 

glycolate load, as a result of the high levels of glycolate found in plant tissue (Harris and 

Richardson, 1980). In contrast, a carnivorous diet would produce less glycolate-derived 

glyoxylate reducing the need for glyoxylate detoxification by peroxisomal AGT.

Another aminotransferase enzyme is GGT, which is localised in the cytosol and 

catalyses the transfer of an amino group from glutamate to glyoxylate, producing 2- 

oxoglutarate and glycine (Thompson and Richardson, 1966). However, the activity of 

AGT is substantially greater than that of GGT in human liver (Thompson and 

Richardson, 1966). This difference in activity could lead one to conclude that GGT 

would be unlikely to play a significant role in glyoxylate metabolism. However, given 

that GGT and AGT reside in different intracellular compartments they will not be 

competing for substrate, GGT may therefore play a role in maintaining low glyoxylate
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concentrations in the cytosol. The transaminase reactions involving glyoxylate are 

depicted in figure 1.5.

peroxisome

hydroxypyruvateserine

AGT

pyruvate alanine 

^  AGT y

glycine glyoxylate

cytosol 

alanine pyruvate

glyoxylate glycine

glutamate 2-oxoglutarate

Figure 1.5 The transaminase reactions involving glyoxylate.

In the cytosol glyoxylate is reduced to glycolate by the action of GRHPR, using NADH 

or NADPH as a cofactor. In addition to glyoxylate reductase (GR) activity, this enzyme 

also has hydroxypyruvate reductase (HPR) and D-glycerate dehydrogenase (D-GDH) 

activities, the latter two being reciprocal reduction and dehydrogenation reactions 

(Dawkins and Dickens, 1965; Willis and Sallach, 1962). The ratio of NADPH (0.3 

pmol/g fresh weight) to NADP (0.067 pmol/g fresh weight) in rat liver would favour 

reduction reactions (Williamson and Brosnan, 1974). Based upon this reducing 

environment in the cell and the findings of kinetic studies it is now thought that in vivo 

the enzyme functions as an NADPH dependent reductase (Van Schaftingen et a l, 1989). 

Given the lesser importance of the D-GDH reaction, the single protein catalysing the 

GR, HPR and D-GDH reactions is now referred to as GRHPR. The reactions catalysed 

by GRHPR are depicted in Figure 1.6.
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Figure 1.6 The reactions catalysed by GRHPR

That GRHPR functions as a reductase, and not a dehydrogenase, is supported by 

findings of studies in individuals with D-glyceric aciduria (D-glycerate kinase 

deficiency) given a serine load. The serine is converted to hydroxypyruvate, but lacking 

D-glycerate kinase they are unable to convert the D-glycerate formed by HPR action 

into 2-P-glycerate. Therefore, these patients excrete gram amounts of D-glycerate in the 

urine (Van Schaftingen, 1989). This observation suggests that the reaction converting 

D-glycerate to hydroxypyruvate (D-GDH activity) is energetically unfavourable. 

Otherwise one would expect L-glycerate to be excreted as a consequence of the action 

of LDH upon the excess hydroxypyruvate produced. These reactions are depicted in 

Figure 1.7.
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Figure 1.7 D-glycerate kinase (DGK, EC 2.7,1.31) deficiency. The conversion ofD- 

glycerate to 3-P-glycerate is blocked; D-glycerate accumulates and is excreted in the

urine.

The cytosolic enzyme LDH catalyses glyoxylate oxidation, in a reaction involving the 

dismutation of two molecules of glyoxylate to one of glycolate and one of oxalate 

(Warren, 1970; Duncan, 1980). The rate of reaction of LDH with glyoxylate as 

substrate has been found to be as high as that for lactate for the pig heart and rabbit 

muscle isoenzymes (Sawaki et a l, 1967). However, the cytosolic lactate concentration 

is known to be orders of magnitude higher than that of glyoxylate (Yanagawa et al, 

1990; Funai and Ichiyama, 1986). GR has a lower Km for glyoxylate than LDH with 

NADH as cofactor, suggesting it is the more significant reaction in vivo (Warren, 1970). 

This finding is consistent with the observation that patients deficient in various LDH 

isoenzymes do not have reduced urinary oxalate (Yanagawa et a l, 1990).

XAO is potentially capable of oxidising glyoxylate to oxalate, but it is not clear whether 

it makes a significant contribution to oxalate production in vivo. Xanthinuric patients 

have normal oxalate excretion, and the XAO inhibitor allopurinol had no effect upon 

oxalate excretion in subjects with gout (Gibbs and Watts, 1966). Studies of human liver 

supernatant found that allopurinol and pteridylaldehyde, another XAO inhibitor, had a
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limited effect upon oxalate production (Gibbs and Watts, 1967). Based upon these 

findings it has been concluded that XAO does not contribute significantly to oxalate 

synthesis.

Being largely hydrated in aqueous solution, glyoxylate is a suitable substrate for GO in a 

reaction producing oxalate. Several studies have concluded that GO plays a significant 

role in oxalate production (Liao and Richardson, 1973 and 1978). These studies were 

however in rats, where several important differences in glyoxylate metabolism exist.

For instance AGT in the rat is mitochondrial with little, if any, in the peroxisome 

(Danpure and Purdue, 1995) and the level of GO activity has been found to be ten fold 

higher in rat than in human (Vamecq and Draye, 1989). Furthermore, the rate of 

glyoxylate oxidation relative to glycolate for human GO has been found to be only 16% 

(Fry and Richardson, 1979a), compared to 40% in the rat (Ushijima, 1973). The roles of 

both GO and LDH in glyoxylate utilisation in the human liver are not fully resolved and 

further investigation is needed to assess their relative contributions to oxalate 

production.
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1.3 Hyperoxaluria

Hyperoxaluria may be due to secondary (environmental) or primary (genetic) causes as 

listed in Table 1.1. The latter are disorders of glyoxylate metabolism and are discussed 

in detail in section 1.5. The secondary causes of hyperoxaluria are the subject of the 

following section.

Secondary hyperoxaluria

Increased oxalate intake 

Decreased calcium intake 

Enteric hyperoxaluria 

Excessive ingestion of oxalate precursors 

Ethylene glycol 

Xylitol 

Glycine irrigation 

Methoxyfluorane anaesthesia 

Pyridoxine deficiency 

Primary hyperoxaluria

Primary hyperoxaluria type 1 

Primary hyperoxaluria type 2 

Atypical primary hyperoxaluria

Table 1.1 The causes o f hyperoxaluria.
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1.4 Secondary Hyperoxaluria

Secondary causes of hyperoxaluria are more common and as such should be excluded 

before primary causes are investigated. Increased ingestion of oxalate rich foods is a 

documented cause of hyperoxaluria (Finch et a l, 1981). However, the amount 

available for gastro-intestinal (GI) absorption will depend upon the form of oxalate and 

its solubility (Brinkley et a l, 1981). Since calcium complexes with oxalate in the gut 

lumen preventing its uptake, oxalate absorption is inversely related to the intraluminal 

calcium concentration. Therefore, calcium deficiency may lead to hyperoxaluria. 

Conversely it has been shown that an increased calcium intake while eating oxalate rich 

foods can prevent hyperoxaluria (Hess et a l, 1998). A high intake of dietary protein has 

been shown to increase oxalate, calcium and uric acid excretion (Robertson et a l, 1979) 

and epidemiological studies have found a positive correlation between protein intake 

and kidney stone formation (Robertson, 1990 and 1993).

Enteric hyperoxaluria is due to hyperabsorption of oxalate as a secondary effect of GI 

disturbances or surgery. It is associated with inflammatory bowel conditions, such as 

ulcerative colitis and Crohn’s disease. In these diseases, excess oxalate is absorbed 

through the damaged cells of the bowel wall. In patients with steatorrhea (fat 

malabsorption) gut luminal calcium forms soaps with fatty acids leaving less ionised 

calcium to complex with oxalate and increased free oxalate available for intestinal 

absorption (Binder, 1974). A similar effect is seen in patients with small bowel 

resection or jejunoileal bypass who have excess bile acids reaching the colon (Hylander 

et al, 1978). The bile acids are thought to increase oxalate absorption by increasing 

colonic permeability with respect to oxalate (Dobbins and Binder, 1976). Enhanced
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oxalate secretion in the kidney (Verkoelen and Romijn, 1996), reduced secretory oxalate 

flux in the gut (Hatch et aL, 1994) and absence of intestinal oxalate degrading bacteria 

are also potential causes of enteric hyperoxaluria. The latter is thought to be a 

contributory factor to stone formation in cystic fibrosis patients, where enteric 

hyperoxaluria is observed secondary to pancreatic insufficiency (Hoppe et a l, 1998) and 

is aggravated by the loss of colonic Oxalobacter formigenes due to prolonged use of 

antibiotic therapy (Sidhu et a l, 1998).

Ethylene glycol and xylitol are potential causes of hyperoxaluria and calcium oxalate 

deposition when taken in excess. The metabolic routes by which these precursors lead to 

endogenous oxalate production have been discussed in section 1.2.1. Glycine solution is 

used as an irrigant in the transurethral resection of prostate (TURP). Post-operative 

hyperoxaluria, accompanied by hyponatraemia and raised urinary glycolate in some 

cases of TURP has been documented (Fitzpatrick et a l, 1981). However, in another 

study an IV infusion of glycine in ten normal volunteers failed to cause hyperoxaluria 

(Hahn and Sikk, 1994). The mechanism by which glycine irrigation leads to 

hyperoxaluria is not clear, given that glycine is thought not to be a major precursor of 

glyoxylate and oxalate in vivo (section 1.2.1). Post-operative hyperoxaluria and calcium 

oxalate deposition in the renal tubules has been associated with the 2-carbon anaesthetic 

agent methoxyfluorane. Two pathways of oxalate synthesis have been postulated, one 

via dichloroacetate and the other via difluorohydroxy-acetic acid (Mazze et a l, 1971).

Deficiency of pyridoxine, the cofactor of AGT and other transaminases is a potential 

cause of hyperoxaluria, although documented cases are rare (Williams and Wandzilak,
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1989). The hyperoxaluria is due to impaired transamination activity, which will increase 

the amount of glyoxylate available for oxalate synthesis.

1.5 Primary Hyperoxaluria

The primary hyperoxalurias (PH) are rare, autosomal recessive disorders of glyoxylate 

metabolism leading to oxalate overproduction (Danpure, 2001). Since oxalate is an end 

product of metabolism, normally excreted via the kidney into the urine, its increased 

production in PH is accompanied by hyperoxaluria. The tendency of oxalate to complex 

with calcium forming a low solubility salt is responsible for the pathologic features of 

the disease. These features are urolithiasis (stone formation) and nephrocalcinosis 

(deposition in the kidney) thereby reducing renal function and leading ultimately to end 

stage renal failure. The consequent retention of oxalate leads to systemic oxalosis in 

virtually all areas of the body, but particularly in calcium rich tissues such as bone.

Two forms of PH have been documented, PHI (MIM 259900) and PH2 (MIM 260000); 

the former is caused by AGT deficiency (Danpure and Jennings, 1986) and the latter by 

GRHPR deficiency (Mistry et a l, 1988). It is possible that other forms of less clearly 

defined hyperoxaluria may eventually be considered as other variants of PH.

1.5.1 Primary hyperoxaluria type 1

PHI displays a wide clinical heterogeneity in terms of age at onset of symptoms and rate 

of disease progression. Furthermore, there are marked variations in the relative 

contribution made by each of the disease sequelae and in the degree of hyperoxaluria 

and hyperglycolic aciduria (Danpure, 1991). At one extreme of the clinical spectrum is 

the neonatal form of the disease, which typically presents in the first few months of life
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with renal failure due to nephrocalcinosis, but without urolithiasis (Leumann, 1985). 

Death frequently follows within one year due to the complications of oxalosis. At the 

other extreme, there are some patients with the more common progressive form of the 

disease who may remain asymptomatic until middle age.

The exact incidence rate of PHI is not known, however several estimates have been 

reported in the literature. In France the average prevalence rate was calculated to be 

1.05 per 10̂  individuals and the average incidence rate 0.12 per 10  ̂per year (Cochat et 

al, 1995). Another study estimated the incidence of renal failure due to PHI to be 1 in 5 

X 10̂  to 15 X 10̂  between 0 and 15 years of age (Latta and Brodehl, 1990). It is likely 

that these values underestimate the true incidence of the disease, given its wide clinical 

spectrum and the lack of investigation of metabolic abnormalities in adult patients 

presenting with recurrent renal stones.

PHI is characterised biochemically by hyperoxaluria and usually, but not always, 

hyperglycolic aciduria (Danpure, 2001). These are due to the metabolic consequences of 

the AGT deficiency. In the absence of AGT, glyoxylate may be oxidised to oxalate 

within the peroxisomes by GO. Alternatively, the glyoxylate may diffuse into the 

cytosol, where it is oxidised to oxalate by LDH and reduced to glycolate by GRHPR 

(Danpure and Jennings, 1986; Danpure, 1989). Hence, the concentrations of oxalate and 

glycolate in body fluids will increase resulting in hyperoxaluria and hyperglycolic 

aciduria. A model of hepatic glyoxylate metabolism in PHI is depicted in Figure 1.8.
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Figure 1.8 Hepatic glyoxylate metabolism in PHI. AGT deficiency leads to the accumulation of glyoxylate, which is converted to 

oxalate by the pathways shown in blue.



The first case report of a patient with PHI was published in 1925, although the disease 

was not described in detail until twenty-five years later (reviewed in Danpure and 

Purdue, 1995). Given the excessive oxalate production in PHI, attempts to establish the 

metabolic basis of the disease were focused upon the metabolism of glyoxylate, the 

major precursor of oxalate. The presence of both raised oxalate and glycolate were not 

consistent with deficiencies in enzymes carrying out glyoxylate oxidation and reduction 

respectively. Therefore, attention was directed towards enzymes catalysing the 

transamination of glyoxylate. Several in vivo studies showed an inverse relationship 

between oxalate synthesis and glyoxylate transamination (reviewed in Danpure, 1989). 

However, in vitro studies initially failed to show reduced transamination of glyoxylate 

in PHI patients’ liver homogenates (Wyngaarden and Elder, 1966; Crawhall and Watts, 

1962a and 1962b).

In 1962 another metabolic route for glyoxylate was discovered involving the 

decarboxylation of glyoxylate and 2-oxoglutarate, in a reaction catalysed by carboligase 

(CL, EC 4.1.3.15) (Crawhall and Watts, 1962a). However, levels of activity of this 

enzyme were found to be unaltered in mitochondria prepared from patients with PHI 

compared to normal controls (Crawhall and Watts, 1962b). Subsequently, a cytosolic 

form of CL was found to be deficient in liver, kidney and spleen homogenates prepared 

from PHI patients (Koch and Stockstad, 1966). However, several studies failed to 

demonstrate reduced cytosolic CL activity in PHI patients (Bourke et a l, 1972;

Danpure et a l, 1986) and investigation into glyoxylate aminotransferases continued.
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With the purification and characterisation of human liver AGT and GGT a possible role 

for either of the enzymes in the aetiology of PHI was postulated, (Thompson and 

Richardson, 1966 and 1967). Subsequently, it was shown that several enzymes involved 

in glyoxylate metabolism were concentrated in the peroxisomes (De Duve and 

Baudhuin, 1966). As a result of these findings, a role for peroxisomes in the 

pathogenesis of PHI was proposed (Vandor and Tolbert, 1970; Tolbert, 1981). 

Subsequently AGT, the most important enzyme for glyoxylate transamination, was 

found to be localised to the peroxisomes (Noguchi and Takada, 1978 and 1979).

Definitive evidence for AGT deficiency as the cause of PHI was obtained in 1986 when 

peroxisomal AGT deficiency was demonstrated in the livers of two PHI patients 

(Danpure and Jennings, 1986). This deficiency was also found in the livers from a 

further twenty patients (Danpure and Jennings, 1988) and has now been documented in 

over 150 PHI patients (Danpure et al, 1994a; Danpure and Rumsby, 1995). The loss of 

AGT activity is accompanied by a deficiency in SPT activity, since the same protein 

catalyses both reactions (Noguchi et al, 1978). Many PHI patients have also been 

shown to be deficient in immunoreactive AGT protein (Wise et a l, 1987; Danpure,

1991).

It is possible to categorise PHI into four types based upon the immunoreactivity (CRM) 

and catalytic activity (ENZ) of AGT (Danpure et a l, 1994a). 40% have no 

immunologically detectable AGT and no catalytic activity (CRM"/ENZ"). Absence of 

catalytic activity, but with immunologically detectable AGT is seen in 16% 

(CRM^/ENZ"), 41 % have both immunological and enzymic activity (CRM^/ENZ"^), in
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most cases of which the AGT is mistargeted to the mitochondria. ~3% have a 

mistargeting variation in which the AGT is equally distributed between the 

mitochondria and peroxisome, but in the peroxisomes it is aggregated into unusual core­

like structures (Danpure et a l, 1993).

The AGT gene (designated AGXT) has been cloned from normal liver, comprises 11 

exons covering 10 kb and maps to chromosome 2q36-q37 (Takada et a l, 1990). The 

cDNA isolated from a HepG2 library contains an open reading frame of 1179 

nucleotides and encodes a 392 residue polypeptide with predicted molecular mass of 43 

kDa (Takada et a l, 1990). To date more than forty mutations have been described for 

the gene (reviewed in Danpure, 2001).

AGT exists in two main polymorphic variants, one encoded by the major AGXT allele 

and the other by the minor AGXT allele (Danpure et a l, 1994a). A common C154T 

polymorphism together with an Al 142G change (leading to an Ile340Met substitution) 

and a 74 bp duplication in intron 1 constitute the minor AGXT allele, which has a 

frequency of 15-20 % in Caucasian populations (Danpure et a l, 1994a). There is also a 

polymorphic variable number tandem repeat (VNTR) in intron 4, with four possible 

variations in the number of copies of a 29/32 bp repeating unit (Danpure et a l, 1994b). 

The minor allele is always found on the background of the type 1 variation, which has 

38 copies of the repeating unit (Tam et a l, 1997). The frequencies of the minor AGXT 

allele and the type 1 VNTR are much higher in PHI patients than the normal population. 

This finding may have functional significance although in part reflects the high 

frequency of the G630A mutation that segregates with these polymorphisms (Danpure, 

2001).
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One of the mutations in the AGT gene leads to a PHI phenotype where the protein is 

mistargeted to the mitochondria. Cloning of the gene from the liver of a PHI patient 

with this mistargeting defect identified two base changes (Purdue et a l, 1990), The first 

was the common T154 polymorphism, which causes a Prol ILeu substitution and creates 

a weak mitochondrial targeting signal. When the polymorphism is combined with a 

GlylTOArg substitution caused by a G630A point mutation, which slows down 

dimérisation of the protein, AGT is mistargeted to the mitochondria (Leiper et a l,

1996). The T154 polymorphism encodes a protein with approximately 50% activity of 

the more common Cl 54 allele, decreases the rate of dimérisation under some conditions 

and sensitises the protein to the effects of several other mutations besides the G630A 

mutation (Lumb and Danpure, 2000).

The crystal structure of AGT has recently been resolved at 0.28 nm resolution (Zhang et 

al, 2001). This has provided information on the three-dimensional structure of the 

enzyme and will lead to increased understanding of how the mutations exert their effects 

upon the AGT protein.

1.5.2 Primary hyperoxaluria type 2

The presenting features of PH2 are similar to PHI and are the consequences of 

hyperoxaluria, including hematuria, renal colic and nephrolithiasis (Williams and Smith, 

1968a; Chalmers et a l, 1984; Seargeant et a l, 1991; Johnson et a l, 2002). There are 

many more documented cases of PHI than PH2 and the latter is thought to be more rare. 

However, it is probable that many patients with PH2 have in the past been incorrectly 

assumed to have PHI. This was mainly due to the lack of available assays for urine
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glycolate and L-glycerate. For example, a re-evaluation of PHI patients by Milliner and 

colleagues showed that 5 of 30 in fact had PH2 (Chlebeck et al, 1994). Several reports 

in the literature have suggested that PH2 may be more common than previously thought 

(Chlebeck et a l, 1994; Marangella et a l, 1995; Milliner et a l, 1998 and 2001). PH2 

has been shown to follow a more benign clinical course than PHI (Milliner et al, 2001; 

Johnson et a l, 2002). However, the potential for more serious sequelae is highlighted 

by the documentation of PH2 patients with nephrocalcinosis (Mansell, 1995; Kemper 

and Muller Wiefel, 1996) and end stage renal failure (Marangella et a l, 1995; Kemper 

e ta l, 1997).

PH2 was first recognised as a separate entity from PHI in 1968, when several patients 

were shown to have a deficiency of D-GDH in peripheral blood leucocytes (Williams 

and Smith, 1968a). D-GDH was known to function as a reductase with either 

hydroxypyruvate or glyoxylate as substrate (Dawkins and Dickens, 1965; Willis and 

Sallach, 1962) and it was subsequently shown that PH2 patients were deficient in both 

hepatic D-GDH and GR activities (Mistry et a l, 1988; Seargeant et a l, 1991). As 

discussed previously in section 1.2.2, studies of the mammalian enzyme found the HPR 

reaction to be more kinetically favourable than the reverse D-GDH reaction and it was 

concluded that the enzyme functions in vivo as a reductase (Van Schaftingen et a l, 

1989). The HPR reaction is thought to be involved in the production of the 

gluconeogenic precursor D-glycerate from hydroxypyruvate and the GR reaction is 

important for the detoxification of glyoxylate by its reduction to glycolate (Mistry et a l,

1988).
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Studies of GRHPR activity in crude tissue homogenates have revealed significant HPR 

activity in liver, kidney, leucocytes and fibroblasts, however GR activity was found 

predominantly in liver (Giafi and Rumsby, 1998a and 1998b). This finding is consistent 

with the importance of the GR reaction for glyoxylate removal in the liver to prevent its 

oxidation to oxalate. Chromatofocusing has been used to fractionate human liver HPR 

into two forms, one with GR activity and one without (Cregeen and Rumsby, 1999).

This result indicates that at least two enzymes exist in liver with HPR activity that use 

NADPH as a substrate, but only one of these uses glyoxylate. The HPR activity of the 

peak without GR activity was most likely due to LDH, which has been found to use 

hydroxypyruvate with NADPH as cofactor, but not glyoxylate (Van Schaftingen et al,

1989). This observation would account for the aforementioned differences in the tissue 

distribution of HPR and GR activity.

Biochemically PH2 is characterised by hyperoxaluria, usually accompanied by L- 

glyceric aciduria (Williams and Smith, 1968a; Chalmers et a l, 1984; Vilarinho et al, 

1993), although exceptions are starting to be recognised (Rumsby et a l, 2001). L- 

glycerate is an abnormal metabolite of hydroxypyruvate not usually found in urine, 

produced in PH2 as a result of hydroxypyruvate reduction catalysed by LDH (Williams 

and Smith, 1968a). Hepatic glyoxylate metabolism in PH2 is depicted in Figure 1.9,
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Figure 1.9 Hepatic glyoxylate metabolism in PH2. GRHPR deficiency leads to accumulation of glyoxylate and hydroxypyruvate, 

which are converted to oxalate and l-glycerate respectively by LDH (reactions shown in blue).



It is most likely that the hyperoxaluria of PH2 is due to failure of the GR catalysed 

reduction of glyoxylate and the subsequent oxidation of this organic acid to oxalate 

catalysed by LDH (Williams and Smith, 1968a; Gibbs and Watts, 1973; Mistry et al, 

1988). However, several other hypotheses have been advanced. These include the 

conversion of hydroxypyruvate to oxalate via glycolaldéhyde and glycolate (Liao and 

Richardson, 1978). This reaction would seem unlikely given that hyperglycolic aciduria 

is not a feature of PH2 (Williams and Smith, 1968b) and most of the hydroxypyruvate 

produced would appear to be converted to L-glycerate. Another hypothesis suggests 

that a build up of hydroxypyruvate directly influences LDH, increasing its oxidative role 

and decreasing its reductive role due to a shift in the NADH/NAD ratio (Williams and 

Smith, 1971). This hypothesis is supported by in vitro studies of chicken liver LDH, 

which have shown that hydroxypyruvate promotes the oxidation of glyoxylate, thereby 

increasing oxalate production (Lluis and Bozal, 1977). Finally, it has been proposed 

that hydroxypyruvate can be auto-oxidised non-enzymatically to form oxalate 

(Raghavan and Richardson, 1983; Raghavan et a l, 1997).

The gene for GRHPR has been cloned and sequenced (Cramer et a l, 1998; Rumsby and 

Cregeen, 1999). The cDNA is 1235 bp in length with a predicted open reading frame of 

987 bp and encodes a 328 amino acid protein of 40 kDa. Cells transfected with the 

cDNA showed HPR and GR (Rumsby and Cregeen, 1999) and D-GDH (Cramer et al, 

1999) activities. The gene comprises nine exons and eight introns and spans ~9 kb 

pericentromeric on chromosome 9 (Cramer et a l, 1999). To date six mutations in the 

GRHPR gene leading to PH2 have been described in the literature. Screening of eleven 

patients by polymerase chain reaction single stranded conformation polymorphism
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(PCR-SSCP) analysis and sequence analysis identified 6 novel mutations including 

missense, nonsense and deletion mutations (Cramer et a l, 1999; Webster et a l, 2000). 

The missense mutations were found to result in a dysfunctional GRHPR when expressed 

in vitro (Webster et a l, 2000).

Traditionally the two forms of PH have been distinguished on the basis of the presence 

of organic acids in urine. Hyperglycolic aciduria is indicative of PHI and L-glyceric 

aciduria indicative of PH2. However, not all PHI patients have raised urinary glycolate 

and a case of a PH2 patient without raised urinary L-glycerate has recently been 

reported (Rumsby et a l, 2001). Therefore, for the definitive diagnosis of PH it is 

necessary to measure hepatocyte enzyme activities of AGT and GRHPR. Methods are 

now available which allow both enzyme activities to be measured in a single liver 

needle biopsy (Rumsby et a l, 1997; Giafi and Rumsby, 1998a). The accurate diagnosis 

of PH is important for the therapeutic management of patients with the disease and there 

follows a discussion of the treatment of PH.

1.5.3 The treatment of primary hyperoxaluria

The treatment of PH in the early stages of disease progression is preventative 

conservative management, aimed at decreasing oxalate production and increasing 

urinary calcium oxalate solubility. Urinary oxalate concentration exceeding 0.4 mM 

increases the risk of stone formation, especially if urinary calcium exceeds 4 mM 

(Cochat and Basmaison, 2000). Therefore, treatment is aimed at keeping oxalate and 

calcium levels below these limits. This treatment includes maintaining a generous fluid 

intake to increase urine volume to produce an output of 3 litres per 24 hours (Watts,
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1994a) and the use of calcium oxalate crystallisation inhibitors primarily citrate, 

magnesium or orthophosphate. Citrate binds calcium thereby inhibiting calcium oxalate 

crystal nucléation and growth (Leumann et a l, 1995) and has been shown to be effective 

in adult and paediatric patients (Leumann et a l, 1993). Magnesium reduces oxalate 

solubility in the renal tract by forming magnesium oxalate, which is 50 times more 

soluble than calcium oxalate (Hodgkinson, 1977). Orthophosphate is widely used to 

treat patients with other forms of hyperoxaluria (Watts, 1994b) and has been associated 

with preservation of renal function in PHI patients (Milliner et a l, 1994).

Administration of pyridoxine, the cofactor of AGT, has been shown to be an effective 

treatment for some PHI patients (Gibbs and Watts, 1970). This has been found to 

significantly reduce urinary oxalate excretion in 20% of patients (Kopp and Leumann, 

1995), those most likely to respond having residual activity (Marangella, 1999). Usually 

pharmacological doses have to be administered of 450-1000 mg/24 hours in equally 

divided doses (Watts, 1994b). Responsiveness is defined as a greater than 30% 

reduction in urinary oxalate excretion from baseline after stepwise increase of daily 

dosage of pyridoxine (5-10 to 15-20 mg/kg after several weeks) (Leumann and Hoppe, 

1999). It is recommended that responsiveness be assessed before committing to long­

term pyridoxine therapy as high doses of pyridoxine carry a risk of neuropathy (Watts,

1998). It is impossible to predict which patients will respond to pyridoxine and not all 

those with residual activity (which correlates with the mistargeting defect) are 

responsive (Danpure, 2001). The molecular mechanism of pyridoxine action is not fully 

understood, but it may act by boosting AGT activity or via the activation of other 

transaminases in the cell.

49



Although dietary restriction of foods containing oxalate is advocated in the treatment of 

other forms of hyperoxaluria, it is thought to have minimal effect in PH treatment. This 

is because dietary oxalate contributes little to the hyperoxaluria, given the extremely 

high levels of endogenous oxalate production. Therefore, it is usually sufficient to avoid 

foods with a very high oxalate content such as beetroot, spinach, rhubarb and 

strawberries (Kasidas and Rose, 1980). Calcium restriction is not recommended, since 

this would make less calcium available to bind oxalate in the gut to prevent its 

absorption (Leumann and Hoppe, 2001).

When the disease has progressed to end stage renal failure (ESRF) dialysis becomes 

necessary to treat the uraemia. However, neither peritoneal or haemodialysis can clear 

oxalate from the body at a pace to match its rate of synthesis resulting in calcium oxalate 

deposition throughout the body (Watts, 1998; Cochat and Basmaison, 2000). Therefore, 

dialysis is generally regarded as a temporary treatment while the patient is awaiting 

transplant. For PHI, three transplantation strategies have been adopted, these being 

renal only (Allen et al, 1996), renal and hepatic (Watts et al, 1987; Jamieson, 1998; 

Cochat et al, 1999; Ellis et al, 2001) and hepatic only (Gruessner, 1998). Renal 

transplants have been most successful in patients without significant oxalosis and who 

are pyridoxine responsive (Allen et a l, 1996; Marangella, 1999). Combined liver and 

kidney transplant replaces both the enzyme deficient liver and the damaged kidneys and 

is the preferred choice for patients with ESRF in Europe (reviewed in Jamieson, 1998). 

Whatever the transplant strategy, the outcome is improved when patients are 

transplanted early to limit systemic oxalosis (Cochat et a l, 1999).
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1.5.4 Atypical hyperoxaluria

Several children have been described in the literature with moderate to marked 

hyperoxaluria, with or without nephrocalcinosis or urolithiasis, in the absence of any 

known secondary or primary cause. Van Acker and colleagues described two unrelated 

patients with hyperoxaluria and hyperglycolic aciduria in whom AGT activity and 

cellular localisation were normal (Van Acker et al, 1996). The hyperoxaluria was in 

the range seen in PHI, was unresponsive to pyridoxine and both nephrocalcinosis and 

urolithiasis were absent. Presence of hyperoxaluria in other family members seemed to 

indicate an autosomal dominant inheritance. Another report documented six children 

with moderate hyperoxaluria and with urolithiasis present in four (Monico and Milliner,

1999). Urine glycerate and glycolate were normal as were hepatic AGT and GRHPR 

activities. Secondary causes of hyperoxaluria including excess dietary oxalate, 

pyridoxine deficiency and malabsorption had been excluded. Recently two further 

children have been identified with persistent hyperoxaluria and early onset bilateral 

calcium oxalate stone formation (Neuhaus et al, 2000). Their urine glycolate and 

glycerate levels were normal and PHI and PH2 had been excluded by liver biopsy 

analysis. Pyridoxine had no effect upon urinary oxalate excretion in these patients.

The novel hyperoxaluria described above has been termed 'atypical hyperoxaluria' 

(Monico and Milliner, 1999) and the degree of hyperoxaluria observed is suggestive of 

metabolic oxalate overproduction. It is therefore possible that these patients have an as 

yet undefined metabolic defect leading to excess oxalate synthesis. GO is a candidate 

enzyme for a third form of inherited hyperoxaluria. Firstly it is possible that a mutation 

in the GO gene could increase its affinity for glyoxylate, thereby increasing oxalate
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production. Alternatively a deficiency of GO would be expected to lead to glycolate 

accumulation, which could result in excess oxalate production by as yet undefined 

pathways. GO deficiency could also lead to hyperglycolic aciduria without 

hyperoxaluria and patients with these symptoms have also been described in the 

literature (Craigen, 1996; Kist-van Holthe et a/., 2000).
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1.6 Glycolate Oxidase

GO is a peroxisomal flavin mononucleotide (FMN) dependent enzyme that catalyses the 

oxidation of short chain a-hydroxy acids. Studies of the spinach enzyme indicate that 

the enzymatic reaction can be divided into 2 steps (Macheroux et a l, 1991). Firstly, the 

a-hydroxy acid is dehydrogenated to its corresponding a-keto acid by a two-electron 

transfer to the FMN. In order to retain catalytic function the reduced FMN must be 

reoxidised at the expense of an electron acceptor. Molecular oxygen is used as an 

electron acceptor in a second reaction step yielding hydrogen peroxide.

GO is a member of a family of a-hydroxy acid oxidases/dehydrogenases all of which 

specifically oxidise the L-isomer of a-hydroxy acids to their corresponding a-keto 

acids. These enzymes (summarised in Table 1.2) share a common active site 

arrangement and sequence motif (Le and Lederer, 1991; Lindqvist et a l, 1991) typically 

having between 30-50 % sequence identity. On the basis of these similarities the 

reductive half of the reaction is thought to proceed through the same mechanism for all 

members of the family (Stenberg et al, 1995). However, the enzymes differ in the 

second stage of the reaction in terms of the ultimate oxidant used. GO and other 

oxidases utilise oxygen, whereas the dehydrogenases do not. In the case of yeast 

flavocytochrome bz (FCBz) intramolecular haem receives the electrons from the FMN 

and these are ultimately passed on to cytochrome c (Appleby and Morton, 1954). 

Membrane associated bacterial dehydrogenases, such as mandelate dehydrogenase 

(MDH), transfer electrons from the flavin to a component of the electron transfer chain 

within the membrane (Xu and Mitra, 1999). While mechanistically similar in many
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ways, the members of the a-hydroxy acid oxidase/dehydrogenase family have varying 

substrate specificities and intracellular localisation.

Flavoenzyme Species Localisation Substrate Reference

Flavocytochrome
b2

Saccharomyces
cerevisiae

Mitochondrial
intermembrane
space

Lactate (Ghrir and 
Becam, 1984)

Glycolate oxidase Spinacea Peroxisome Short chain
L-a-hydroxy
acids

(Volokita and
Somerville,
1987)

Hydroxy acid 
oxidase B

Rattus Peroxisome Long chain
L-a-hydroxy
acids

(Le and
Lederer,
1991)

Lactate
monooxygenase

Mycobacterium
smegmatis

Cytoplasm Lactate (Giegal et a l , 
1990)

Mandelate
dehydrogenase

Pseudomonas
putida

Bacterial
membrane

L-mandelate (Tsou et al, 
1990)

Table 1,2, The family o f  L-a-hydroxy acid oxidising flavoeuTymes,

GO displays a number of features that are characteristic of the flavoenzymes. These 

features and the unique spectroscopic properties of the flavin have been utilised for 

enzymological studies of the a-hydroxy acid oxidases/dehydrogenases (reviewed in 

Massey and Hemerich, 1980 and Fraaije and Mattevi, 2000). Biochemical and enzyme 

mechanism studies have focused primarily on FCB2 (Urban and Lederer, 1985; Reid et 

al, 1988; Daff et a l, 1994; Rouviere et a l, 1997; Mowat et a l, 2000; Gondry et al, 

2001) and lactate mono-oxygenase (LMO) (Massey et a l, 1980; Ghisla and Massey, 

1980; Muh et a l, 1994a, 1994b and 1994c). Spinach GO and yeast FCB2 have been 

crystallised and are structurally the best characterised (Lindqvist, 1989; Xia and 

Mathews, 1990). More recent additions to the family are long chain hydroxy acid
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oxidase B (HAO B) from rat kidney (Cromartie and Walsh, 1975; Le and Lederer, 1991) 

and MDHs from Pseudomonas putida (Tsou et a l, 1990) and Rhodotorula graminis 

(Illais et a l, 1998).

Two a-hydroxy acid oxidases have been described differing in their substrate 

specificities. GO, also referred to as hydroxy acid oxidase A (HAO A), shows a 

preference for short chain aliphatic a-hydroxy acids. It is found in plant peroxisomes 

(Tolbert, 1981) and has been isolated from several plant species, including spinach 

(Zelitch and Ochoa, 1953), tobacco (Kenten and Mann, 1952), pumpkin (Nishimura et 

ah, 1983) and pea (Kerr and Groves, 1975). GO has also been isolated from several 

animal species including rat (Kopp and Leumann, 1995), pig (Schuman and Massey, 

1971a) and chicken (Dupuis et a l, 1990). The enzyme was first purified from human 

liver tissue in 1979 and found to have maximal activity with glycolate (Fry and 

Richardson, 1979a). HAO B is also peroxisomal, has specificity for long chain, 

aliphatic and aromatic a-hydroxy acids and has been isolated from rat kidney 

(Cromartie and Walsh, 1975; Duley and Holmes, 1976; Le and Lederer, 1991).

As with other peroxisomal proteins, GO is nuclear encoded and post translationally 

imported into the peroxisome. These proteins are directed to the organelle by a 

peroxisomal targeting signal (PTS), of which there are two types. Most peroxisomal 

proteins have PTS-1, which is a carboxy terminal tri-peptide based on a loose consensus 

Ser-Lys-Leu sequence (Gould et a l, 1989). PTS-2 is found at or near the amino 

terminus in the thiolases (Swinkels et a l, 1991; Preisig-Muller and Kindi, 1993) and 

malate dehydrogenase (Gietl, 1990). Of the HAO enzymes that have been sequenced all
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have a PTS-1 type carboxy terminus, with some variation from the consensus. Spinach 

GO terminates in the sequence Ala-Arg-Leu (Volokita and Somerville, 1987), mouse 

liver GO in Ser-Lys-Ile (Kohler et a l, 1999) and HAO B of rat kidney terminates in Ser- 

Arg-Leu (Le and Lederer, 1991).

1.6.1 GO in plants

GO was first purified fi*om tobacco leaves in 1952 (Kenten and Mann, 1952) and 

spinach leaves in 1953 (Zelitch and Ochoa, 1953). It was found to be a fiavoprotein that 

catalysed the conversion of glycolate to glyoxylate. Results on the oxidation of 

glyoxylate were conflicting and it was not clear whether this activity was carried out by 

GO or another enzyme. However, spinach GO was subsequently shown to catalyse the 

production of oxalate from glyoxylate (Richardson and Tolbert, 1961). The same study 

also found that oxalate acts as a competitive inhibitor of GO, in particular of glyoxylate 

oxidation. It is now generally accepted that glycolate and glyoxylate are precursors of 

oxalate in plants with GO catalysing the oxidation of both.

GO is found in leaf peroxisomes, where it is involved in photorespiration as part of the 

so-called glycolate pathway (Tolbert, 1981). Photorespiration is the uptake of 0% and 

the formation of CO2 in light, resulting from glycolate synthesis in the chloroplast with 

subsequent peroxisomal and mitochondrial glycolate metabolism. GO catalyses the 

oxidation of glycolate to glyoxylate, which is rapidly converted to glycine by 

aminotransferase action. In the absence of an amino donor for the transamination 

reaction, glyoxylate can also be metabolised by spinach GO, to form oxalate (Morris
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and Garcia-Rivera, 1955). Hence, by extrapolation, GO has been implicated as a 

possible factor in endogenous oxalate production in humans.

1.6.2 GO in animals

In most animals studied to date, GO is localised to the liver, with the exception of pig 

and hog (Tokushige and Sizer, 1967) where the enzyme is also found in kidney. 

Peroxisomes from pig kidney were found to contain both forms of hydroxy acid oxidase, 

whereas only GO was present in liver. Both enzymes oxidised L-a-hydroxyisocaproate, 

but only GO used glycolate, and lactate as substrates (McGroarty et a i, 1974).

Similarly, rat liver GO was found to utilise glycolate, L-a-hydroxyisocaproate, lactate 

and glyoxylate (Ushijima, 1973). In addition to catalysing the oxidation of long chain a- 

hydroxy acids, rat kidney HAO B also catalyses the oxidative deamination of L-amino 

acids at comparable rates (Nakano et ai, 1967). This latter activity has not been 

observed with other hydroxy acid oxidases.

Many studies have been conducted to determine the role played by GO in oxalate 

production in rodents. The synthesis of oxalate from glyoxylate was completely 

inhibited by DL-phenyllactate, a competitive inhibitor of GO, in isolated perfused rat 

liver (Liao and Richardson, 1973). Furthermore, urinary oxalate excretion in rats is 

positively correlated with GO activity, but not LDH or XAO (Richardson, 1964; Sharma 

and Schwille, 1997; Yoshihara et a l, 1999). These findings are in contrast to in vitro 

studies, which have mainly concluded that LDH is the major contributor to oxalate 

production (Yanagawa et a l, 1990; Poore et a l, 1997). It has been suggested that GO
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and LDH co-operate in the production of oxalate, the former being important for 

glycolate utilisation and the latter for glyoxylate metabolism (Asker and Davies, 1983).

The inhibition of GO and LDH in isolated rat hepatocytes reduced oxalate production 

from glycolate and glyoxylate, but did not abolish it completely (Ludt and Kindi, 1990). 

This finding supports the existence of other enzymes in the liver capable of oxalate 

production. A candidate enzyme is glycolate dehydrogenase (GDH, EC 1.1.99.14), 

which has been isolated from human liver and shown to convert glycolate to oxalate 

directly (Fry and Richardson, 1979b). However, an in vitro study of oxalate formation 

from glycolate failed to detect GDH activity in rat and human liver supernatants 

(Yanagawa et a l, 1990). This finding led the authors to suggest that the reaction 

measured in the original study represented the combined actions of GO and XAO. 

Furthermore, the reaction catalysed by GDH (direct conversion of an alcohol to a 

ketone) is thought to be energetically unfavourable (Holmes, 1998).

Clearly there is a need for further investigation of the possible role played by GO in the 

pathogenesis of primary hyperoxaluria. Unlike LDH, whose principal reaction is the 

oxidation of lactate, GO has a pivotal role in glyoxylate metabolism. It catalyses the 

production of glyoxylate from glycolate in the normal liver and may play a role in 

oxalate production in diseases such as PHI where excess glyoxylate is present. The 

primary aim of this thesis is to identify the gene for human liver GO and characterise the 

protein encoded by that gene. The investigation of the role of GO in human glyoxylate 

metabolism, and in the production of oxalate in PH, will then be possible.
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2.1 Introduction

All experimental methods were carried out according to standard laboratory procedures 

for control, spillage and disposal and in accordance with the relevant departmental 

safety policies (Immunology and Molecular Pathology, University College London; 

Chemical Pathology, UCL hospitals). Human tissue samples were obtained from UCL 

Hospitals Primary Hyperoxaluria diagnostic service. Ethical approval for these studies 

was obtained from the Joint UCL/UCLH committees on the ethics of human research.

The procedures described in this chapter are those commonly used within this thesis. 

Methods that were adapted and/or are specific to individual chapters are included within 

the relevant sections.

2.2 Materials

2.2.1 Chemicals

All reagents and chemicals were Analar grade, purchased from BDH Chemicals (Poole, 

UK) or Sigma Chemical Company (Poole, UK) unless otherwise stated.

2.2.2 Buffers

All buffers were prepared with deionised water and stored at 4 °C prior to use, unless 

indicated otherwise.
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General buffers 

Potassium phosphate

0.2 M stocks of K2HPO4 (34.836 g anhydrous K2HPO4 dissolved in 1 litre H2O) and 

KH2PO4 (27.218 g anhydrous KH2PO4 dissolved in 1 litre H2O) were mixed together to 

obtain the required pH, and the resulting solution was diluted to obtain the required 

concentration of phosphate.

Sodium phosphate

0.2 M stocks ofNa2HP0 4  (28.4 g anhydrous Na2HP0 4  dissolved in 1 litre H2O) and 

NaH2PÛ4 (24 g anhydrous NaH2P0 4  dissolved in 1 litre H2O) were mixed together to 

obtain the required pH, and the resulting solution was diluted to obtain the required 

concentration of phosphate.

Electrophoresis buffers and solutions 

5x TBE

TBE stock was prepared by dissolving 60.6 g Trizma base, 25.7 g orthoboric acid and 

10 ml 0.5 M EDTA in 1 litre of H2O. This buffer was stored at room temperature. A Ix 

working solution was prepared for use in agarose gels and DNA electrophoresis tanks.

lOx bromophenol blue/xylene cyanol loading buffer

0.125 g bromophenol blue and 0.125 g xylene cyanol were mixed with 30 ml H2 0 , 12.5 

g Ficoll 400 (Amersham Pharmacia Biotech, St Albans, UK) was added and stirred until 

dissolved. Volume was adjusted to 50 ml with H2O and 1 ml aliquots stored at -20 °C.
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5x SDS-PAGE denaturing buffer

Stock sample buffer was prepared by dissolving 3 g of trizma base in 40 ml H2O, the pH 

was adjusted to 7.5 with acetic acid and the volume made up to 50 ml with H2O. 

Denaturing buffer was prepared with 1 ml stock sample buffer, 0.5 g sodium dodecyl 

sulphate, 77 mg dithiothreitol and 5 mg bromophenol blue and the volume was made up 

to 1 0  ml with H2O. 1 ml aliquots were stored at -20 °C.

Blotting buffers and solutions

These buffers were made using deionised water and stored at room temperature.

20x SSPE

174 g NaCl and 31.2 g of NaH2 ? 0 4  were dissolved in 40 ml of 0.5 M EDTA. The pH 

was adjusted to 7.4 with NaOH, and the volume made up to 1 litre with H2O.

Western blotting buffer

72 g glycine and 15 g trizma base were dissolved in 4 litres of H2O. Following this,

1 litre of methanol was added.

Phosphate buffered saline (PBS)

8 g NaCl, 0.2 g KCl, 1.174 g Na2HP0 4  and 0.2 g K 2 HPO4 were dissolved in 1 litre H2 O 

lOx Tris buffered saline (TBS)

24.2 g Trizma base and 292.2 g NaCl were dissolved in 1 litre of H2O. The pH was 

adjusted to 7.5 with HCl and a Ix working solution was prepared for use in western 

blotting.

62



TBS and tween (TTBS)

This buffer was prepared by adding 450 p,! of tween 20 to 900 ml of Ix TBS.

2.2.3 Bacterial media and antibiotics

All media was prepared with deionised water, sterilised by autoclaving and stored at

4 °C prior to use.

Luria-Bertani medium (LB)

5 g sodium chloride, 5 g tryptone (Difco, Detroit, Michigan, USA) and 2.5 g yeast 

extract were dissolved in 400 ml of H2O. The pH was adjusted to 7.5 with 10 M NaOH 

and the volume made up to 500 ml.

LB-agar

6  g bactoagar (Difco) was added to 500 ml LB. Following autoclaving, the agar was 

cooled to 50 in a water bath and ~20 ml was poured into 90 mM petri dishes. The 

plates were allowed to set at room temperature and stored at 4 °C until used.

SOB medium

10 g tryptone, 2.5 g yeast extract and 0.25 g sodium chloride were dissolved in ~ 400 ml 

H2O. 5 ml of 250 mM potassium chloride was added and the pH adjusted to 7.0 with 

10 M NaOH. After autoclaving, 2.5 ml filter sterilised 2 M magnesium chloride was 

added.

s e e  medium

This was prepared from SOB by the addition of 20 ml filter sterilised 1 M glucose.
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Ampicillin

500 mg ampicillin was dissolved in 5 ml H%0 and 1ml aliquots were stored at -20 °C 

until use. When used in media, ampicillin was at a final concentration of 50 pg/ml.

5-bromo-4-chloro-3-indolyl b-D-galactoside (X-gal)

100 mg x-gal was dissolved in 5 ml dimethylformamide and 1 ml aliquots were stored at 

-20 °C. This solution was used in media at a final concentration of 40 pg/ml.
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2.3 Methods

2.3.1 Isolation of human liver RNA

Total RNA was extracted from human liver tissue using RNA isolator reagent (Sigma 

Genosys, Poole, UK), which uses an acid guanidinium thiocyanate-phenol-chloroform 

extraction method (Chomczynski, 1993). All plastics were baked at 80 °C for three 

hours to remove nucleases, which if not removed, would degrade the RNA.

Tissue was homogenised in RNA isolator (100 mg tissue/ml) with a glass homogeniser 

and RNA was isolated as follows: 0.2 ml chloroform was added per ml of isolator 

reagent and the tubes shaken for 15 seconds. Following incubation at room temperature 

for 2-15 minutes the tubes were centrifuged at 15,000 g for 15 minutes at 4 °C. The 

upper aqueous phases containing the RNA were transferred to fresh eppendorf tubes and 

0.5 ml isopropanol was added. Following incubation at room temperature for 5 minutes 

the tubes were centrifuged at 15,000 g for 15 minutes at 4 °C. The supernatants were 

decanted and the RNA pellets were washed with 1 ml 75% ethanol. Following 

centrifugation at 7,500 g for 5 minutes at 4 °C all the ethanol was removed and the RNA 

pellets allowed to air dry for a few minutes. RNA pellets were dissolved in 0.1% diethyl 

pyrocarbonate (DEPC) treated water and frozen at -80 °C.

2.3.2 Reverse transcriptase-polymerase chain reaction (RT-PCR)

cDNA was synthesised by reverse transcriptase-polymerase chain reaction (RT-PCR) 

using the following conditions: 2 pg RNA was added to a solution containing 5 mM 

potassium chloride, 20 mM Tris-HCl pH 8.4, 5 mM magnesium chloride, 1 mM dNTP,
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Ix hexanucleotide mix (Boehringer Mannheim, Lewes, UK), 20 units Rnasin® RNase 

inhibitor (Promega, Southampton, UK) and 50 units M-MLV reverse transcriptase (Life 

Technologies, Paisley, UK) in a final volume of 20 pi. After incubation at room 

temperature for 10 minutes the RT reaction was carried out at 42 °C for 15 minutes. 

Following this the RT was inactivated by incubation at 99 °C for 5 minutes.

5 pi of the RT product was added to a PCR mix containing final concentrations of 50 

mM potassium chloride, 10 mM Tris HCl, pH 9.0, 0.1% Triton® X-100, 2 mM 

magnesium chloride, 200 pM dNTP, 0.6 pM each primer and 0.25 units Taq polymerase 

(Promega) in a total volume of 25 pi. Oligonucleotide primer sequences and PCR 

reaction conditions are listed in Appendix 1. RT-PCR products were mixed with 

loading buffer and electrophoresed in a 0.8% agarose (Life Technologies) gel containing 

0.5 mg/ml ethidium bromide at 100 mA, 200 V and visualised by UV illumination.

DNA was quantified by comparison of band intensity in agarose gels to similar sized 

bands of known concentration in lambda DNA///mdIII, or PhiX174 DNA/Z/aelll 

markers (Promega).

2.3.3 TA cloning of PCR products

PCR products were purified from agarose using the Geneclean® spin kit (Anachem, 

Luton, UK) according to the manufacturer’s instructions. The DNA was eluted from the 

column in a volume of 10 pi and 6  pi of this was ligated into the pCR® TA cloning 

vector (Invitrogen, The Netherlands) in an overnight incubation at 4 °C. One Shot® cells 

(Invitrogen) were transformed with 2 pi of the ligation reaction. Both the ligation and
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transformation steps were carried out according to the kit protocol. 50 pi and 200 pi of 

the transformation product were plated onto LB-agar plates containing ampicillin and x- 

gal, which had been prepared as outlined in section 2.2.3. After incubation overnight 

white colonies were picked, plasmid DNA was isolated and analysed for the presence of 

correct sized insert as follows:

5 ml aliquots of SOB medium plus ampicillin (50 pg/ml) were inoculated with 

individual colonies and cultured overnight at 37 °C with shaking. Plasmid DNA was 

extracted from 3 ml of overnight cultures using the QIAprep spin miniprep kit (Qiagen, 

Crawley, UK). The plasmid DNA was eluted into 50 pi 10 mM Tris-HCl, pH 8.5 and 

restriction digested overnight by standard procedures (Sambrook et a l, 1989). The 

digest was electrophoresed in a 0.8% agarose gel containing 0.5 pg/ml ethidium 

bromide and visualised by UV illumination to confirm the presence of correct sized 

digestion products.

2.3.4 Sequencing

Automated Sanger dideoxy sequencing with fluorescence labelled nucleotides using an 

ABI-3100 sequencer was carried out by a commercial provider. Plasmid DNA, 

containing the appropriate insert, was sequenced in both directions by means of Ml 3- 

universal and Ml 3-reverse primers.
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2.3.5 Northern blot analysis

cDNA inserts were excised from plasmids with appropriate enzymes and purified using 

the Geneclean® spin kit. 25 ng of purified DNA was used as a template for the synthesis 

of a [̂ P̂] dCTP-labelled cDNA probe, using the Rediprime'^^II labelling system 

(Amersham) following the manufacturer's instructions. Northern blots containing 

mRNA from a variety of tissues (Clontech MTN^* ,̂ Clontech, Palo Alto, Ca) were 

hybridised with the [̂ P̂] dCTP-labelled cDNA probe according to the MTN^^ kit 

protocol. The blots were prehybridised in 2x SSPE at 6 8  °C for 30 minutes. The probe, 

denatured by heating at 95 °C for 5 minutes, was added to the blots and hybridised for 1 

hour at 6 8  °C. After this time the probe was removed and the membranes were washed 

three times in 2x SSPE, 0.05% SDS at room temperature and twice in 0.1 x SSPE, 0.1% 

SDS at 50 °C for twenty minutes each.

2.3.6 Transfection Into BL21 competent cells

Epicurean colt BL21 (DE3) competent cells (Stratagene Ltd, Cambridge, UK) were 

transfected with plasmid constructs as follows: 100 pi aliquots of BL21 cells were 

transfected with 3 pi of plasmid. 200 pi aliquots of each transformant sample were 

plated onto LB agar plates with ampicillin and incubated overnight at 37 °C. Individual 

colonies were picked and analysed for the presence of correct sized insert as described 

previously in section 2.3.3.
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2.3.7 Expression of recombinant protein In BL21 cells

Recombinant protein was expressed using the Xpress® system (Invitrogen) in 

accordance with the manufacturer's instructions. The protocol used for isopropylthio-p- 

D-galactoside (IPTG) induction of protein expression is given below:

Individual colonies of BL21 cells transfected with plasmid constructs were cultured 

overnight in 2 ml SOB medium with ampicillin. 0.2 ml of overnight cultures were 

inoculated into 50 ml aliquots of SOB containing ampicillin (50pg/ml). The cells were 

grown with aeration until an absorbance of 0.6 at 600 nm was reached, at which time 0.5 

ml of 100 mM IPTG (238 mg dissolved in 10 ml H2O) was added and the culture 

incubated for a further 5 hours. The cells were harvested by centrifugation at 2,000 g 

for 10 minutes and the pellets frozen at -80 °C.

2.3.8 Protein SDS-PAGE

Protein samples were electrophoresed in rehydrated 10% polyacrylamide gels (Clean gel 

36S, Amersham) according to the manufacturer's instructions. Protein samples and 

Rainbow^'^ coloured protein molecular weight markers (Amersham) were denatured by 

heating at 95 °C in Ix SDS-PAGE sample buffer for 3 minutes and 2 minutes 

respectively, and immediately transferred to ice. Electrophoresis was carried out using a 

Multiphorll (Amersham) unit cooled to 10 °C at 200 V, 70 mA and 40 W for 10 minutes 

followed by 600 W, 100 mA and 40 W until the dye front had migrated across the width 

of the gel. Proteins were visualised with Goomassie blue staining or transferred to 

nitrocellulose membrane for immunoblotting.
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2.3.9 Protein staining with Coomassie briiliant blue

Solutions:

Fixing solution 250 ml isopropanol, 100 ml glacial acetic acid in 1 litre H2O

Destain solution 1 400 ml methanol, 70 ml glacial acetic acid in 1 litre H2O

Destain solution 2 50 ml methanol, 70 ml glacial acetic acid in 1 litre H2O

Staining solution 0.5 g Coomassie brilliant blue, 800 ml methanol and

140 ml glacial acetic acid in 2  litres H2O

All solutions were stored at room temperature. After SDS-PAGE, proteins were 

visualised using the following procedure: the gel was placed in fixing solution for 

twenty minutes, transferred to destain solution 1 for three minutes, followed by staining 

with staining solution for one hour at 60 °C. The gel was destained in solution 1 for 

thirty minutes, followed by solution 2  overnight.

2.3.10 Western biots of protein geis

For western blots, nitrocellulose membrane (Hybond-C extra, Amersham) was cut to the 

size of the gel to be blotted and soaked in water followed by western blotting buffer. 

Four pieces of 3MM (Whatman, Maidstone, UK) were cut to the same size as the 

membrane and wetted with blotting buffer. The gel was soaked in western blotting 

buffer for three minutes, stripped from the plastic backing and overlaid with the 

nitrocellulose. The nitrocellulose was laid gel side up on two pieces of wetted 3MM in 

the dry blot apparatus (Transblot-SD, Biorad, Hemel Hempstead, UK). The gel was 

overlaid with the remaining pieces of 3MM and air bubbles rolled out using a plastic 

tube. The lid was placed on the apparatus and transfer conducted at 15 volts for 1 h.
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The nitrocellulose was removed from the blotting apparatus and non-specific binding 

sites were blocked by immersion in PBS containing 3% (w/v) milk proteins for 10 

minutes. Following this the blot was incubated overnight with primary antibody in 3% 

milk proteins at appropriate dilution. Excess antiserum was removed by washing twice 

for 10 minutes in PBS A and the blot was incubated with alkaline phosphatase 

conjugated secondary antibody for 3 hours. After two 10 minute washes in PBS A, the 

blot was immersed in alkaline phosphatase colour development reagent (BioRad) for ten 

minutes, or until bands could be clearly visualised. The developed blot was rinsed in 

deionised water and the nitrocellulose blotted dry and wrapped in cling fihn.

2.3.11 Measurement of GO activity

Solutions:

25 mM glycolate 19 mg of glycolic acid was dissolved in 10 ml H2O 

0.5 mM DCIP 1.45 mg of 2,6 dichlorophenol indophenol dissolved in 10 ml H2O 

GO activity measurement was based upon an assay described previously (Zelitch and 

Ochoa, 1953) in which DCIP is used in place of oxygen as the electron acceptor, with 

glycolate as substrate. The reduction of DCIP was monitored by the measurement of its 

absorbance at 600 nm using an Uvicon 922 spectrophotometer (Bio-Tek Kontron, 

Watford, UK). In a cuvette, 500pl of 50 mM potassium phosphate buffer pH 8.3 was 

mixed with 200 pi of 25 mM glycolate, 50 pi of deionised water and 200 pi of 0.5 mM 

DCIP. The reaction was started by the addition of 50 pi of the sample to be assayed and 

the absorbance at 600 nm was recorded for 10 minutes. The absorbance change per min 

was calculated and using an extinction coefficient of 22,000 for DCIP (Armstrong,
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1964) activity was expressed as nmol DCIP reduced/min.

2.3.12 Preparation of human tissue sonicates

The tissue was suspended in 0.1 M potassium phosphate buffer, pH 8.0, 0.24 M sucrose 

at a concentration of 2% w/v. The suspension was sonicated on ice using cycles of 10 

second bursts, with 30 second intervals between bursts, using a Microson XL-sonicator 

(Misonix, New York, USA) until the mass was uniformly dispersed. Particulate 

material was pelleted by centrifugation at 15,000 g for 10 minutes at 4 °C. Protein 

concentration was determined as described in section 2.3.13 and samples were stored at 

-80 °C prior to use.

2.3.13 Determination of protein concentration

Protein concentration of tissue sonicates was determined by the method of Lowry et al, 

1951.

Lowry reagent A: 2 g anhydrous sodium carbonate dissolved in 100 ml of 0.1 M

sodium hydroxide

Lowry reagent B: 50 mg copper II sulphate pentahydrate dissolved in 10 ml of

tri sodium citrate

Lowry reagent C: 50 ml reagent A mixed with 1 ml reagent B (this reagent is

stable for 8  hours)

Lowry reagent D: Folin-Ciocalteu reagent (Fisons, Loughborough, UK) diluted 1:1

with deionised H2O.

Bovine serum albumin (BSA) (Pierce Chemical Company, Rockford, Illinois, USA) 

solution was used to prepare standards as indicated in table 2 . 1  below:
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Protein concentration (mg/ml)

0 0.025 0.05 0.125 0.25 0.375 0.5

Deionised H2O 2 0 0 195 190 175 150 125 1 0 0

1 mg/ml BSA (pi) 0 5 1 0 25 50 75 1 0 0

Table 2,1 Preparation o f  standard curve for Lowry protein assay.

Samples were diluted 1 in 30 with deionised H2O, i.e. 20 pi sample plus 580 pi water 

with both samples and standards run in duplicate. 1 ml of reagent C was added to each 

tube. The tubes were vortexed and allowed to stand for 10 minutes at room temperature. 

100 pi of reagent D was added to each tube, which were then vortexed rapidly. Tubes 

were left to stand for 30 minutes at room temperature and their absorbance was read at 

660 nm. A standard curve of absorbance versus protein concentration (mg/ml) was 

plotted and used to determine unknowns. The values obtained from the standard curve 

were multiplied by 30 (the dilution factor) in order to determine protein concentration in 

mg/ml. An example calibration curve is shown in Appendix 2a.

2.3.14 DNA and protein analysis software

ENTREZ http ://www.ncbi.nlm.nih.gov/Entrez/

BLAST http://www.ncbi.nlm.nih.gov/Blast/

W ebCutter http ://www. firstmarket.com/cutter/cut2 .html

Chromas http://www.technelysium.com.au/chromas.html

Translate http://www.expasy.ch/tools/dna.html

CLUSTALW http://clustalw.genome.ad.jp/
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3.1 Introduction

Glycolate oxidase has been isolated from several species including spinach leaves 

(Zelitch and Ochoa, 1953) and the livers of pig (Schuman and Massey, 1971a), chicken 

(Dupuis et a l, 1990) and rat (Ushijima, 1973). The enzyme from human liver was first 

identified in 1979 (Schwam et a l, 1979; Fry and Richardson, 1979a), although the 

protein sequence was not determined and the gene encoding human GO had yet to be 

identified. The traditional approach for gene identification is to purify the protein of 

interest from a source tissue and determine its amino acid sequence. However, this 

technique is often very time consuming involving multiple purification steps and doesn’t 

always purify the relevant protein to homogeneity. With the advent of the human 

genome project large numbers of partially sequenced cDNA “survey sequences” or 

expressed sequence tags (ESTs), have been produced (Adams et a l, 1991). This type of 

incomplete, but readily available, sequence data may be used to “phylum-hop” to enable 

the discovery of new genes, when the equivalent gene has been cloned in another 

organism (Boguski, 1995).

GO activity was first noted in plants including spinach (Zelitch and Ochoa, 1953) and 

tobacco (Kenten and Mann, 1952) and more recently the gene encoding spinach GO has 

been cloned (Volokita and Somerville, 1987). Using in silico techniques I identified a 

human cDNA with protein sequence homology to the GO enzymes from spinach and 

Arabidopsis. The sequence information obtained allowed a full-length cDNA to be 

amplified from human liver RNA by RT-PCR. The identification and cloning of the 

human GO gene and expression of the resulting protein is described in this chapter.
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3.2 Methods

3.2.1 Sub cloning into pTrcHisB expression vector

The primers used for RT-PCR were designed such that following excision from the TA 

vector by overnight digestion at 37 °C with Pstl and Hindlll restriction enzymes (New 

England Biolabs, Hitchin, UK) the cDNA could be ligated into the pTrcHisB expression 

vector in frame with the plasmid initiation codon.

After excision from the TA vector with Pstl and Hindlll the cDNA was inserted into the 

multiple cloning site of the pTrcHisB expression vector, in frame with the plasmid 

initiation codon. The expression vector had also been cut with the same enzymes and 

phosphorylase treated before ligation with insert. To determine the amount of calf 

intestinal alkaline phosphatase (CLAP) (Promega) needed to dephosphorylate 1 pg of 

vector, the amount of pmoles of DNA were calculated using the following formula:

(pg DNA/kb size of DNA) x 3.04 = pmol ends

Cut vector was incubated with 0.01 units of CIAP (Promega) per pmol of ends in Ix 

CIAP buffer for 15 minutes at 37 °C, followed by 15 minutes at 56 °C. A  further 0.01 

units of CIAP (Promega) per pmol of ends were added and the sample incubated for 30 

minutes at 37 °C. 2 pi of 0.5 M BDTA was added to stop the reaction and the sample 

was incubated for 20 minutes at 65 °C. The dephosphorylated DNA was purified using 

the Wizard^*  ̂DNA Clean-up System (Promega) according to the manufacturer’s 

instructions, with elution in 50 pi of 10 mM Tris-HCl, pH 7.6, 1 mM EDTA.
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The cDNA insert was ligated into the cut and dephosphorylated pTrcHisB expression 

vector, using 1:1 and 1:3 molar ratios of vectoriinsert. Reaction mixtures for the two 

molar ratios and three control ligations (vector and ligase with no insert, vector only, 

vector and insert with no ligase) are summarised in the table below (all volumes are in 

pi). Following overnight incubation at 4 °C, 3 pi of each ligation sample was 

electrophoresed in a 0.8% agarose gel to confirm whether the cDNA had ligated 

successfully.

1 : 1 1:3 Control 1 Control 2 Control 3

Vector DNA (50ng/pl) 2 1 2 2 1

Insert DNA (20ng/pl) 5 4 0 0 4

T4 DNA ligase (lU/pl) 1 1 1 0 0

T4 DNA ligase buffer (lOx) 1 1 1 1 1

Nuclease free water 1 3 6 7 4

Total volume (pi) 1 0 1 0 1 0 1 0 1 0

Table 3.1 Reaction mixtures for ligation o f inserts into pTrcHisB expression vector. 

3.2.2 Determination of the kinetics ofiPTG induction

Expression of the recombinant protein was induced by the method outlined in section 

2.3.7. A 1 ml aliquot of cells was taken from the bacterial culture prior to induction 

with IPTG. Following induction, 1 ml samples were taken from the culture at hourly 

intervals for a 5 hour incubation period. The samples were pelleted by centrifugation 

for one minute at 15,000 g and the supernatants transferred to separate tubes. The pellets 

were resuspended in 100 pi of 20 mM potassium phosphate buffer pH 7 and subjected
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to freeze thawing and sonication as described in the Xpress^^ system kit protocol. Both 

pellet and supernatant samples were electrophoresed by SDS-PAGE, protein stained and 

western blotted as described in sections 2.3.8 to 2.3.10.

3.2.3 3 ’ rapid amplification ofcDNA ends (3'RACE)

The 3’ untranslated region (UTR) was determined by 3’RACE using a kit produced by 

Gibco (Life Technologies). Refer to Appendix 1 for oligonucleotide primer sequences 

and PGR conditions. A cDNA was synthesised by RT-PCR as follows:

500 nM adaptor primer (S' GGCCACGCGTCGACTAGTACTTTTTTTTTTTTTTTT) 

was added to 2 pg of total liver RNA prepared by the method outlined in section 2.3.1. 

Primer annealing was accomplished by incubation at 70 °C for 10 minutes, followed by

1 minute on ice. RT reagents were added to the tube to give final concentrations of 50 

mM potassium chloride, 20 mM Tris-HCl pH 8.4, 2.5 mM magnesium chloride, 500 pM 

dNTP, 10 mM DTT and 200 units of Superscript II RT. The RT reaction was carried 

out at 42 °C for 50 minutes, followed by 15 minutes at 70 °C. Following this RNA was 

degraded by incubation with 2 units of RNase H for 20 minutes at 37 °C.

2 pi of the RT product was added to a PCR mix containing 50 mM potassium chloride, 

20 mM Tris-HCl pH 8.4, 1.5 mM magnesium chloride, 200 pM dNTP, 200 nM each of 

a gene specific forward primer (GSPl A) and a reverse primer complementary to the 

adapter primer (AUAP) and 0.1 unit Taq polymerase (Promega) in a final volume of 

50 pi. The PCR product was diluted 1/1000 and 2 pi was subjected to nested PCR with 

a downstream gene specific forward primer (GSP2A) and AUAP as the reverse primer.
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The product was inserted into the pCR 2.1 TA vector as described in section 2.3.3 and 

sequenced in full.

3.2.4 5 ’ rapid amplification of cDNA ends (5’RACE)

5’RACE was carried out using a kit produced by Gibco (Life Technologies, Paisley,

UK). Reaction conditions for first strand synthesis by RT were as described for 

3’RACE, except 100 nM of a gene specific primer (5’ ATCTGTTTCAGCAACAT) was 

used. Following this the cDNA product was purified by Glassmax isolation as follows: 

120 pi of 6  M sodium iodide was added to the first strand reaction tube and this was 

transferred to a Glassmax spin cartridge and centrifuged at 13,000 g for 20 seconds. The 

cartridge was washed 4 times with 400 pi Ix wash solution followed by 2 washes of 

400 pi 70% ethanol. The cDNA was eluted in 50 pi of sterile water and was dCTP tailed 

as follows: 10 pi of cDNA was added to a reaction mix containing 10 mM Tris-HCl,

25 mM potassium chloride, 1,5 mM magnesium chloride, 200 uM dCTP and 1 unit 

terminal deoxynucleotidyl transferase (TdT) in a total volume of 25 pi. The tube was 

incubated at 37 °C for 10 minutes, following which the TdT was inactivated by 

incubation at 65 °C for 10 minutes.

PCR of 2 pi dCTP tailed cDNA was conducted using the same reaction conditions as 

those used for 3’RACE, with 400 nM each of a nested gene specific reverse primer 

(GSP2B) and a polyG containing forward primer included in the kit (AAP). Nested PCR 

was conducted with a forward primer included in the kit (AUAP) and an upstream gene 

specific reverse primer (GSP3B). The PCR product was inserted into the pCR 2.1 TA 

vector and sequenced in full.
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3.3 Results

3.3.1 Cloning and sequencing of a cDNA for HA01

The Entrez database (http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/) was screened 

using the term ‘glycolate oxidase’ and a 1176 bp human cDNA identified with peptide 

sequence homology to GO from Arabidopsis thaliana (Figure 3.1). The DNA sequence 

of this cDNA (Accession number T64673, Appendix 3 a) was used to screen the EST 

database for longer length clones, which identified a 1195 bp EST (Accession number 

T74667, Appendix 3b). The clones were obtained from the integrated molecular 

analysis of genomes and their expression (I.M.A.G.E) consortium 

(http://bbrp.llnl.gov/bbrp/image) (Lennon et al., 1996) and the longest one sequenced in 

full (Appendix 3c). However, the absence of a termination codon indicated that this 

clone was missing the 3’ end. The translated peptide sequence of this cDNA shares 

54% identity with spinach GO (Appendix 3d).

A subsequent BLAST search identified an almost identical cDNA (Accession number 

AB024079, Appendix 3e), which included additional 3’ sequence. PCR primers 

(Genosys Biotechnologies Ltd, Pampisford, UK) were designed based upon the 5’ end 

of the IMAGE clone and the genomic sequence available through Genbank (Accession 

number AL021879, Appendix 3f), incorporating restriction sites for Pstl and Hindlll at 

the 5’ and 3’ ends respectively. This primer pair was used for cDNA synthesis by RT- 

PCR from human liver RNA as described in section 2.3.2. Oligonucleotide primer 

sequences and conditions are listed in Appendix 1. The PCR product was inserted into 

the pCR2.1 TA cloning vector (Invitrogen) according to the method outlined in section
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2.3.3. Sequencing of plasmid DNA containing the cDNA insert identified an 1128 bp 

sequence with an 1113 bp open reading frame, which upon translation was found to 

encode a 370 amino acid protein (Figure 3.1). The full-length cDNA sequence was 

submitted to Genbank (AF244134) and assigned the symbol HAOl by the 

Nomenclature Committee of the Human Genome Project.

Analysis of the peptide sequence with the Prosite program (Bairoch et a l, 1997) 

revealed signatures for a FMN-dependent, a-hydroxy acid dehydrogenase active site 

(residues 258-264) and a C-terminal peroxisomal targeting signal (residues 368-370). 

These residues are underlined in Figure 3.1. The amino acid sequence is predicted to 

encode a 40.9 kDa protein with a pi of 9 (http://www.expasy.ch/tools/pi-tool.html).

Alignment of the peptide sequence with those of mouse liver, spinach and Arabidopsis 

glycolate oxidases revealed 89% sequence similarity to GO from mouse liver and 53% 

similarity to the spinach and Arabidopsis enzymes. This alignment is depicted in Figure 

3.2.
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5'
1

gtgaaa 
atg etc eee egg eta att tgt ate aat gat tat gaa eaa eat get aaa1 M L P R L I C I N D Y E Q H A K

49 tea gta ett eea aag tet ata tat gae tat tae agg tet 999 gea aat17 S V L P K S I Y D Y Y R S G A N
97 gat gaa gaa act ttg get gat aat att gea gea ttt tee aga tgg aag33 D E E T L A D N I A A F S R W K
145 etg tat eea agg atg etc egg aat gtt get gaa aea gat etg teg act49 L Y P R M L R N V A E T D L S T
193 tet gtt tta gga eag agg gte age atg eea ata tgt gtg 999 get aeg65 S V L G Q R V S M P I C V G A T
241 gee atg eag ege atg get eat gtg gae gge gag ett gee act gtg aga81 A M Q R M A H V D G E L A T V R
289 gee tgt eag tee etg gga aeg gge atg atg ttg agt tee tgg gee aee97 A C Q S L G T G M M L S S W A T
337 tee tea att gaa gaa gtg geg gaa get ggt eet gag gea ett egt tgg113 S S I E E V A E A G P E A L R w
385 etg eaa etg tat ate tae aag gae ega gaa gte aee aag aag eta gtg129 L Q L Y I Y K D R E V T K K L V
433 egg eag gea gag aag atg gge tae aag gee ata ttt gtg aea gtg gae
145 R Q A E K M G Y K A I F V T V D
481 aea eet tae etg gge aae egt etg gat gat gtg egt aae aga tte aaa161 T P Y L G N R L D D V R N R F K
529 etg eeg eea eaa etc agg atg aaa aat ttt gaa aee agt act tta tea177 L P P Q L R M K N F E T S T L S
577 ttt tet eet gag gaa aat ttt gga gae gae agt gga ett get gea tat
193 F S P E E N F G D D S G L A A Y
625 gtg get aaa gea ata gae eea tet ate age tgg gaa gat ate aaa tgg209 V A K A I D P S I S W E D I K w
673 etg aga aga etg aea tea ttg eea att gtt gea aag gge att ttg aga
225 L R R L T S L P I V A K G I L R
721 ggt gat gat gee agg gag get gtt aaa eat gge ttg aat 999 ate ttg
241 G D D A R E A V K H G L N G I L
769 gtg teg aat eat 999 get ega eaa etc gat 999 gtg eea gee act att257 V S N H G A R Q L D G V P A T I
817 gat gtt etg eea gaa att gtg gag get gtg gaa 999 aag gtg gaa gte
273 D V L P E I V E A V E G K V E V
865 tte etg gae 999 ggt gtg egg aaa gge act gat gtt etg aaa get etg
289 F L D G G V R K G T D V L K A L
913 get ett gge gee aag get gtg ttt gtg 999 aga eea ate gtt tgg gge
305 A L G A K A V F V G R P I V W G
961 tta get tte eag 999 gag aaa ggt gtt eaa gat gte etc gag ata eta
321 L A F Q G E K G V Q D V L E I L
1009 aag gaa gaa tte egg ttg gee atg get etg agt 999 tge eag aat gtg
337 K E E F R L A M A L S G C Q N V
1057 aaa gte ate gae aag aea ttg gtg agg aaa aat eet ttg gee gtt tee
351 K V I D K T L V R K N P L A V S
1105
369

aag
K

ate
I

tga eagtgeaea 
stop

Figure 3.1 cDNA and predicted protein sequence o f  human HAOl (Genbank 

AF244134). The FMN-dependent a-hydroxy acid dehydrogenase active site (residues 

258-264) and peroxisomal targeting signal (residues 368-370) are underlined.

82



Human
Mouse
Spinach
Arabidopsis

Human
Mouse
Spinach
Arabidopsis

Human
Mouse
Spinach
Arabidopsis

Human
Mouse
Spinach
Arabidopsis

Human
Mouse
Spinach
Arabidopsis

Human
Mouse
Spinach
Arabidopsis

Human
Mouse
Spinach
Arabidopsis

MLPRLICINDYEQHAKSVLPKSIYDYYRSGANDEETLADNIAAFSRWKLYPRMLRNVAET 
MLPRLVCISDYEQHVRSVLQKSVYDYYRSGANDQETLADNIQAFSRWKLYPRMLRNVADI 
— MEITNVNEYEAIAKQKLPKMVYDYYASGAEDQWTLAENRNAFSRILFRPRILIDVTNI

DLST SVLGQRVSMPICVGATAMQRMAHVDGELATVRACQS LGTGMMLS SWATS SIEEVAE 
DLSTSVLGQRVSMPICVGATAMQCMAHVDGELATVRACQTMGTGMMLSSWATSSIEEVAE 
DMTTTILGFKISMPIMIAPTAMQKMAHPEGEYATARAASAAGTIMTLSSWATSSVEEVAS
---------------------------------------------------------ATSSVEKIAS

★ ★ ★ ★  • *  • ^

AGPEALRWLQLYIYKDREVTKKLVRQAEKMGYKAIFVTVDTPYLGNRLDDVRNRFKLPPQ
AGPEALRWMQLYIYKDREISRQIVKRAEKQGYKAIFVTVDTPYLGNRIDDVRNRFKLPPQ
TGPG-IRFFQLYVYKDRNWAQLVRRAERAGFKAIALTVDTPRLGRREADIKNRFVLPPF
TGPG-IRFFQLYVYKNRKWEQLVRKAEKAGFKAIALTVNTPRLGPKKSDIKNRFTLPPN

★★ • ★★★

LRMKNFETSTLSFSPEENFGDDSGLAAYVAKAIDPSISWEDIKWLRRLTSLPIVAKGILR
LRMKNFETNDLAFSPKGNFGDNSGLAEYVAQAIDPSLSWDDITWLRRLTSLPIWKGILR
LTLKNFEGIDLGKMDKAN DSGLSSYVAGQIDRSLSWKDVAWLQTITSLPILVKGVIT
LTLKNFEGLDLGKMDEAN DSGLASYVAGQIDRTLSWKDIQWLQTITNMPILVKGVLT

. * * * •  * ★  * ★ *  • *  it it

GDDAREAVKHGLNGILVSNHGARQLDGVPATIDVLPEIVEAVEGKVEVFLDGGVRKGTDV 
GDDAKEAVKHGVDGILVSNHGARQLDGVPATIDVLPEIVEAVEGKVEVFLDGGVRKGTDV 
AEDARLAVQHGAAGIIVSNHGARQLDYVPATIMALEEWKAAQGRIPVFLDGGVRRGTDV 
GEDARIAIQAGAAGIIVSNHGARQLDYVPATISALEEWKATQGGVPVFLDGGVRRGTDV 

★ ★★•★★★★★★★★★★ ★★★★★ * » ★★★★★★★★•★★★★

LKALALGAKAVFVGRPIVWGLAFQGEKGVQDVLXILKEEFRLAMALSGCQNVKVIDKTLV 
LKALALGAKAVFVGRPIIWGLAFQGEKGVQDVLEILKEEFRLAMALSGCQNVKVIDKTLV 
FKALALGAAGVFIGRPWFSLAAEGEAGVKKVLQMMRDEFELTMALSGCRSLKEISRSHI 
FKALALGTSGIFIGRPWFALAAEGEAGVKKVLQMLRDEFELTMALSGCRSISEITRNHI •★★★★★★• ★★ ••••★★ ★•★★★★★★• • ★ • •

RKNP----- LAVSKI
RKNP----- LAVSKI
AADWDGPSSRAVARL 
VTEWDIP— RHLPRL

Figure 3,2 Peptide sequence similarity o f  glycolate oxidases. The human GO sequence 

(Genbank AF244134) is aligned with the enzymes from mouse (Genbank AAD25332) 

spinach (Genbank AAA34030) and Arabidopsis (Genbank AAB80700).

Comparison of the full length HAOl cDNA with the genomic sequence deposited in 

Genbank (accession number AL021879, Appendix 3f) revealed 8 exons ranging in size 

from 70 to 256 bp, which mapped to chromosome 20pl2

(http://www.ncbi.nlm.nih.gov/UniGene). The genomic organisation of the human HAOl 

gene is depicted in Figure 3.3.
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5 kb

67 8Exon

Size
(bp)

137 152 256 176 159 70 71

Figure 3,3 Genomic organisation o f the human HAOl gene. Boxes represent exons, 

lines introns.

3.3.2 Expression of recombinant GO protein

The pTrcHisB expression vector (Invitrogen) was used to express the desired protein by 

means of IPTG induction. The recombinant protein produced is fused to a N-terminal 

His tag of six tandem histidine residues, which enables purification using nickel affinity 

chromatography. Since the His tag is small and uncharged at physiological pH it would 

not be expected to interfere with protein structure and function. The recombinant protein 

also contains an Anti-Xpress ™ epitope to enable protein detection by western blotting.

Following excision from the TA vector by overnight digestion at 37 °C with Pstl and 

Hindlll restriction enzymes the HAOl cDNA was ligated into the pTrcHisB expression 

vector by the method outlined in section 3.2.1. BL21 cells transfected with pTrcHisB- 

HAOl constructs were induced to express recombinant GO protein and the kinetics of 

the IPTG induction investigated by the method outlined in section 3.2.2. The results, as 

can be seen from figure 3.4, showed maximal GO protein expression at three hours with 

decreasing amounts of protein thereafter. From the western blot, which detects the Anti-
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Xpress™ epitope, it can be concluded that the intense band at 46 kDa represents 

recombinant GO protein. If the additional 3 kDa added in the fusion protein is accounted 

for, this indicates a 43 kDa protein, which approximates the predicted size of 40.9 kDa. 

Expression of this protein peaked at 3 hours post induction, after which time increasing 

amounts were found in the pellet (Figure 3.4 a). The pellet represents inclusion bodies, 

which are a common occurrence during recombinant protein expression. Since ample 

protein was present in the soluble fraction, inclusion bodies were not studied further. 

Future experiments used supernatants from cells induced for three hours only.
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Figure 3.4 Kinetics o f IPTG induction o f recombinant GO protein expression by 

BL21 cells, (a) Coomassie blue stained SDS-PAGE gel (b) western blot with anti- 

Xpress™ antibody. The 46 kDa band represents recombinant GO protein.
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3.3.3 Enzyme activity of crude extracts

GO activity was measured in crude extracts from BL21 cells with and without the 

HAOl insert, by means of DCIP reduction as described in section 2.3.2. Crude extracts 

from cells containing the pTrcHisB-HAOl construct had activity of 474 ± 20 nmol 

DCIP reduced/min/mg protein (mean ± 2 SD, n=3) compared to 5 ± 3 in those cells 

transfected with vector alone. Crude extracts of bacteria transfected with pTrcHisB- 

HAOl were tested for oxidising activity with a range of a-hydroxy acids. The results 

were expressed relative to GO activity and are depicted in Figure 3.5.
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Figure 3.5 Hydroxy acid oxidase activity in BL21 cells transfected with pTrcHisB- 

HAOl. Crude extracts o f BL21 cells were assayed for activity with a range o f hydroxy 

acids by monitoring DCIP reduction, results are expressed relative to GO activity, nd =  

not detected.
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3.3.4. Investigation of the tissue distribution of HA01 expression

Northern blots containing mRNA from a variety of tissues were hybridised with the 

[̂ P̂] dCTP-labelled full-length cDNA probe as described in section 2.3.5. This showed 

a single species of approximately 1.8 kb, with expression restricted to the liver (Figure 

3.6). The calibration curve used to estimate the size of this transcript is shown in 

Appendix 2b.

1.8 kb

Figure 3.6 Tissue distribution o f HAOl expression. Multiple tissue northern blots 

were hybridised with a full-length, radiolabelled HAOl cDNA probe.
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3.3.5 Rapid amplification of cDNA ends

5’ and 3’ RACE yielded a 35 bp 5’ and a 608 bp 3’ UTR respectively. These sequences 

are shown in Figure 3.7. Together with the 1113 bp reading frame of the HAOl cDNA, 

they constitute a 1756 bp sequence excluding the polyA tail, and this closely 

approximates the 1.8 kb product observed in the northern blot of liver RNA.

5’UTR

5 ' ACGAACTCCATCTGGGATAGCAATAACCTGTGAAAATG 

3’UTR

TGACAGTGCACAATATTTTCCCATCTGTATTATCTTTTTTCAGCATGTATTACTTGAC 
AAAGAGACACTGTGCAGAGGGTGACCACAGTCTGTAATTCCCCACTTCAATACAAAGG 
GTGTCGTTCTTTTCCAACAAAATAGCAATCCCTTTTATTTCATTGCTTTTGACTTTTC 
AATGGGTGTCCTAGGAACCTTTTAGAAAGAAATGGACTTTCATCCTGGAAATATATTA 
ACTGTTAAAAAGAAAACATTGAAAATGTGTTTAGACAACGTCATCCCCTGGCAGGCTA 
AAGTGCTGTATCCTTTAGTAAAATTGGAGGTAGCAGACACTAAGGTGAAAAGATAATG 
ATCTCATTGTTTATTAACCTGTATTCTGTTTACATGTCTTTAAAACAGTGGTTCTTAA 
ATTGTAAGCTCAGGTTCAAAGTGTTGGTAATGCCTGATTCACAACTTTGAGAAGGTAG 
CACTGGAGAGAATTGGAATGGGTGGCGGTAATTGGTGATACTTCTTTGAATGTAGATT 
TCCAATCACATCTTTAGTGTCTGAATATATCCAAATGTTTTAGGATGTATGTTACTTC 
TTAGAGAGAAATAAAGCATTTTTGGGAAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
AA 3 '

Figure 3.7 Nucleotide sequences o f  the 5* and 3 * UTR o f HAOl. The start and stop 

codons are shown in bold and the consensus polyadenylation signal is underlined.



3.4 Discussion

Prior to this research project, the only vertebrate homologue of GO to have been cloned 

was that of the mouse (Kohler et a l, 1999). This clone contained an open reading frame 

(ORF) of 1110 nucleotides and coded for a 370 amino acid protein. In vitro transcription 

and translation produced a 42 kDa protein with GO enzyme activity. The human GO 

identified in this thesis shares 89% amino acid sequence similarity with the mouse 

enzyme (Figure 3.2). Both proteins terminate in the near consensus type 1 peroxisomal 

targeting signal (PTSl) C-terminal tri-peptide Ser-Lys-Ile. In contrast, spinach GO has 

Ala-Arg-Leu (Volokita and Somerville, 1987) and HAO B from rat kidney has Ser-Arg- 

Leu (Le and Lederer, 1991). The Ser-Lys-Ile tripeptide has been demonstrated to target 

a construct of mouse GO and green fluorescence protein to peroxisomes in green 

monkey Cos cells and mouse fibroblasts in vitro when present at the C-terminus 

(Recalcati et al, 2000). This targeting was found to be as effective as the PTSl 

consensus tripeptide Ser-Lys-Leu appended to the same constructs.

Human GO protein contains the amino acid sequence S N H G A R Q, which represents 

a FMN-dependent a-hydroxy acid dehydrogenase active site (Figure 3.1) and is fully 

conserved between spinach and human GO (Figure 3.2). The structure of spinach GO 

has been solved by crystallographic studies (Lindqvist, 1989), which enabled active site 

amino acids critical for catalysis to be identified (Lindqvist and Branden, 1989; 

Lindqvist et a l, 1991). Alignment of the two protein sequences enables identification of 

the equivalent active site residues in human GO. A model of the active site of human 

GO adapted from that of the spinach enzyme is shown in Figure 3.8.
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T yr132

Arg 263 Lys 236

His 260

Asp 160

Figure 3,8 A schematic diagram o f the active site o f  human GO. Amino acid residues 

fully conserved between the spinach and human enzymes are depicted. Tyr 26, Tyr 132 

and Arg 263 are involved in substrate binding; His 260 is the active site base that 

abstracts the a-proton o f the substrate; Lys 236 stabilises the negative charge o f the 

flavin and Asp 160 stabilises the protonated His 260 during catalysis (Adapted from 

Lindqvist and Branden, 1989).
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The active site amino acids shown in Figure 3.8 are conserved between all of the FMN- 

dependent HAO enzymes so far sequenced, including spinach GO (Volokita and 

Somerville, 1987), HAO B from rat (Le and Lederer, 1991), LMO from Mycobacterium 

smegmatis (Giegal et a l, 1990), FCB2 from Saccharomyces cerevisae (Ghrir and 

Becam, 1984) and MDH from Pseudomonasputida (Tsou et a l, 1990). These are all 

flavoenzymes, which perform dehydrogenation reactions coupled to the transfer of two 

electrons to the flavin (Fraaije and Mattevi, 2000). The only exception to this homology 

is in rat HAO B, where Tyr 26 is replaced by a Phe residue (Le and Lederer, 1991). 

These 5 enzymes in addition to the human GO described in this thesis all share 54 

totally conserved residues (Figure 3.9). From enzyme studies in solution of the various 

flavoenzymes, and more recently by manipulation of the active site amino acids in 

recombinant proteins, the roles of the amino acids depicted in Figure 3.8 have been 

elucidated as discussed below.
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-------------------MLPRLICIN— DYEQHAKSVLPKSIYDYYRSGANDEETLADNI
--------------------- MEITNVN— EYEAIAKQKLPKMVYDYYASGAEDQWTLAENR
--------------------- MPLVCLA— DFKAHAQKQLSKTSWDFIEGEADDGITYSENI
ETKEDIARKEQLKSLLPPLDNIINLY— DFEYLASQTLTKQAWAYYSSGANDEVTHRENH 
MSNWGDYENEIYGQGLVGVAPTLPMSYADWEAHAQQALPPGVLSYVAGGSGDEHTQRANV 
K-NAEDLRIEQARKELRNVETWCLD— EFEEISQKILSEMAMAYYGTGAETEQTLRDER

AAFSRWKLYPRMLRNVAETDLSTSVLGQRVSMPICVGATAMQRMAHV— DGELATVRACQ 
NAFSRILFRPRILIDVTNIDMTTTIL6FKISMPIMIAPTAMQKMAHP— E6EYATARAAS 
AAFKRIRLRPRYLRDMSKVDTRTTIQGQEISAPICISPTAFHSIAWP— DGEKSTARAAQ 
NAYHRIFFKPKILVDVRKVDISTDMLGSHVDVPFYVSATALCKLGNPL-EGEKDVARGCG 
EAFKHWGLMPRMLMAATERDLSVELWGKTWAAPMFFAPIGVIALCAQDGHGDAASAQASA 
EAWQRVRFRPRVLRKMRHIDTNTTFLGIPTPLPIFVAPAGLARLGHP— DGEQNIVRGVA

S— LGTGMMLSSWATSSIEEVAEAGPEA— LRWLQLYIYKDREVTKKLVRQAEKMGYKAI
A— AGTIMTLSSWATSSVEEVASTGPG--- IRFFQLYVYKDRNWAQLVRRAERAGFKAI
E— ANICYVISSYASYSLEDIVAAAPEG— FRWFQLYMKSDWDFNKQMVQRAEALGFKAL 
QGVTKVPQMISTLASCSPEEIIEAAPSDKQIQWYQLYVNSDRKITDDLVKNVEKLGVKAL 
R— TGVPYITSTLAVSSLEDIRKHAGDT— PAYFQLYYPEDRDLAESFIRRAEEAGYDGL 
K--HDILQWSSGASCSIDEIFEVKEPD-QNLAWQFYVHSDKKIAEEKLKRALALGAKAI

FVTVDTPYLGNRLDDVRNR-------FKLPPQLRMKNFET----STLSFSPEENFGDDSGL
ALTVDTPRLGRREADIKNR-------FVLPPFLTLKNFEG----IDLG KMDKANDSGL
VITIDTPVLGNRRRDKRNQ------- LNLEANILLKDLR----- ALK---------EEKPT
FVTVDAPSLGQREKDMKLK------- FSN-TKAGPKAMKK--- TNVE---------ESQGA
VITLDTWIFGWRPRDLTISNFPFLRGLCLTNYVTDPVFQKKFKAHSGVEAEGLRDNPRLA 
FVTVDVPVLGKRERDLKLK-------ARSQNYEHPIAAQW--- KAAGSKVEETIAKRGVS

AAYVAKAIDPSISWEDIKWLRRLTS-LPIVAKGILRGDDAREAVKHGLNGILVSNHGARQ
SSYVAGQIDRSLSWKDVAWLQTITS-LPILVKGVITAEDARLAVQHGAAGIIVSNHGARQ
QSVPVSFPKASFCWNDLSLLQSITR-LPIILKGILTKEDAELAMKHNVQGIWSNHGGRQ
SRALSKFIDPSLTWKDIEELKKKTK-LPIVIKGVQRTEDVIKAAEIGVSGWLSNHGGRQ
ADFWHGLFGHSVTWEDIDWVRSITK-MPVILKGIQHPDDARRAVDSGVDGIYCSNHGGRQ
DIPDTAHIDANLNWDDIAWIKERAPGVPIVIKGVGCVEDVELAKQYGADGWLSTHGARQ

L DGVPAT IDVLPEIVEAVEG-----KVEVFLDGGVRKGTDVLKALALGAKAVFVGRPIVW
L DYVP AT IMALEE W K A A Q G -----RIPVFLDGGVRRGTDVFKALALGAAGVFI GRP W F
LDE VS AS IDALRE W A A V K G -----KIEVYMDGGVRTGTDVLKALALGARCIFLGRPILW
LDFSRAPIEVLAETMPILEQRNLKDKLEVFVDGGVRRGTDVLKALCLGAKGVGLGRPFLY
ANGGLPALDCLPEWKAS-G-----DTPVLFDSGIRTGADWKALAMGASAVGIGRPYAW
LDGARAPLDVLIEVRRKNPALLK— EIEVYVDGQARRGTDVLKALCLGARGVGFGRGFLY

GLAFQGEKGVQDVLEILKEEFRLAMALSGCQNVKVIDKTLVRKNP------LAVSKI---
SLAAEGEAGVKKVLQMMRDEFELTMALSGCRSLKEISRSHIAADWDGPSSRAVARL----
GLACKGEDGVKEVLDILTAELHRCMTLSGCQSVAEISPDLIQ------------FSRL---
ANSCYGRNGVEKAIEILRDEIEMSMRLLGVTSIAELKPDLLDLSTLKARTVGVPNDVLYN
GAALGGSKGIEHVARSLLAEADLIMAVDGYRNLKELTIDALRPTR----------------
AQSAYGADGVDKAIRILENEIQNAMRLLGANTLADLKPEMVECSFP ERWVPE-----

Figure 3.9 Peptide sequence similarity o f  hydroxy acid oxidising flavoenzymes.

Human GO (Genbank AF244134) is aligned with spinach GO (Genbank J03492) rat 

HAO B (Genbank NM_032082) yeast FCB2 (GenbankX03215) M. Smegmatis LMO 

(Genbank J05402) and R Graminis MDH (Genbank AJOOl431). Fully conserved amino 

acids are shown in bold typeface.
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Tyr 26 is thought to be involved in substrate binding by way of hydrogen bond 

formation between the hydroxyl group and the substrate carboxylate group.

Replacement of Tyr 24, the equivalent residue in the spinach enzyme, with Phe caused a 

10 fold increase in Km although enzyme turnover and substrate specificity was 

unchanged (Stenberg et a l, 1995). Tyr 129 in spinach GO is proposed to form a 

hydrogen bond to the a-hydroxy group of glycolate, participating in the reductive step 

of the enzyme reaction and stabilising a highly negatively charged transition state 

intermediate during catalysis. Replacement of this residue with Phe resulted in a 

decrease in enzyme turnover and only a small increase in Km (Macheroux et a l, 1993).

Lys 236 in human GO is the equivalent of Lys 230 in the spinach enzyme. This residue 

is hydrogen bonded to the Nl-C2=02 FMN locus (Stenberg et a l, 1995) where the 

positive charge of the lysine stabilises the negative charge. This amino acid facilitates 

electron transfer to the flavin during catalysis and is therefore important for flavin 

reduction (Fraaije and Mattevi, 2000). The oxidative half of the reaction is thought to 

be initiated by abstraction of a proton from the substrate a-carbon. His 260 in human 

GO is thought to be the active site base responsible for this step. Arg 263 interacts with 

the substrate carboxyl group and its positive charge is also thought to stabilise the 

negatively charged intermediate in a similar fashion to Tyr 129 (Lindqvist and Branden, 

1989).

An amino acid conserved between human and spinach GO, but not among the other 

known FMN-dependent HAO enzymes is Trp 110 (Trp 108 in spinach GO) (Volokita 

and Somerville, 1987). The size of the amino acid in this position influences the size of
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the substrate molecule that can be fitted into the active site. In FCBz and LMO (which 

both utilise lactate) Leu is found (Lindqvist and Branden, 1989), whereas in MDH from 

Rhodotorula graminis a Gly residue occupies this position (Illais et a l, 1998). Long 

chain HAOs from rat and human have Tyr and Phe respectively (Jones et a l, 2000). 

Evidence that the residue in this position confers the enzyme’s substrate specificity 

comes from site directed mutagenesis studies in which the residues have been replaced 

by alternative amino acids. For example, in spinach GO replacement of Trp 108 with 

serine resulted in a 100 fold increase in the Km for glycolate (Stenberg et a l, 1995). 

Furthermore, when Leu 230 in FCB2 was replaced with alanine, the mutant enzyme 

displayed activity with mandelate (Km 0.16 mM) and the Km for lactate showed a 12 

fold increase (Sinclair et a l, 1998).

In animals, the existence of two forms of hydroxy acid oxidising enzymes has been 

reported (Duley and Holmes, 1976). One has short chain HAO activity and is expressed 

in liver (Fry and Richardson, 1979a) and the other acts as a long chain HAO and is 

found in kidney (Duley and Holmes, 1976). The cDNA isolated in this project 

represents the human homologue of the gene encoding short chain HAO. Evidence for 

this is firstly that the enzyme shows maximal activity with short chain a-hydroxy acids 

and secondly northern blot analysis revealed expression of human HAOl was confined 

to liver. In a similar study of the mouse gene, a 2.2 kb transcript was detected in liver, 

but not in spleen, skeletal muscle, kidney, embryos or fibroblasts (Kohler et a l, 1999).

During the course of this work, Jones and colleagues reported the identification of three 

human HAO genes (Jones et al, 2000). One of these cDNAs was identical to the HAOl
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identified by this project. However, in addition to a major band in liver, northern blot 

analysis by Jones et al indicated the presence of HAOl transcripts at lower levels in 

kidney and pancreas. The band in kidney was the same size as that in liver (1.8 kb) and 

the band in pancreas was about 500 bases smaller and may represent an alternatively 

spliced transcript. It is unclear as to why these minor bands were not observed in my 

northern blot, since the blots were from the same commercial source and the same 

probes and comparable stringency conditions were used. Searching of the EST database 

using the full length HAOl cDNA sequence identifies numerous human ESTs from liver 

and one from pancreatic islet cells (Genbank BG656034.1). The latter clone is only 535 

bp, but is identical to the 3’ end of the full-length cDNA identified here and may 

therefore represent a splice variant of HAOl. However, this does not necessarily 

indicate that GO protein is expressed in the pancreas and absence of a band in this tissue 

on my northern blot would suggest that if RNA is present it is at very low levels. Jones 

et al did not speculate as to the possible role of GO in the pancreas and the significance 

of this finding is unknown.

The mouse HAOl gene was found to contain an iron response element (IRE)-like 

sequence in the 5’UTR. These elements are hairpin sequences, which are bound by iron 

regulatory proteins (IRPs) to control the synthesis of proteins important in iron 

metabolism (Barton et a l, 1990). IREs form stem loop structures with a conserved 

CAGUGN loop where N is any nucleotide except G and are composed of an upper stem 

of five perfectly paired bases and a lower stem, usually separated by a single cytosine on 

the 5’ side. The IRE-like sequence in the mouse HAOl exhibited strong binding to 

IRPs in vitro. However, its nucleotide sequence differed from functional IREs by a
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mismatch in the middle of the upper stem and didn’t confer iron-dependent regulation in 

cells (Kohler et a l, 1999).

The findings of an IRE-like sequence in the HAOl cDNA from mouse prompted my 

investigation of the UTRs of human HAOl. Using RACE techniques the sequences of 

both the 5’ and 3’ UTRs were determined, although no part of either sequence 

resembled an IRE. The human HAOl 3’ UTR extends 208 bp beyond the stop codon 

and contains the consensus polyadenylation site AAT AAA 12 bp upstream of the poly 

A tail. The 5’ UTR is only 35 bp in length and is just downstream of a run of 16 A 

nucleotides. This size may be artefactual as the run of identical nucleotides may have 

interfered with cDNA synthesis during RACE. This possibility remains unlikely 

however, since the total 1756 bp length of cDNA including both UTRs and the ORF 

corresponds very closely in size to the 1.8 kb transcript observed in the northern blot.

To summarise, screening of the Entrez database identified a human EST with peptide 

sequence homology to GO from Arabidopsis thaliana. Although this clone did not 

encompass the entire coding region of the gene, a BLAST search using its sequence 

identified a longer EST enabling primers to be designed for the synthesis of a full length 

cDNA from human liver RNA by RT-PCR. The gene identified showed a liver specific 

expression and encoded a protein with short chain HAO activity in vitro. The enzyme 

showed highest activity with glycolate as substrate. The identification and expression of 

human liver GO permits the characterisation of the enzyme and enables investigation of 

its role in glyoxylate metabolism, as will be described in subsequent chapters.
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4.1 Introduction

The GO enzyme from spinach has been well characterised and the 3D structure has been 

determined by X-ray crystallography (Lindqvist, 1989). This focus on the spinach 

enzyme is presumably in part due to the ready availability of spinach leaves from which 

to purify the enzyme. Investigation of mammalian GO has been more limited, although 

human GO has been purified from liver (Schwam et a l, 1979; Fry and Richardson, 

1979a) and partially characterised. This enzyme preferred glycolate as substrate when 

tested with a variety of a-hydroxy acids, an observation consistent with the spinach 

enzyme. GO has also been purified from pig (Schuman and Massey, 1971a), chicken 

(Dupuis et a l, 1990) and rat (Ushijima, 1973) livers as well as hog kidney renal cortex 

(Tokushige and Sizer, 1967). In none of these animal species was the protein sequence 

of GO determined and the kinetics with substrates other than glycolate were rarely 

investigated.

The cloning of a gene enables the production of large amounts of recombinant protein 

by utilising bacterial expression vectors. These vectors have been designed to include 

N-terminal and C-terminal additions to the expressed protein. For example, the addition 

of an antibody epitope allows immunodetection and the addition of a His tag makes 

possible purification by nickel affinity chromatography. These techniques enable the 

rapid production of large amounts of pure recombinant protein for subsequent analysis. 

This chapter describes the purification of human recombinant GO protein and the 

determination of its physical and kinetic characteristics.
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4.2 Methods

4.2.1 Purification of recombinant GO protein

Pellets of BL21 cells frozen after induction of protein expression (described in section 

2.3.7) were removed from the freezer, placed on ice and resuspended in 10 ml of 20 mM 

sodium phosphate buffer pH 7.8, containing 500 mM sodium chloride. The cells were 

treated with lysozyme at a concentration of 100 pg/ml on ice for fifteen minutes. The 

cell suspensions were subjected to sonication by three, ten second bursts from a 

Microson XL sonicator (Misonix), followed by flash freezing in liquid nitrogen and 

thawing at 37 °C. This cycle was repeated three more times, following which the cell 

lysates were treated with RNase (Qiagen) at a final concentration of 5 pg/ml. The cell 

debris was pelleted by centrifugation at 15,000 g for ten minutes at 4 °C, and the 

supernatants cleared by passage through a 0.8 pM syringe filter.

Recombinant protein was purified at 4 °C by means of the N-terminal His tag using 

nickel affinity chromatography, with the Xpress^^ purification System (Invitrogen). 5 ml 

of supernatant was loaded onto a ProBond column and the resin resuspended by 

repeated inversion of the column. The column was rotated on a test tube rotator for ten 

minutes, to keep the resin resuspended and allow the poly His containing protein to fully 

bind. The resin was allowed to settle and the supernatant separated by gravity flow 

chromatography. This was repeated for each 5 ml aliquot of cell lysate supernatant until 

a total volume of 40 ml had been batch bound.

The column was washed by resuspending the resin in 4 ml of 20 mM sodium phosphate 

buffer pH 7.8 containing 500 mM sodium chloride, rotating for two minutes and
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separating the resin from the supernatant using a pump at a flow rate of Iml/min. This 

wash step was repeated three times in total to remove the less strongly bound bacterial 

contaminant proteins. Remaining contaminant proteins were washed from the column 

by resuspending the resin in 4 ml of 20 mM sodium phosphate buffer pH 6, containing 

500 mM sodium chloride, rotating for two minutes and separating the resin from the 

supernatant using a pump at a flow rate of Iml/min. This wash step was repeated 

twenty-two times in total, by which time the absorbance of eluates was less than 0.01. 

The recombinant protein was eluted from the column by washing with either:

1. one 5 ml wash of 20 mM sodium phosphate buffer pH 5.5, followed by two 

washes of 20 mM sodium phosphate buffer pH 4.0. 

or 2. one 5 ml wash of each of 50 mM, 200 mM and 350 mM imidazole, followed by 

four 500 mM washes and one 1 M imidazole wash, 

or 3. two 4 ml washes of each of 50 mM, 200 mM, 350 mM and 1 M glycine

solutions in 50 mM tris buffer pH 8.3. Prior to this the column was brought to 

pH 8.3 using 250 mM tris buffer at the same pH.

The suitability of each of these elution methods was assessed in terms of ability to 

purify the protein to homogeneity and retention of GO enzyme activity. GO activity 

was measured in crude and pure fractions by DCIP reduction, as described in section 

2.3.11. Protein was estimated by measuring the absorbance at 280 nm and specific 

activity was expressed as nmol DCIP reduced/min/mg protein. Purification factors were 

determined as follows:

Purification factor = specific activitv of pure fraction
specific activity of crude extract
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4.2.2 Western blot analysis of recombinant GO

Western blotting and detection of recombinant GO was carried out according to the 

procedure outlined in section 2.3.10. Anti-Xpress™ antibody (Invitrogen) was used at a 

1/5000 dilution for the primary antibody. Alkaline phosphatase conjugated goat anti­

mouse IgG (Sigma) was used at a 1/1000 dilution as the secondary antibody. These 

were the dilutions recommended by the manufacturers.

4.2.3 Chemical crosslinking

Stock solutions of 0, 12.5, 25, 62.5 and 125 mM Bis(sulfosuccinimidyl) suberate (BS3; 

Pierce Chemical Company) in 5 mM sodium citrate buffer pH 5 (3.5 ml 5 mM citric 

acid and 6.5 ml 5 mM trisodium citrate) were prepared. 2 pi of each stock solution was 

added to 23 pi of purified GO in 20 mM sodium phosphate buffer, 0.15 M NaCl, pH 

7.5. This produced final concentrations of 0, 1,2,5 and 10 mM BS3 in the crosslinking 

reactions. The tubes were incubated at room temperature for thirty minutes. 1 pi of IM 

Tris was added to each tube to stop the reaction, and the tubes were left to stand at room 

temperature for a further thirty minutes. After this time, 8 pi of each sample was added 

to 2 pi of SDS-PAGE 5x sample buffer and electrophoresis with protein staining and 

western blotting were carried out by the procedures described in sections 2.3.8 to 2.3.10.

4.2.4 Enzyme Kinetics

The method of two-substrate kinetics was used in which the concentrations of both 

substrates are simultaneously varied (Comish-Bowden, 1995; Fell, 1997). This is 

explained fully in the referenced texts and is outlined briefly below.
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Five different concentrations across a chosen range were selected for each of the two 

substrates. Enzyme activity was measured for each possible pair of substrate 

concentrations and the initial velocity (v) determined for each reaction condition in 

triplicate. Average initial velocity was calculated for each set of triplicates resulting in 

25 different values of v, as shown in table 4.1.

Concentration 
of substrate B

Concentration of substrate A

A1 A2 A3 A4 A5

B1 V a 1,B1 V a 2,B1 V a 3,B1 V a 4,B1 V a S.BI

B2 V a i ,B2 V a 2,B2 V a 3,B2 V a 4,B2 V a 5,B2

B3 V a 1,B3 V a 2,B3 V a 3,B3 V a 4,B3 V a 5,B3

B4 V a 1,B4 V a 2,B4 V a 3,B4 V a 4,B4 V a 5,B4

B5 V a 1,B5 V a 2,B5 V a 3,B5 V a 4,B5 V a 5,B5

Table 4,1 A schematic o f  the set o f  results obtained for two-substrate kinetics. Adapted 

from (Fell, 1997).

The concentration of substrate A which was used for the determination of each value of 

V was divided by that value of v, and a primary plot of A against A/v was plotted for 

each concentration of substrate B as shown in Figure 4.1(a). The slope and intercept of 

each line were determined and used for the secondary plots shown in Figure 4.1(b).
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Figure 4.1 Primary and secondary plots o f  two-substrate kinetic data, (a) Primary plot 

o f [substrate A] vs [substrate A]/Initial velocity (v) (b) Secondary plots o f [substrate B] 

V5 [substrate B] x slopes from (a) and [substrate B] vs [substrate B] x intercepts from 

(a)
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Straight-line equations were determined by linear regression on the secondary plot data 

and values of Vmax and Km for each substrate were calculated as follows:

From the slopes plot: intercept with y axis = Kg/V hence, Kb = intercept x V

slope = 1/Vmax , hence Vmax = 1/slope 

From the intercepts plot: slope = KA/Vmax, hence Ka = slope x Vmax

Estimates of uncertainty in Vmax and Km were determined using lines of worst fit to the 

secondary plots.

Km values obtained were concentration of substrate in either pM (DCIP) or mM 

(hydroxy acids) and Vmax values were in absorbance units/min. The flavin content of the 

protein sample was determined by dividing the absorbance at 450 nm by the extinction 

co-efficient of FMN (22,000) (Whitby, 1953). This enabled the amount of flavin 

present in the enzyme assay to be determined. The Vmax values were therefore expressed 

as moles of DCIP reduced per min per mole of FMN as follows:

Initial velocity tOD units/mini = mmole DCIP reduced . min ' . ml ’

E dcip

where, E dcip is 22, 000 (Armstrong, 1964) and since 1 mole of DCIP is reduced per 

mole of hydroxy acid utilised:

mmole DCIP reduced . min ’ . ml ’ = mmole hydroxy acid oxidised . min ’ . ml ’

Vmax (mole hydroxy acid = mmole DCIP reduced . min ’ . ml ’

oxidised, min ’ . mole flavin’) mmoles flavin in assay
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4.3 Results

4.3.1 Purification of recombinant GO protein

Three different methods of elution from the nickel column were tested for efficacy. 

These methods were decreasing pH, increasing imidazole concentration and increasing 

glycine concentration. GO activity was measured in crude and pure fractions and 

specific activities and purification factors were calculated as described in Section 4.2.1. 

Purity of protein post nickel column was assessed by densitometric scanning of SDS- 

PAGE gels and western blotting with detection using the anti-Xpress' '̂^ antibody. The 

results are presented in Table 4.2 and Figure 4.2.

Purification method Specific activity of 
crude extract

Specific activity of 
pure fraction

Purification factor

pH 544 0 Not applicable

Imidazole 674 832 1.2

Glycine 259 1360 5.3

Table 4.2 Effect o f  elution method upon specific activity o f  recombinant GO post 

purification on nickel affinity column.

Decreasing the pH did not elute the protein from the nickel column, as revealed by the 

absence of enzyme activity and presence of many peaks in the densitometric scan. 500 

mM imidazole was more effective at purifying GO, as indicated by the presence of two 

peaks in the densitometric scan (Figure 4.2). These peaks are presumed to represent 

monomers and dimers of GO, since both bands showed immunoreactivity with the anti- 

Xpress"^  ̂antibody. 500 mM glycine was also effective at purifying the GO as indicated 

by the densitometric scan. Elution with glycine not only gave low background
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contamination, but also yielded enzyme with specific activity greater than 4 fold higher 

than the imidazole purification. These results suggest that there is loss of enzyme 

activity during purification by imidazole and therefore, glycine elution was the most 

effective purification method.

Densitom etry Im m unoblot

C/)
c
CD
c

Crude
extract

Imidazole

A  .

Glycine

220 kDa 

97 kDa

66 kDa 

46 kDa 

30 kDa

<- GO

Distance from  origin

Figure 4.2 Purification o f recombinant GO by nickel affinity chromatography.

Densitometric scans o f Coomassie stained SDS-PAGE gels o f crude bacterial extracts 

prior to purification and elution with pH 4, imidazole and glycine elution buffers. 

Immunoblot o f recombinant GO detected with anti-Xpress™ antibody. Lane 1 -  

molecular weight markers , lane 2 -  crude extract, lane 3 -  glycine eluate.
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4.3.2 Absorption spectrum of recombinant GO

Pure recombinant GO appears yellow in colour due to the presence of the FMN 

prosthetic group. This flavin has a characteristic absorption spectrum, which is 

detectable in the wavelength spectrum of pure flavoproteins. The wavelength spectrum 

of recombinant GO is depicted in Figure 4.3 and shows the characteristic flavin peaks.

wavelength (nm)

Figure 4.3 The wavelength spectrum o f pure recombinant human GO. The peaks at 

370 nm and 450 nm, with 2 marked shoulders at 430 nm and 480 nm are characteristic 

o f the FMN prosthetic group.
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4.3.3 Investigation of GO sub-unit structure

The sub-unit structure of GO was investigated by means of chemical crosslinking with 

BS3. This holds the sub units together by reacting with primary amines in the protein, 

resulting in the formation of covalent amide bonds. The results of the chemical 

crosslinking are shown in Figure 4.4.

(a) (b)

220 kDa — ^

97.4 kDa — ̂

66 k D a - g

46 kDa— Hi

30 kDa—

tetramer —

— monomer —

I
1 2 3 4 5 6  1 2 3 4 5 6

Figure 4.4 SDS page gels o f crosslinked recombinant GO. (a) Coomassie blue stained 

SDS-PAGE gel (b) western blot incubated with detection o f GO by anti-Xpress™ 

antibody. Lane 1 -  molecular weight markers, Lane 2 -p u re  GO without crosslinker, 

Lanes 3 - 6  represent pure GO incubated with increasing amounts o f BS3.
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upon electrophoresis of crosslinked GO by SDS-PAGE, different sized bands were 

observed. These were 46 kDa, ~90 kDa and -180 kDa and represent monomers, dimers 

and tetramers of GO respectively. With increasing crosslinker concentration the band at 

-ISO kDa was most apparent, which suggests that native GO exists as a homotetramer,

4.3.4 Kinetic characterisation of pure recombinant GO

A  variety of a-hydroxy acids of varying chain length were investigated by two-substrate 

kinetics, using DCIP as the second substrate. The a-hydroxy acids chosen were those 

which showed highest catalytic activity when assayed in crude bacterial extracts (Figure 

3.5). The reactions investigated are summarised in Table 4.3.

a-hydroxy acid chain length (number of carbons)

Glycolate 2

Glyoxylate 2

L-lactate 3

DL-a -hydroxybutyrate 4

L-a -hydroxyvalerate 5

L-a -hydroxyisocaproate 6

Table 4.3 Hydroxy acid substrates o f GO y analysed by two substrate kinetics

The substrate concentrations tested were chosen so that they encompassed as wide a 

range as possible. However, in all cases this range was limited at the lower end by 

detection limits and at the upper end by increased substrate inhibition. The 

determination of Km and Vmax for each hydroxy acid and DCIP substrate pair is shown 

in Figures 4.5- 4.10, where the A vs v plots show the mean ± S.D. of triplicate values.
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From the slopes plot:

slope = 1/Vmax , hence Vmax = 1/8.2887

= 0.121 absorbance units/min 

intercept on y axis = K^DCIP/Vmax, hence DCIP = 319.43 x 0.121

= 38.5 pM

From the intercepts plot: slope = glycolate/Vmax, hence

Km glycolate = 4.5083 x 0.121 

= 0.54 mM

Figure 4.5 Two-substrate kinetics plots with glycolate and DCIP as substrates. Km and

Vmax were calculated from the slopes and intercepts as described in the text.
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From the slopes plot:

slope = 1/Vmax , hence Vmax = 1/23.027

= 0.043 absorbance units/min 

intercept on y axis = KmDCIP/Vmax, hence DCIP = 965.59 x 0.043

= 41.9 fiM

From the intercepts plot: slope = Km glyoxylate/Vmax, hence

Km glyoxylate = 116.86 x 0.043 

= 5.08 mM

Figure 4.6 Two-substrate kinetics plots with glyoxylate and DCIP as substrates. K„

and Vmax were calculated from the slopes and intercepts as described in the text.
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From the slopes plot:

slope = 1/Vmax, hence Vmax = 1/10.438

= 0.096 absorbance units/min 

intercept on y axis = KmDCIP/Vmax, hence K^DCIP =690.42x0.096

= 66.2 pM

From the intercepts plot: slope = Kn, lactate/Vmax, hence

Km lactate = 322.93 x 0.096

= 30.9 mM

Figure 4,7  Two-substrate kinetics plots with lactate and DCIP as substrates. Km and

Vmax were calculated from the slopes and intercepts as described in the text.
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From the slopes plot:

slope = 1/Vmax, hence Vmax = 1/13.454

= 0.074 absorbance units/min 

intercept on y axis = KmDCIP/Vmax, hence K^DCIP = 467.88 x 0.074

= 34.8 pM

From the intercepts plot: slope = Kmhydroxyvalerate/Vmax, hence

Km hydroxyvalerate = 73.022 x 0.074 

= 5.43 mM

Figure 4.8 Two-substrate kinetics plots with hydroxyvalerate and DCIP as substrates.

Km and Vmax Were calculated from the slopes and intercepts as described in the text.
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From the slopes plot:

slope = 1/Vmax, hence Vmax =1/10.065

= 0.099 absorbance units/min 

intercept on y axis = K̂ DCIP/Vmax, hence K^DCIP = 791.28 x 0.099

= 79.6 pM

From the intercepts plot: slope = hydroxybutyrate/Vmax, hence

Km hydroxy- = 371.8 x 0.099 
Ibutyrate

= 36.9 mM

Figure 4.9 Two-substrate kinetics plots with hydroxybutyrate and DCIP as substrates.

Km and Vmax wBve calculated from the slopes and intercepts as described in the text.
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From the slopes plot:

slope = Wmax, hence Vmax = 1/9.6597

= 0.103 absorbance units/min 

intercept on y axis = K̂ DCIP/Ymax, hence K^DCIP =847.38x0.103

= 87.4 p,M

From the intercepts plot: slope = Km hydroxyisocaproate/Vmax, hence

Km glycolate = 11.109 x 0.103 

= 1.15 mM

Figure 4.10 Two-substrate kinetics plots with hydroxyisocaproate and DCIP as 

substrates. Km and Vmax were calculated from the slopes and intercepts as described in 

the text.
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The results of two-substrate kinetics are summarised in Table 4.4, where Vmax values 

have been expressed relative to FMN as described in section 4.2.4.

Km hydroxy acid 

(mM)

Km DCIP

( îM)

Vmax

Hydcoxy. acid

Glycolate 0.54 ± 0.1 39 ± 8 126 ± 18

Glyoxylate 5.1 ± 0.5 42 ± 5 72 ± 7

Lactate 31 ± 9 66 ± 20 10 ± 3

Hydroxyvalerate 5.4 ± 0.6 35 ± 6 39 ± 4

Hydroxybutyrate 37 ± 8 80 ± 20 34 ± 6

Hydroxyisocaproate 1.2 ± 0.3 87 ± 18 56 ± 10

Table 4.4 Summary o f results for two-substrate kinetics with a range o f  hydroxy acids 

with DCIP. Kinetic constants were determined from straight-line equations o f the slope 

and intercept plots ± error estimates determined from lines o f worst fit. Units o f Vmax are 

mole hydroxy acid oxidised. min^ . mole flavin \

The kinetics of pure GO with glycolate and oxygen as substrates was also investigated 

using an oxygen electrode as a more physiological means of assessing enzyme activity. 

Glycolate concentration was varied over the range 0.5 -  2.5 mM and the rate of oxygen 

decrease was monitored in the presence of 107,141 and 217 pM oxygen. The kinetics 

plots are shown in Figure 4.11.
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From the slopes plot:

slope = 1/Vmax, hence Vmax = 1/0.0369

= 25.707

relative to flavin, Vmax = 648 ±175 mole hydoxy acid oxidised, min ' . mole flavin '

intercept on y axis = Kmoxygen/Vmax, hence K^oxygen = 14.363 x 25.707

= 369± llO pM

Figure 4.11 Two-substrate kinetics plots with glycolate and oxygen as substrates, K„

and Vmax were calculated from the slopes and intercepts as described in the text.
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4.3.5 Absorption spectrum of reduced pure recombinant GO

The wavelength spectrum of a sample of pure recombinant GO in the oxidised state was 

measured after which the sample was degassed under a stream of nitrogen and covered 

in parafilm. The enzyme was reduced by addition of glycolate and the wavelength was 

scanned again to obtain the reduced spectrum. The results are shown in Figure 4.12.

oxidised GO 
red u c ed  GO

k 0.6

0.4

0.2

300 500 700

W avelength  (nm )

Figure 4.12 The oxidised and reduced wavelength spectrum o f purified GO. The

wavelength spectrum was measured before and after saturation with glycolate in the 

absence o f  oxygen.

As can be seen from Figure 4.12, it was possible to identify the reduced intermediate of 

GO when glycolate is bound to the enzyme and the hydrogen atoms have been 

transferred to the flavin. In the absence of oxygen the reduced flavin was unable to be 

reoxidised, resulting in the reduced spectrum shown in the figure. Upon reoxygenation 

of the buffer the spectrum returned to the oxidised state, due to reoxidation of the FMN.
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4.4 Discussion

Recombinant GO expressed in BL21 E. coli cells has been purified to homogeneity by 

means of nickel affinity chromatography. Glycine elution was most efficient in terms of 

retention of enzyme activity and purity of the protein. The glycine purification protocol 

also included a neutralisation step to raise the pH to 8.3 after washing with pH 6 buffer. 

This may have contributed to the preservation of enzyme activity observed, since it 

limited the exposure of GO to low pH. Using this method, recombinant GO was 

purified over 5 fold from crude bacterial extracts yielding pure protein with a specific 

activity of 1360 nmol DCIP reduced/min/mg protein.

Purified GO protein was yellow in colour indicating the presence of oxidised flavin and 

displayed the characteristic flavoenzyme wavelength spectrum, with absorbance peaks 

at 370 nm and 450 nm. The ratio of absorbances at 280 nm to 450 nm is used to assess 

the purity of flavoproteins and the pure recombinant GO isolated here displayed a ratio 

of 6.4. This compares favourably to the value of 6.1 reported for GO purified from 

human liver (Schwam et a l, 1979) and 7.3 for the enzyme from pig (Schuman and 

Massey, 1971a). In contrast, the ratio reported by Jones and colleagues for human 

recombinant GO purified by nickel affinity chromatography using imidazole elution was 

32.3 (Jones et a l, 2000). They suggested that approximately 80% of their GO protein 

would have been catalytically inactive due to flavin loss.

The anti-Xpress antibody detected a major band at 46 kDa in western blots of SDS- 

PAGE gels, however some higher molecular weight bands of immunoreactivity were 

also present. This result suggested that GO in its native form consists of several 

monomers bound together and hence the sub-unit structure was investigated by chemical
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crosslinking with BS3. This chemical holds the sub-units together by forming covalent 

amide bonds between lysine residues, which resist the reducing conditions of the SDS 

buffer. This treatment revealed monomers, dimers and tetramers of GO. As can be seen 

from Figure 4.3, tetramers of GO were most apparent with the highest concentration of 

crosslinker, indicating that the native protein is composed of 4 identical monomers. The 

GO enzyme purified from human liver also showed similar results on crosslinking. BS3 

treatment at pH 9.5 revealed a single band at -160 kDa, in contrast to a single band at ~ 

40 kDa revealed by SDS-PAGE in 5M guanidine HCl (Schwam et a l, 1979).

Pure recombinant GO prefers glycolate as substrate, in common with GO purified from 

the livers of various species and from spinach. The Km for pure recombinant GO was 

0.54 mM, compared to 0.34 mM for the enzyme purified from human liver (Fry and 

Richardson, 1979a), 0.42 mM for the pig enzyme (Schuman and Massey, 1971b) and 

0.3 mM for GO from hog kidney (Tokushige and Sizer, 1967). The enzyme displayed a 

10 fold reduced affinity for glyoxylate as substrate than for glycolate, as represented by 

the Km value of 5.4 mM for glyoxylate.

Two-substrate kinetics for a range of a-hydroxy acids with DCIP as the second substrate 

all showed lines converging in the upper left quadrant of the A vs A/v plot (Figures 4.5 

-  4.10). This is indicative of a catalytic mechanism involving the formation of a ternary 

complex (Comish-Bowden, 1995). That is to say that during catalysis more than one 

substrate or product are bound simultaneously. However, this is in contrast to the 

findings reported previously for spinach GO. Using steady state and rapid reaction 

studies with oxygen as substrate, the spinach enzyme was found to react in a ping-pong 

mechanism i.e. only involving binary complexes (Macheroux et a l, 1991). In this
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mechanism, the a-hydroxy acid substrate is oxidised to the corresponding a-keto acid at 

the expense of flavin reduction. The product is released from the active site and the 

reduced flavin is re-oxidised by the second substrate (oxygen or DCIP). The reduced 

second substrate is then released from the active site as the second product of the 

reaction and the enzyme is ready to start the catalytic cycle again.

A binary complex mechanism has also been reported for GO from pig liver with oxygen 

as substrate (Dickenson and Massey, 1963). This is in contrast to the findings of DCIP 

kinetics with the same enzyme, which indicated a ternary complex mechanism 

(Schuman and Massey, 1971b). The kinetics carried out with the oxygen electrode in 

this thesis, though not as extensive as the work with DCIP, displayed lines converging 

on the y axis in the A vs A/v plot consistent with a binary complex mechanism. 

Therefore, it would seem possible that GO forms a ternary complex when DCIP is the 

second substrate and a binary complex when oxygen is the second substrate. However, 

this may not be the case as it has been shown that in the absence of oxygen, kinetics 

with DCIP display a binary complex mechanism (Fry and Richardson, 1979a). Hence, 

the differences observed seem to be due to the presence of oxygen in the DCIP studies.

To investigate the catalytic mechanism of GO further the reductive half of the reaction 

was studied by probing the FMN spectrum. It was possible to identify enzyme 

containing reduced flavin, when the enzyme was saturated with glycolate in the absence 

of oxygen. This observation supports a ping-pong mechanism, involving only binary 

complexes. Therefore, it appears most likely that GO operates a ping-pong mechanism 

involving binary complexes, at least with its physiological substrate of oxygen.
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The kinetic studies of pure recombinant GO have shown that the enzyme is capable of 

utilising glyoxylate as a substrate. This confirms that it is a candidate enzyme for the 

production of oxalate in primary hyperoxaluria, although the extent to which this 

reaction actually operates in vivo in PH is unknown. It would seem unlikely that GO 

would catalyse the conversion of glyoxylate to oxalate in normal metabolism as 

glyoxylate would be quickly removed by AGT. The peroxisomal location of GO would 

suggest that it is more likely to play a role in oxalate production in PHI, when the 

glyoxylate would build up in the peroxisome. In contrast it would seem less likely that 

GO contributes to oxalate production in PH2, when the glyoxylate would build up in the 

cytosol. In this instance, cytosolic LDH would be the more likely candidate for oxalate 

production.

The extent to which GO would produce oxalate from glyoxylate in PHI would depend 

upon several factors. Firstly, the level of glyoxylate would need to increase to such 

levels that it could compete effectively with glycolate. Based upon the Km values of the 

two substrates, glyoxylate would need to be present at a concentration 10 fold higher 

than glycolate for GO to bind it to the same extent. However, given the Vmax with 

glyoxylate as substrate is approximately half that for glycolate oxidation the turnover 

with the former substrate will also be halved. These differences mean that glycolate is 

the most specific substrate and therefore the most favourable reaction. Liver glyoxylate 

concentration has been found to be 5 nmol/g and 10 nmol/g wet weight of homogenised 

tissue in rat (Funai and Ichiyama, 1986) and guinea pig (Holmes et a l, 1995) 

respectively. These values don’t reveal the actual concentration inside the cell, although 

calculations made on similar measurements for glycolate estimated its concentration in
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the cytosol to be 0.2 mM (Holmes et a l, 1995). As the amount of glyoxylate per gram 

of liver is less than that of glycolate (Holmes et a l, 1995), the cellular concentration of 

glyoxylate in normal human liver will be lower than 0.2 mM. However, if the glyoxylate 

in a cell is assumed to be predominantly peroxisomal (the site of glyoxylate synthesis 

catalysed by GO), a higher local concentration can be expected (Yanagawa et a l, 1990).

Another factor that will influence glyoxylate oxidation by GO is the rate of its diffusion 

out of the peroxisome, which would need to be slower than the rate of its oxidation by 

GO for glyoxylate oxidation to be favourable. Little is known about intracellular 

membrane transport and it isn’t clear whether such movement would occur by passive 

diffusion across organelle membranes or by an active transport process. A family of 

proton-linked monocarboxylate transporters exists in mammals, residing in the plasma 

membrane and the mitochondrial membrane (reviewed in Halestrap and Price, 1999).

An anion-selective porin-like channel protein has been found in the membrane of 

spinach leaf peroxisomes (Reumann et a l, 1995). The channel was found to have a 

minimum diameter of 0.6 nm (Reumann et al, 1998) and allowed the passage of 

glycolate and glycerate (Reumann et a l, 1995). This porin was distinctly different to 

the transporters of mitochondrial and plasma membranes and it is not known whether it 

occurs in mammalian peroxisomes.

In favour of GO is the fact that the enzyme is responsible for glyoxylate production 

from glycolate. Glyoxylate is therefore both a product and a substrate for GO in 

comparison to LDH, which is reported to be unable to catalyse glycolate oxidation 

(Yanagawa et a l, 1990). In isolated rat hepatocytes, GO inhibition produced a more 

marked decrease in oxalate production from glycolate than from glyoxylate. In contrast,

123



LDH inhibition caused a greater decrease in oxalate production from glyoxylate than 

from glycolate (Bais et a l, 1989). This observation highlights the importance of GO for 

glycolate conversion to glyoxylate.

Given the liver specific expression of AGT, it follows that it is in the liver that 

glyoxylate accumulates in PHI. The hepatic and peroxisomal location of GO, coupled 

with its kinetically favourable role in glyoxylate production highlights the importance of 

AGT for glyoxylate detoxification. Furthermore, it seems likely that the liver will be the 

main organ producing oxalate in PH since this is where the glyoxylate will accumulate. 

GO and LDH are the candidate enzymes for catalysing oxalate production. However, 

comparison of the two enzymes is difficult given the lack of investigation of the kinetics 

of LDH with glyoxylate as substrate. Clearly both GO and LDH are capable of 

contributing to oxalate production from glyoxylate. However, the extent to which each 

enzyme contributes to the pathogenesis of PH remains to be established.

To summarise, human recombinant GO has been purified to homogeneity by means of 

nickel affinity chromatography. Elution by glycine was the most efficient method in 

terms of purity obtained and preservation of catalytic activity. Kinetic analysis 

indicated the most specific substrate for the enzyme to be glycolate. Glyoxylate 

oxidation, although kinetically possible, appears less favourable and would seem 

unlikely to occur in vivo in normal metabolism. A convenient and rapid method for the 

production of purified recombinant GO protein has been established, and can be utilised 

to purify mutant recombinant proteins created by site directed mutagenesis. Thus the 

roles of active site amino acid residues may be investigated by kinetic analysis, which is 

the subject of the following chapter.
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Chapter Five 

Investigation of the Active Site of Human GO

5.1 Introduction

5.2 Methods

5.2.1 Generation of mutant constructs

5.2.2 Characterisation of recombinant mutant proteins

5.3 Results

5.3.1 Generation and expression of mutant GO proteins

5.3.2 Kinetic characterisation of mutant GO proteins

5.4 Discussion
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5.1 Introduction

The three-dimensional structure of GO from spinach has been elucidated by X-ray 

crystallography (Lindqvist and Branden, 1989) and has been refined to 0.2 nm 

resolution (Lindqvist, 1989). Prior to these structural studies, a general hypothesis for 

the catalytic mechanism of FMN oxidases had been postulated, based upon the findings 

of spectroscopic and kinetic analysis of lactate oxidase (Ghisla and Massey, 1991). 

However, the crystallographic studies of spinach GO identified the active site and 

allowed the specific amino acid residues likely to be involved in the various steps of the 

enzyme mechanism to be identified (described in chapter 3). The equivalent residues in 

human GO include Arg 263, thought to bind the substrate carboxyl group, and His 260 

proposed to be important for abstracting the substrate aC  hydrogen as a proton during 

catalysis by the spinach enzyme (Lindqvist and Branden, 1989). Alignment of the 

protein sequence of spinach GO with the sequences of other flavoproteins identified a 

unique amino acid, Trp 108, which upon mutation was shown to influence substrate 

specificity (Stenberg et a l, 1995). The equivalent amino acid in human GO is Trpl 10.

The cloning of the human HAOl gene described in this thesis (Chapter 3) has enabled 

amino acids potentially critical for catalysis in human GO to be identified, by 

comparison to the protein sequence of spinach GO (Figure 3.2). This chapter describes 

the generation and kinetic analysis of five mutant forms of human recombinant GO, in 

which residues Arg 263, His 260 and Trp 110 have been replaced by amino acids which 

cannot functionally substitute for the original amino acid, by means of site directed 

mutagenesis of the isolated gene.
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5.2 Methods

5.2.1 Generation of mutant constructs

Oligonucleotide primers containing the desired mutation were designed to anneal to the 

same DNA segment on opposite strands of the plasmid template. These primers were 

synthesised to order by Sigma Genosys Biotechnologies (Pampisford, UK). The 

mutations and primer sequences are listed in Table 5.1. Mutant constructs were 

generated by means of a Quickchange® site directed mutagenesis kit (StratageneLtd, 

Cambridge, UK) as follows:

25 ng of plasmid template and 125 ng of each primer were added to a PGR mix 

containing final concentrations of 10 mM potassium chloride, 10 mM Tris HCl, pH 8.8, 

10 mM diammonium sulphate, 2 mM magnesium sulphate, 0.1% Triton® X-100, 1 mM 

dNTPs and 2.5 units Pfu turbo DNA polymerase in a total volume of 50 pi. SDM 

reactions were carried out in an OmniGene thermal cycler (Hybaid, Ashford, UK) 

according to the following programme:

30 seconds dénaturation at 95 °C 

16 cycles of:

30 seconds dénaturation at 95 °C 

1 minute annealing at 55 °C 

8 minutes extension at 68 °C

2 minutes at 4 °C
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Following this 10 units oïDpnl were added to each reaction tube below the mineral oil 

overlay and the non-mutated plasmid template was digested by incubation for 1 hour at 

37 °C. XL 1-Blue supercompetent cells (Stratagene) were transfected with 1 pi of the 

Dpn\ treated samples according to the kit protocol. 250 pi of transformation products 

were plated onto LB-agar plates containing ampicillin. Following overnight incubation 

at 37 °C colonies were picked and analysed for presence of plasmid by the method 

outlined in section 2.3.3. All mutant constructs were sequenced along the entire length 

of the coding region, to confirm the presence of the desired mutation and ensure that no 

spurious mutations had occurred during the mutagenesis reactions.

Prim er

nam e

Prim er se q u en c e N ucleotide

c h a n g e

Amino acid 
ch a n g e

W 110FA

W 110FB

5' GCATGATGTTGAGTTCCTTTGCCACCTC 

5' GAGGTGGCAAAGGAACTCAACATCATGC

G352T; G 353T T rp H O P h e

W 110GA

W 110GB

5' GCATGATGTTGAGTTCCGGGGCCACCTC 

5' GAGGTGGCCCCGGAACTCAACATCATGC

T 351G TrpH O G Iy

W 110LA

W 110LB

5' GCATGATGTTGAGTTCCTTGGCCACCTC 

5' GAGGTGGCCAAGGAACTCAACATCATGC

G 352T T rp tlO L e u

H260GA

H260GB

5' GGATCTTGGTGTCGAATGGTGGGGCTCG 

5' CGAGCCCCACCATTCGACACCAAGATCC

C801G ; A 802G His260Gly

R263GA

R263GB

5' CGAATCATGGGGCTGGACAACTCGATGG 

5' CCATCGAGTTGTCCAGCCCCATGATTCG

C810G A rg263G ly

Table 5,1 Summary o f mutations and primer sequences for SDM studies.
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5.2.2 Characterisation of recombinant mutant proteins

Mutant plasmid constructs were transfected into Epicurean colt BL21 cells and 

recombinant protein was expressed according to the methods outlined in sections 2.3.6 

and 2.3.7 respectively. Crude bacterial extracts were analysed for GO activity by the 

DCIP assay as described in section 2.3.11. Active mutant proteins were purified by 

nickel affinity chromatography with elution by glycine as described in section 4.2.1.

The pure proteins were investigated by steady-state kinetic analysis using DCIP as the 

electron acceptor. Hydroxy acid concentrations were varied while DCIP was the fixed 

substrate and velocity values of OD units/min were determined fi’om the raw data. 

These velocity values were converted to moles of hydroxy acid utilised . m in'\ mole of 

flavin ' as described in section 4.2.4.

Means of triplicate measurements were calculated, Hanes plots of A vs A/v were 

plotted and straight-line equations were determined by linear regression. From these 

equations kinetic constants were determined as follows:

Slope = 1/Vmax , hence Vmax = 1/slope

Intercept = Km/Vmax , hence Km = Intercept x Vmax

Estimates of uncertainty in Km and Vmax were determined using lines of worst fit to the 

Hanes plots.
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5.3 Results

5.3.1 Generation and expression of mutant GO proteins

Sequencing of mutant plasmid constructs confirmed the presence of desired nucleotide 

changes and the absence of spurious mutations elsewhere in the coding sequence. 

Sequencing traces of the mutated and wild-type plasmid are shown in Figure 5.1.

X G A A T G G T G G C  C G A A 9 ' c  AT* G O

normal - ggt Gly260 - cat

Figure 5.1 (a) Sequencing profile o f the Gly 260 mutant.

(CTCGACAACTC 3 C T G G A C A A C T

normal - cga Arg263 - gga

Figure 5.1 (b) Sequencing profile o f the Arg 263 mutant
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T C C T G G G C C A TCC TTTGCCAC

normal - tgg Phe110-ttt

T C C T T G G C C A t T C C  G G G G  C C At

Leu110 - ttg Gly110-ggg

Figure 5.1 (c) Sequencing profiles o f the Phe 110, Leu 110 and Gly 110 mutants.

As can be seen from Figure 5.1, active site mutants of human recombinant GO have 

been successfully constructed by means of the Quickchange® site directed mutagenesis 

kit. Analysis of crude bacterial extracts, by means of the DCIP assay, found that the 

mutants exhibited decreased oxidation rates with glycolate as substrate in comparison to 

the wild-type recombinant GO extract (Table 5.2).
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Protein Activity of c ru d e  

e x tra c t

Activity of pu re  

p ro te in

Purification

fa c to r

W ild-type 3 6 2 2 6 3 4 9 1 .8

P he 110 2 1 3 1 4 1 0 6 .6

Gly 110 1 .8 5 2 2 .0 1 2

Leu 110 2 0 1 1 5 3 2 7 .6

Gly 260 nd 3 8 .2 na

Gly 263 4 .5 6 7 .7 7 1 .7

Table 5,2 Purification o f  mutant recombinant GO proteins. Units o f activity are nmol 

o f glycolate oxidised. min . mg protein .

In order to estimate the levels of protein expression, 6 pg of total protein from each 

crude extract was analysed by SDS-PAGE with Coomassie blue staining and western 

blots were analysed by incubation with Anti-Xpress antibody. These results revealed 

reduced protein expression for all mutants in comparison to wild-type GO (Figure 5.2). 

This was particularly the case for the Gly 263 mutant, which was barely detectable in 

Coomassie blue stained SDS-PAGE gels and western blots, although catalytic activity 

was detectable. This finding is in contrast to the Gly 260 mutant, where crude extracts 

showed no detectable catalytic activity (Table 5.2) even though Coomassie blue stained 

SDS-PAGE gels and western blots indicated relatively high levels of protein expression. 

The mutant proteins were all purified to homogeneity, by means of nickel affinity 

chromatography, as indicated by SDS-PAGE and western blot analysis (Figure 5.3).
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97 kDa

GO 46 kDa

/ / / / / /
30 kDa

97 kDa

G O  >
L- 46 kDa

30 kDa

Figure 5.2 (a) Western blot and (b) Coomassie blue stained SDS-PAGE gel o f crude 

extracts o f mutant GO proteins.
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97 kDa

GO ----->
%M#K ^WKgP 46 kDa

30 kDa

/ / / / / /

GO

97 kDa

46 kDa

/ / / / / /
30 kDa

Figure 5.3 (a) Western blot and (b) Coomassie blue stained SDS-PAGE gel o f purified 

mutant GO proteins. Molecular weight markers are shown at the edges o f  the figure.
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5.3.2 Kinetic characterisation of mutant GO proteins

In order to assess the effects of each mutation, pure recombinant proteins were subjected 

to kinetic analysis to determine the apparent Km and Vmax values. Despite the very low 

level of protein expression of the Gly 263 mutant, and the absence of GO activity in 

crude bacterial extracts of the Gly 260 mutant, kinetic analysis of glycolate oxidation by 

the pure proteins was possible. Hanes plots for the Gly 260, Gly 263 mutants and 

normal GO are shown in Figure 5.4.

700

A normal GO 
■ R263 
X H 260

600

500

400

300

200

y = 194.88x + 145.76

y = 67.387X + 39.865

y = 14.623X + 7.7454

-100
[g ly c o la te ]  ( mM)

Figure 5.4 Hanes plot o f the kinetic analysis o f the Gly 260 and Gly 263 mutant GO 

proteins. DCIP was fixed at 50 pM  while glycolate was varied from 0.5 to 2.5 mM, 

results shown are the mean o f three separate analyses.
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Kinetic constants (apparent Km and Vmax) were calculated from the straight-line 

equations shown in Figure 5.4. The results are summarised in Table 5.3, where Vr 

values are expressed as moles of hydroxy acid utilised. min'\ mole of flavin'L

Enzyme Km (mM) Vmax

Wild-type 0.53 ± 0 .04 372 ± 9

Gly 260 0.59 ± 0 .04 1.15 ± 0 .03

Gly 263 0.75 ± 0.1 0.31 ± 0 .02

Table 5.3 Kinetic properties o f  wiid-type and mutant GO protein. Kinetic constants 

were determined from straight-line equations o f the Hanes plot s ± error estimates from 

lines o f worst fit. Units o f Vmax are mole o f hydroxy acid utilised. m in \ mole offlavin \

Kinetic analysis of wild-type GO and of the Trp 110 mutants was carried out with a 

range of hydroxy acid substrates of varying chain length, and Km and Vmax values were 

determined. The results of these experiments are shown in Figures 5,5 -  5.8 and the 

kinetic constants obtained are summarised in Table 5.4.

In order to compare the substrate specificities of wild-type GO and each mutant enzyme, 

specificity constants were calculated by dividing the Vmax values by their corresponding 

Km values for all enzymes with each hydroxy acid tested. These specificity constants 

are shown in Table 5.5 and for ease of comparison are also depicted in graphical form in 

Figure 5.9.
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0.014 1

0.012 4
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0.008 1
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0.1
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0.04 0.1116X + 0.017
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0
0 0.5 1 1.5
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Figure 5.5 Kinetic analysis o f  wild-type GO with glycolate, lactate, mandelate and 

hydroxyoctanoate as substrates. Hanes plots are shown o f the data obtained when 

DCIP was fixed at 50 pM  while hydroxy acid concentrations were varied. Results shown 

are the mean o f three separate analyses.

137



Glycolate

0.05

0.045

0.04

0.035

0.03

0.025
= 0.0095X + 0.0190.02

0.015

0.01

0.005
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Lactate
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0.07
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:: 0 .04
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3 0.2 0.4

[ H y d r o x y o c t a n o a t e ]  ( m M )[ M a n d e l a t e ]  ( m M )

Figure 5,6 Kinetic analysis o f  Phe 110 mutant GO with glycolate, lactate, mandelate 

and hydroxyoctanoate as substrates. Hanes plots are shown o f the data obtained when 

DCIP was fixed at 50 pM  while hydroxy acid concentrations were varied. Results shown 

are the mean o f three separate analyses.
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Glycolate

6

1.1428X + 3.9569

1 2 

[ G l y c o l a t e ]  ( m M )

Lactate

>
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Figure 5.7 Kinetic analysis o f  Gly 110 mutant GO with glycolate, lactate, mandelate 

and hydroxyoctanoate as substrates. Hanes plots are shown o f the data obtained when 

DCIP was fixed at 50 pM  while hydroxy acid concentrations were varied Results shown 

are the mean o f three separate analyses.
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Figure 5.8 Kinetic analysis o f  Leu 110 mutant GO with glycolate, lactate, mandelate 

and hydroxyoctanoate as substrates. Hanes plots are shown o f the data obtained when 

DCIP was fixed at 50 pM  while hydroxy acid concentrations were varied Results shown 

are the mean o f three separate analyses.
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Wild-type GO Phe n  0 Gly 110 Leu 110

Substrate
Vmax Km Vmax Km Vmax Km Vmax Km

glycolate 230 ± 9 0.56 ± 0.7 105 ± 2 2.0 ± 0.05 0.88 ± 0.1 3.5 ± 0.5 94 ± 4 2.2 ± 0.1

lactate 42 ± 1 34 ± 1 290 ± 13 1.5 ± 0 .5 260 ± 9 21 ± 0.8 1 6 0 ±  1 0.31 ± 0 .0 2

mandelate 8.4 ± 0.2 2.8 ± 0.2 54 ± 1 0.52 ± 0.04 82.0 ± 1 0.25 ± 0.02 8.7 ± 1 0.91 ± 0.2

hydroxyoctanoate 9.0 ± 0.5 0.15 ± 0.4 105 ± 2 0.08 ± 0.007 85 ± 3 0.10 ± 0.03 89 ± 3 0.13 ± 0.01

Table 5,4 Kinetic properties for wiid-type and Trp 110 mutant proteins with substrates o f different chain length. Kinetic constants 

were determined from straight-line equations o f Hanes plot s ± error estimates from lines o f worst fit. Units o f Km are mMjand Vmax is 

f  expressed as moles o f hydroxy acid utilised. m in\ mole offlavin K



Wild-type GO Phe 110 Gly 110 Leu 110

glycol a te 4 1 7 5 2 . 6 0 . 2 5 4 2 . 6

l ac t a t e 1 . 2 3 1 9 6 . 1 1 2 . 7 5 2 6

m a n d e l a t e 2 . 9 4 1 0 5 3 2 3 9 . 5 5

h y d r o x y o c t a n o a t e  5 8 . 8 1 2 5 0 8 3 3 6 6 7

Table 5.5 Specificity constants for wild-type and mutant GO. Vmax/Km (mM~^.min^).
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Figure 5.9 Substrate-speciflcity profiles o f wild-type and Phe 110 mutant GO proteins.

Units o f specificity constants are m M ^m in^
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5.4 Discussion

Active site residues were identified where the equivalent amino acids have been shown 

to be catalytically important in other flavoenzymes. Mutagenesis techniques were 

utilised to mutate these residues in recombinant human GO to alternative synonymous 

amino acids. The mutant proteins were expressed and purified to homogeneity by 

means of nickel affinity chromatography using the method developed in chapter 4. His 

260 and Arg 263 were mutated to glycine to produce Gly 260 and Gly 263 mutants and 

Trp 110 was mutated to Gly, Phe and Leu to produce Gly 110, Phe 110 and 110 

mutants respectively. All five mutant proteins retained sufficient catalytic activity to 

permit their kinetic characterisation. The findings of this kinetic analysis were 

compared to those with wild-type GO to assess the effects of the mutations.

Kinetic constants for the Gly 263 and Gly 260 mutants were determined from Hanes 

plots of the rates of enzyme turnover measured at a range of glycolate concentrations 

(Figure 5.4). The Km values showed a slight increase, giving values of 0.53 mM for 

wild-type GO, 0.59 mM for Gly 260 and 0.75 mM for Gly 263. In comparison the Vmax 

values for Gly 260 and Gly 263 showed in excess of a 300 fold and a 1000 fold 

reduction respectively in comparison to wild-type GO. These findings indicate that both 

mutations had a much greater influence on enzyme turnover, as reflected by the greatly 

reduced Vmax values, than on substrate binding, as reflected by the small change in Km 

values. This observation is consistent with the hypothesis that these residues play an 

important role in enzyme catalysis as opposed to substrate binding.
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According to the mechanistic model of flavoenzyme catalysis the first step in the 

reaction is the abstraction of a proton from the a-C of the substrate by a base in the 

active site of the enzyme. Analysis of the crystal structure of FCB2 revealed that His 

273 was suitably positioned to fulfil the role of catalytic base (Lindqvist et a l, 1991) 

and His 260 is the homologous amino acid in human GO. Since this residue is of 

essential importance to enzyme catalysis, its mutation should have a profound effect 

upon the rate of reaction of the enzyme. In contrast, replacement of this residue would 

not be expected to change the Km for glycolate because it is not thought to take part in 

substrate binding. The Gly 260 mutant displayed a very similar Km to wild-type GO, 

whereas the Vmax showed a 300 fold reduction. This decrease is far less than expected 

and does not correlate with the results of similar mutations in other flavoenzymes. 

Mutation of this His residue to a Glu in LMO (Muh et a l, 1994b) and FCB2 yielded 

mutants with Vmax values decreased by factors of 1 0  ̂and 5x10^, compared to wild-type 

enzymes. The reasons for this difference are not clear and require further investigation.

Arg 263 in human GO is equivalent to Arg 273 in yeast flavocytochrome 6 2  (FCB2), 

which was observed to be bound to a molecule of pyruvate, the product of lactate 

oxidation, in one of the sub-units of the crystal structure (Xia and Mathews, 1990). 

Comparison of the refined crystallographic structures of spinach GO and FCB2 revealed 

that Arg 257 in the spinach flavoenzyme was in an equivalent position to bind to the 

carboxyl group of glycolate (Lindqvist et a l, 1991). Mutation of this residue has not 

been investigated in spinach GO, however the conservative Arg 273 Lys substitution in 

FCB2 (Reid et a l, 1988) produced inactive protein. In the human GO mutant described
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here the positively charged Arg has been replaced by a neutral residue i.e. Gly. 

Replacement of Arg with the neutral amino acid Gly in MDH from Pseudomonas putida 

produced a mutant with a 400 fold decrease in Vmax and a 5 fold increase in Km (Lehoux 

and Mitra, 2000). These findings are similar to those reported here for human GO and 

suggest that the positively charged Arg residue is critical for catalysis. This positive 

charge is thought to be important for the stabilisation of a highly negatively charged 

intermediate during catalysis, consistent with the so-called carbanion mechanism that 

has been postulated for flavoenzyme catalysis (Ghisla and Massey, 1991).

Of all the mutants Arg 263 showed the lowest yield of protein, as can be seen in Figure 

5.3. Activity was only detectable using three fold more pure protein than was used for 

the other mutants and wild-type GO. Furthermore, this mutant showed a large loss of 

activity upon freezing and during storage at -  80 °C. Replacement of the Arg 263 

residue appears to have reduced the stability of the protein. This has been reported for 

other flavoenzymes where the equivalent residue was mutated by site directed 

mutagenesis (Reid et a/., 1988; Lehoux and Mitra, 2000).

The equivalent residue to Trp 110 in human GO in the spinach enzyme is Trp 108, and 

when this latter residue was mutated to a Ser the results indicated that the Trp residue 

was of major importance for catalysis and in determining the substrate specificity of the 

enzyme (Stenberg et a l, 1995). This Trp residue is not conserved among other a - 

hydroxy acid oxidising enzymes. FCBzhas a Leu in this position (Ghrir and Becam, 

1984) whereas MDH from Rhodotorula graminis has a Gly (Illais et a l, 1998) and 

human long chain HAO has a Phe (Jones et a l, 2000). The size of the amino acid in this
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position appears to be inversely correlated to the size of the substrate molecule that can 

be fitted into the active site (discussed previously in chapter 3). Therefore, Trp 110 in 

human GO was mutated to Gly, Phe and Leu to produce Gly 110, Phe 11 and Leu 110 

mutants respectively and the effects upon substrate specificity were investigated.

As can be seen from Figure 5.9 all of the Trpl 10 mutants showed greatly reduced 

specificity for glycolate as substrate in comparison to the wild-type enzyme. However, 

they all now show highest specificity for the 8-carbon long chain hydroxyoctanoic acid. 

It appears therefore, that the Trpl 10 residue serves two functions due to its size. Firstly, 

it will occupy a large space in the active site optimising it for occupation by the small 

hydroxy acid glycolate. Secondly^its bulk appears to restrict entry of longer chain 

length hydroxy acids to the active site. Replacement of this residue with a slightly 

smaller Phe or with the tiny Gly or Leu residue optimises the active site for long chain 

hydroxy acids. Of the three mutants Phe 110 showed highest specificity for 

hydroxyoctanoic acid consistent with Phe being the residue found in human long chain 

HAO (Jones et a l, 2000). Even though the Gly 110 and Leu 110 mutants displayed 

highest preference for hydroxyoctanoate, of all enzymes, Gly 110 was the most effective 

at utilising mandelate and Leu 110 was the most effective at utilising lactate. These 

findings are consistent with Gly occurring in this position in MDH (Illais et a l, 1998) 

and Leu occurring in this position in FCB2 (Ghrir and Becam, 1984). However, the 

results also indicate that other residues elsewhere in the protein sequences of MDH and 

FCB2 must also be responsible for the substrate specificity of these enzymes.
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The results of kinetic analysis of the Trp 110 mutant GO proteins have several 

implications for human glyoxylate metabolism. Firstly, the Trp residue appears essential 

for conferring substrate specificity for glycolate. Therefore, the other hydroxy acid 

isoenzymes recently identified, namely medium and long chain HAO (Jones et al,

2000), which do not have this residue would not be expected to catalyse glycolate 

oxidation to produce glyoxylate. Since human GO shows a liver specific expression this 

indicates that hydroxy acid oxidase catalysed glyoxylate production will be confined to 

liver. This observation reinforces the importance of the liver in glyoxylate metabolism. 

The identification of GO activity in crude homogenates of human renal cortex has been 

reported (Applewhite et a l, 2000). This activity was attributed to GO protein, but the 

findings of this thesis indicate that GO is not expressed in kidney. Furthermore, long 

chain HAO found in kidney (Jones et al, 2000) would be unlikely to catalyse glycolate 

oxidation, due to the presence of a Phe in place of Trp 110 in human GO.

It is well established that human AGT shows a liver specific expression. This 

observation, coupled with the liver specific expression of GO, would suggest that at 

least the peroxisomal branch of glyoxylate metabolism is confined to liver. The 

remainder of the thesis will focus upon the investigation of glyoxylate metabolism in the 

liver, with particular reference to GO, using two alternative strategies. In chapter 6 the 

catalytic activity and immunoreactivity of human GO is investigated in liver sonicates of 

PH patients and of those without AGT and GRHPR deficiency. In chapter 7 HPLC 

methods to separate and quantitate glyoxylate are developed and applied to the study of 

peroxisomal glyoxylate metabolism catalysed by purified AGT and GO in vitro.
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Chapter Six 

Investigation of Human GO in Liver Sonicates

6.1 Introduction

6.2 Methods

6.2.1 Production of an anti-GO antibody

6.2.2 Western blot analysis of human liver GO protein

6.2.3 Measurement of GO enzyme activity in tissue samples

6.3 Results

6.3.1 Characterisation of an anti-GO antibody

6.3.2 The tissue distribution of GO protein

6.3.3 Western blots of human liver sonicates

6.3.4 Optimisation of an assay for GO activity

6.4 Discussion
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6.1 Introduction

Primary hyperoxaluria is widely regarded as a disease of the liver since AGT is a liver 

specific enzyme (Kamoda et a l, 1980) and GRHPR shows a predominantly hepatic 

expression (Cregeen, 2001). My observation that GO shows a liver specific expression 

(Chapter 3) further reinforces the importance of the liver in glyoxylate metabolism, in 

terms of glyoxylate production (catalysed by GO) and glyoxylate removal (catalysed by 

AGT in the peroxisome and GRHPR in the cytosol) to prevent its conversion to oxalate. 

PHI and PH2 show wide phenotypic heterogeneity and a factor that may contribute to 

this observation is variation of the activity of other enzymes in the pathway, such as GO. 

This variation may be due to functional polymorphisms in the genes encoding these 

enzymes or by differences in gene expression. In either case variable enzyme activity 

may influence the flux of metabolites through the pathways of glyoxylate metabolism 

and hence the severity of disease in PH.

The development of an assay to measure GO activity in human tissue sonicates will 

enable data regarding the inter-individual variation of this enzyme to be collected. The 

availability of large amounts of pure GO protein enables polyclonal antibodies to be 

produced, which can be used for the specific detection of immunoreactive GO in human 

liver sonicates and also for immunocytochemistry. This chapter describes the 

production of an anti-GO antibody and its use for the detection of immunoreactive GO 

in western blots of total liver proteins. The development and evaluation of an assay for 

measuring catalytic GO activity in liver sonicates is also described.
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6.2 Methods

6.2.1 Production of an anti-GO antibody

3 mg of purified recombinant GO protein in 5 ml of 25 mM potassium phosphate buffer 

pH 8.0 was freeze dried and used for immunisation of 2 rabbits to produce a polyclonal 

anti-GO antibody (Genpak Limited, Brighton, UK) according to the protocol illustrated 

in table 6.1.

Day 0 Pre-Bleed + first immunisation

Day 14 Booster antigen Injection

Day 35 Booster antigen Injection

Day 56 Booster antigen Injection

Day 77 Booster antigen Injection

Day 87 Bleed + separate serum

Table 6.1 Immunisation protocol for the production o f  an anti-GO antibody.

50 ml of immune serum was obtained from each rabbit and precipitated with ammonium 

sulphate to produce an enriched IgG fraction. 1 ml aliquots were stored frozen at -  80 

°C and on thawing, sodium azide was added to a final concentration of 0.1% and 

samples stored at 4 °C prior to use.
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6.2.2 Western blot analysis of human liver GO protein

Human liver sonicates containing 6 |ig of total protein were electrophoresed by SDS- 

PAGE and western blots produced according to the methods outlined in sections 2.3.8 

and 2.3.10 respectively. Following this, the nitrocellulose blot was placed briefly in 

TBS and quickly transferred to 5% (w/v) milk proteins in TBS. Blocking of non-specific 

binding sites was accomplished by incubation for one hour. Following two ten minute 

washes in TTBS, the blot was incubated overnight with primary anti-GO antibody in 

TTBS at appropriate dilution. Excess antiserum was removed by washing twice for ten 

minutes in TTBS and the blot was incubated with biotinylated goat anti-rabbit antibody 

in TTBS at a 1/3000 dilution for 2 hours. Following two ten minute washes in TTBS, 

the blot was incubated with a streptavidin-biotinylated alkaline phosphatase complex in 

TTBS at a 1/3000 dilution for two hours. After four ten minute washes in TTBS, the 

blot was developed using alkaline phosphatase colour development reagent as outlined 

in section 2.3.10. All incubations were carried out at room temperature.

6.2.3 Measurement of GO Enzyme Activity In tissue samples

GO activity was assayed by a method adapted from that of Kasidas and Rose (Kasidas 

and Rose, 1979), based upon the Trinder reaction (Barham and Trinder, 1972). The 

hydrogen peroxide formed by glycolate oxidation catalysed by GO was used to 

oxidatively couple sulphonated 2,4 dichlorophenol and 4-aminophenazone, in a reaction 

catalysed by horseradish peroxidase. The soluble purple quinoneimine dye formed was 

measured by the absorbance increase at 515 run.
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Solutions:

Trinder reagent A stoek solution was prepared by dissolving 50 mg di-ammonium

hydrogen phosphate, 174 mg di-potassium hydrogen phosphate, 

100 mg 4-aminophenazone and 50 mg orthoborie acid in 100 ml 

of deionised water. A working solution was prepared by adding 

10 mg of horseradish peroxidase (-2,000 units) and 400 pi of 

sulphonated 2,4 dichlorophenol to 10 ml of stock reagent. This 

was prepared fresh and used within 1 hour.

100 mM glycolate 16 mg of glycolic acid was dissolved in 10 ml deionised water and

the pH adjusted to pH 7 with a few drops of 8 M NaOH.

Tris buffer pH 8.8 50 ml of 0.1 M tris and 8.5 ml of 0.1 M HCl were combined and

made up to 100 ml with deionised water.

In a cuvette, 500 pi of buffer was mixed with 200 pi of 100 mM glycolate, 50 pi of 

deionised water and 200 pi of Trinder reagent. The reaction was started by the addition 

of 50 pi of the sample to be assayed and the absorbance at 515 nm was recorded for 10 

minutes in a Kontron 922 double beam spectrophotomoter (Watford, UK).

To enable results to be expressed as nmol of glycolate oxidised/min, the assay was 

calibrated with hydrogen peroxide, which had been titrated with potassium 

permanganate.
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6.3 Results

6.3.1 Characterisation of an anti-GO antibody

Using pure recombinant GO as antigen, a polyclonal anti-GO antibody was raised in 

rabbits according to the method outlined in section 6.2.1. This antibody was tested for 

immunoreactivity against pure recombinant GO, using rabbit pre-immune serum as a 

control. The antibody detected a 46 kDa protein band when used to probe a western blot 

containing pure recombinant GO (Figure 6.1 a, lane 2). No such band was observed 

when the antibody was replaced with pre-immune serum (Figure 6.1 b, lane 2).

The anti-GO antibody failed to detect the presence of immunoreactive GO protein in 

western blots loaded with up to 12 pg of total liver protein (Figure 6.1 a, lanes 3 -  4). 

When more concentrated solutions of antibody were used a faint band of 

immunoreactivity was observed. However, this was not sufficient to detect GO in all 

liver biopsies tested. The sensitivity of the assay was therefore increased by the use of 

an amplified antibody detection kit. This kit incorporates an amplification step in which 

a biotinylated secondary antibody binds to the primary antibody. The secondary 

antibody is then bound to a tertiary antibody via a streptavidin-biotin complex. This 

produces a ten fold greater sensitivity than that of the standard protocol giving a lower 

limit of detection of 10 ng protein. The kit was used to detect immunoreactive GO in 

tissue sonicates by the method outlined in section 6.2.2.
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a b

220 kD a-----

97 k D a -----

66 kDa

46 kDa

30 kDa

1 2 3 4 1 2

Figure 6.1 Immunoreactivity o f the anti-GO antibody. A band o f 46 kDa representing 

GO was detected by the antibody (a), but not by pre-immune serum (b). Lane 1, 

molecular weight markers; Lane 2, pure recombinant GO; Lane 3, 6 pg total liver 

protein and Lane 4, 12 pg total liver protein.

By means of the amplified detection kit, the anti-GO antibody detected a protein of 

approximately 43 kDa in human liver. The difference in size seen with the recombinant 

protein reflects the additional N-terminal His tag and anti-Xpress™ epitope in the fusion 

protein. The signal in 12 pg of liver proteins is at a similar intensity to 40 ng o f purified
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recombinant GO (Figure 6.2), and thus the concentration of GO in human liver was 

estimated to be 0.3% of soluble liver proteins. This result is subject to some error, due 

to the different methods used to measure protein concentration, namely the Lowry 

method for liver proteins and absorbance at 280 nm for pure recombinant GO. However, 

it allows crude comparison of abundance with other liver enzymes in the glyoxylate 

metabolic pathway such as AGT and GRHPR.

97 kDa

46 kDa 

30 kDa

mm- GO

1 2 3 4 5 6 7  8 9  10
^_________________ /  \ I

Pure GO liver

Figure 6.2 Estimation o f the concentration o f GO protein in human liver. Western 

blots o f 6 pg and 12 pg total liver proteins were compared to known amounts o f pure 

GO to estimate the level o f GO protein present. Lanes 1 - 7  contain 100, 40, 20, 10, 

7.5, 5, and 4 ng pure GO; Lane 8, 6 pg total liver protein; lane 9, 12pg total liver 

protein and lane 10, molecular weight marker proteins.
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In order to determine optimum antibody dilution western blots containing varying, 

known amounts of GO protein were probed with a range of dilutions o f anti-GO 

antibody. The results of these titre experiments are shown in Figure 6.3.

97 kDa

46 kDa

30 kDa

GO

^ 1 2 3 4  j  ^1 2 3 4 ^

1 in 500 1 in 1000 1 in 2000

Figure 6.3 Western blot to determine optimum dilution o f anti-GO antibody. Western 

blots o f a series o f dilutions ofpure recombinant GO were incubated with 1/500, 1/1000 

or 1/2000 dilutions o f anti-GO antibody and developed using the amplified detection kit. 

Lane 1,10 ng; lane 2, 25 ng; lane 3, 50 ng and lane 4, 100 ng pure recombinant GO.

As can be seen from Figure 6.3 the 1/500 dilution o f anti-GO antibody showed the 

strongest signal with 10 ng of pure GO protein. Since the 1/500 dilution offers 

increased sensitivity in comparison to the 1/1000 and 1/2000 dilutions this dilution was 

used in all subsequent blots.
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6.3.2 The tissue distribution of GO protein

The anti-GO antibody was used to look for immunoreactive GO protein in tissue 

sonicates from a range of tissues. A band of 43 kDa representing GO was detected in 

liver, but was absent from the other tissues tested. Although fewer tissues were 

available for testing, these findings support the results o f the northern blot (Figure 3.6), 

which also indicated that expression of human GO was confined to liver.

43 kDa

Figure 6.4 The tissue distribution o f human GO protein. A western blot o f 12 pg total 

protein from a variety o f tissues was probed with the anti-GO antibody.

Immunoreactive protein was detected in liver only. Molecular weight marker proteins 

are shown at either end o f the blot and the band at 43 kDa is GO.
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6.3.3 Western blots of human liver sonicates

Inter-individual variation in GO expression was tested by analysing western blots 

prepared from liver tissue sonicates of a range of liver biopsies. The samples included 

PHI (n=6) and PH2 (n=2) patients and hyperoxalurie patients in whom PHI and PH2 

had been excluded (n=4). A band of 43 kDa representing GO was detected in 12 pg of 

total liver proteins in all the samples tested. As can be seen in figure 6.5, there was little 

difference in signal intensity between samples. This finding suggests that GO protein is 

present at a similar concentration in all livers tested, although the detection is limited by 

the sensitivity of the assay.

43 kDa

k_______________  Jk_________ /

PH1 PH2 Neither

Figure 6.5 Western blots o f GO protein in human liver sonicates. A western blot o f 12 

pg total liver proteins from PHI, PH2 and hyperoxalurias in whom PHI and PH2 had 

been excluded, was incubated with the anti-GO antibody. Molecular weight markers 

are shown at each end o f the blot and the band at 43 kDa is GO.
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6.3.4 Optimisation of an assay for GO activity

The optimal pH for the assay was determined by varying the pH from 7 to 8 in a final 

concentration of 25 mM potassium phosphate buffer and from 7.8 to 8.8 in a final 

concentration of 25 mM tris buffer. The results are shown in Figure 6.6.

(a) 7

6
■D<D
€  5

c
' o  4
o

0
7.2 7.4 7.6 7.8 87

pH

1

0
8.6 8.88.47.8 8 8.2

pH

Figure 6.6 pH  profiles o f  GO activity in a 12,000 g supernatant o f  human liver 

sonicate, (a) pH  varied from 7 to 8 in 25 mM potassium phosphate and (b) pH  varied 

from 7.8 to 8.8 in 25 mM tris buffer.
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Highest activity was observed in 25 mM tris pH 8.8 and this was used in all future 

measurements. Optimum glycolate concentration for the assay was determined by 

varying the glycolate concentration from 0.5 mM to 20 mM. A Hanes plot of 

[substrate]/Initial velocity vs [substrate] was plotted, where the x axis intercept is -Km 

and the y axis intercept is Km/Vmax- From the Hanes plot (Figure 6.7) the Km for 

glycolate was determined to be 0.35 mM. Since no substrate inhibition was detected 

over the range tested, a final concentration of 20 mM glycolate was therefore adopted 

for routine use of the assay.

0.6

y  = 0 .0 4 8 9 X  + 0 . 0 1 6 8

[glycolate] (mM)

Figure 6.7 Hanes plot to show kinetics o f glycolate oxidation by a 12y000g 

supernatant o f human liver sonicate. Glycolate was varied from 0.5 mM to 20 mM and

the Km determined from the straight-line equation as described in the text.

160



In order to determine the optimum time range of the assay over which to determine the 

OD/minute, several supernatants were assayed using the optimum pH and substrate 

concentration and the OD/minute was determined from the raw data over the first 10 

minutes. Raw data and the calculated CD change per minute are displayed in Figure 6.8.
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106 840 2
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Figure 6.8 Measurement o f catalytic GO activity in liver supernatants, (a) The

absorbance increase at 515 nm was monitored for ten minutes and (b) OD/min 

calculated across the time period to assess the linearity o f the absorbance increase.
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As can be seen from Figure 6.8, the absorbance increase at 515 nm showed a lag during 

the first 2 minutes of the assay, which is most apparent in the OD/min data. The change 

in absorbance was linear from 2 to 6 minutes and hence the OD/min was calculated over 

this range for subsequent assays. Using the optimised reaction conditions, the linearity 

of the method response was assessed by measuring serial dilutions of a 12,000 g 

supernatant. The results are shown in Figure 6.9.

0.05
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c  0.04
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0.6 0.8 10.2 0.40

amount of supernatant (fraction of neat)

Figure 6.9 Linearity o f  the GO assay. A 12,000 g supernatant was diluted in deionised 

water over a suitable range and GO activity was measured by means o f the Trinder 

assay. Data shown represents the mean ± S.D. o f triplicate measurements.

The minimum detectable activity, defined as the mean plus 3 standard deviations of a 

suitable blank, was determined from triplicate substrate blank measurements i.e. no 

glycolate. The minumum detectable activity was found to be an absorbance change of 

0.0004 OD units per minute.
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The intra-assay coefficient of variation defined as mean/standard deviation x 100 (%) 

was determined from 9 replicate measurements of GO activity in a 12,000 g supernatant. 

The CV was 1.6% at an activity of 0.016 OD units per minute.

15 liver supernatants were assayed for GO activity, including non-PHl/PH2 (n=4), PHI 

(n=9) and PH2 (n=2) patients. Protein concentration of the liver supernatants was 

determined by the Lowry assay (Lowry et a l, 1951) as described in section 2.3.13. 

Specific activity (nmol of glycolate utilised. min“\  mg was calculated as follows:

velocity (OD / min) x 75/20 x (protein [ ] of supernatant in mg/ml)

where the utilisation of 75 pM H2O2 is equivalent to an absorbance change of 1 unit and 

50 pi of supernatant is assayed in a total volume of 1 ml. The results (Figure 6.10) show 

that GO has a wide inter-individual variation.
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Figure 6.10 GO activity o f12,000 g supernatants o f  human liver sonicates. 15 liver 

biopsies were analysed including PHI (n=9), PH2 (n=2) and hyperoxalurie patients in 

whom PHI and PH2 had been excluded (n=4).
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6.4 D iscussion

A polyclonal antibody was raised in rabbits to purified human recombinant GO protein. 

This anti-GO antibody detected a 43 kDa protein in human liver sonicates, 

approximately 3 kDa smaller than the recombinant fusion protein. This result is to be 

expected since the anti-Xpress epitope and His tag contribute approximately 3 kDa to 

the recombinant protein. Probing of a multiple tissue western blot with the anti-GO 

antibody detected a single band in liver, but not in kidney, muscle, leucocytes, testis and 

adrenal tissues. These findings are consistent with those of the northern blot reported in 

chapter 3 and confirm the liver specificity of this enzyme. GO catalytic activity has 

previously been measured in crude human tissue homogenates using an oxygen 

electrode to measure oxygen consumption during glycolate incubation (Fry and 

Richardson, 1979a). In that study GO activity was detected in liver, but not in kidney, 

heart, brain, adrenal, testis, thyroid, pancreas, spleen, lung, muscle or lymph node (Fry 

and Richardson, 1979a).

For detection of immunoreactive GO in liver sonicates it was necessary to use an 

amplified detection kit with 10 fold higher sensitivity than the standard alkaline 

phosphatase conjugated antibody. Using this kit the level of GO expression was 

estimated to be approximately 0.3% of total liver proteins. This level is in comparison 

to estimates of 0.2% for GRHPR expression (Cregeen, 2001) and 3% for AGT 

expression (Chapter 7). The higher expression of AGT suggests that it would be 

influential in removing peroxisomal glyoxylate by catalysing its conversion to glycine, 

and therefore effective in glyoxylate detoxification. All livers tested showed similar
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levels of immunoreactive GO, however this could be due to the insensitivity of the 

detection.

An assay to measure catalytic GO activity in 12,000 g liver supernatants has been 

developed. The assay is based upon the Trinder reaction, which is linked to hydrogen 

peroxide production (Barham and Trinder, 1972). Since the assay is measuring the 

product of the first enzyme reaction, i.e. H2O2 , with a second enzyme reaction (catalysed 

by peroxidase) a lag phase is observed for the first two minutes of the assay, while the 

H2O2 channels into the second enzyme. This effect is a common observation in two- 

enzyme assay systems (Comish-Bowden, 1995).

Following the lag at the start of the reaction the absorbance increase is linear for four 

minutes before slowly tailing off. This decrease after six minutes is not due to substrate 

depletion and was not eliminated by increasing the peroxidase. However, the decrease 

is not observed with purified recombinant protein suggesting that it could be due to 

assay interference from substances present in liver. Since the liver sonicates have been 

dialysed the interference is most likely due to another enzyme. Given the assay is 

reproducibly linear for four minutes following the lag phase, this time period was used 

to calculate OD change per minute.

No activity is detected in the absence of glycolate, which indicates the assay is specific 

for measuring GO activity. The optimised assay shows low coefficient of variation of 

1.6%) and high sensitivity with a minimum detectable activity of 0.0004 OD units per 

min. The smallest absorbance change observed in all livers tested was 0.003 OD units
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per min, which indicates the assay is suitable for routine measurement of catalytic GO 

activity.

The Trinder assay has several advantages over other methods that could have been 

applied to the measurement of GO activity. Firstly smaller sample volumes (50 pi) may 

be used in contrast to the oxygen electrode, which has a larger sample chamber 

requiring 150 pi of liver sonicate and is a less sensitive method. Secondly, the DCIP 

assay is limited by the high molar absorbance of DCIP and substrate inhibition at a 

glycolate concentration greater than 2.5 mM. Thus it would be impossible to saturate the 

system with either substrate. Furthermore, when the DCIP assay was tested with liver 

sonicates it showed a high non-linear blank rate in the absence of glycolate. This effect 

has been reported by other authors (Schuman and Massey, 1971a; Fry and Richardson,

1979a; Meyers and Schuman Joms, 1981) and is likely to be due to DCIP reduction 

caused by reducing substances in the liver.

Prior to this study very little was known about the amount of GO in human liver.

However, there is a report in the literature where human liver GO was measured by a 

hydrogen peroxidase linked assay and found to be 1.09 ± 0.21 nmol/min per mg of 

protein (Wanders et a l,  1991). The values reported in this thesis are higher, where the 

lowest activity observed was 3.3. These differences are most likely due to the use of 

optimised reaction conditions in the method 1 have developed. For instance the pH and 

1 substrate concentration were both chosen to give maximal activity^ Whereas Wanders et k

 ̂ (^/.conducted measurements in pH 7.6 buffer with 10 mM glycolate as substrate. GO
^  ;/

activity has also been measured in cultured cells of the hepatoblastoma cell line
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HepG2, The specific activity in these cells was 0.1 ± 0.02 and 0.07 ± 0.02 nmol/min per 

mg of protein (Wanders et a l, 1991; Holmes et al, 1999) indicating that GO activity is 

at least 10 fold higher in the liver than in HepG2 cells. These differences must be 

considered before extrapolating findings from experiments with HepG2 cells to human 

liver glyoxylate metabolism.

GO expression appears to have a wide inter-individual variation as reflected by the 

range of catalytic GO in the liver sonicates tested. Values obtained varied from 3.3 to

25.4 nmol glycolate utilised . min'^ . mg Such a variation in GO activity could 

influence disease severity in PH patients by affecting glyoxylate production and thereby 

oxalate production. In addition, it may also influence the amount of glycolate utilised, 

which could in turn have an effect upon the levels of urinary glycolate. It is well 

documented that approximately 25% of PHI patients do not have hyperglycolic aciduria 

(Danpure, 1991). Thus, increased GO activity may be linked with absence of 

hyperglycolic aciduria in some PHI patients and conversely reduced GO may lead to 

accumulation of glycolate.

The inter-individual differences in GO activity observed may be caused by functional 

polymorphisms in the gene or differences in gene expression. A recent analysis of the 

GO gene in patients with atypical hyperoxaluria has been conducted within the 

laboratory (Monico et a l, 2002). PCR-SSCP analysis and gene sequencing failed to 

show any functional variants of GO. However, this study only characterised the gene of 

a small patient cohort (n=9). In order to determine the existence of any functional 

polymorphisms in the gene for GO a more detailed analysis would need to be carried out
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in a larger number of samples. Another factor that may influence GO activity is the 

status of vitamin B2 or riboflavin, the precursor of FMN. A recent investigation found 

erythrocyte FMN levels responded significantly to riboflavin supplementation showing 

an 87% increase (Hustad et a l, 2002). It is therefore likely that differences in FMN 

status would influence the level of enzyme activity of flavoenzymes, including GO.

The GO assay is to be transferred to the Cobas Bio centrifugal analyser (Roche 

Diagnostic Systems, Welwyn Garden City, UK) to enable the method to be semi­

automated. This will allow GO activity to be measured in liver sonicates, in addition to 

AGT and GRHPR, as part of the UCLH Primary Hyperoxaluria Diagnostic Service. 

Hence the levels of GO can be compared to PH phenotype and possible effects of this 

enzyme upon disease severity can be investigated.
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7.1 Introduction

Although the genetic causes of PHI and PH2 are now well established, the primary 

route to oxalate production in either disease is still poorly understood. It has been 

postulated that in PHI the excess glyoxylate is oxidised to oxalate by GO within the 

peroxisomes, or that the glyoxylate diffuses into the cytosol to be oxidised to oxalate, in 

a reaction catalysed by LDH (Williams and Smith, 1983; Danpure and Jennings, 1986; 

Danpure, 1989). The relative contributions of GO and LDH to oxalate production in 

PHI are unknown. Previous studies have usually focused upon the enzymes from 

species other than human and extrapolation of the results is complicated by the fact that 

the enzymes may be in different intracellular compartments. Furthermore, nothing is 

known about the levels of glyoxylate in human liver of either PH patients or normal 

individuals.

The investigation of glyoxylate metabolism has also been hampered by the lack of a 

sensitive and reliable method for glyoxylate quantitation. Petrarulo and colleagues have 

used phenylhydrazine derivatisation for the measurement of glyoxylate in urine 

(Petrarulo et a l, 1988) and for the measurement of glycolate (Petrarulo et a l, 1991) and 

L-glycerate (Petrarulo et al, 1992) following their enzymatic conversion to keto acids 

and subsequent HPLC analysis of derivatised keto acids. A method for the assay of 

pyruvate in plasma has recently been described which utilises o-phenylenediamine 

derivatisation and HPLC analysis (Wulkan et a l, 2001). This chapter describes the 

assessment of both derivatisation reactions (Figure 7.1) and the development of an 

HPLC assay for the simultaneous measurement of glyoxylate and other a-keto acids
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important in glyoxylate metabolism, namely pyruvate and hydroxypyruvate. This 

HPLC method, when used in conjunction with spectrophotometric methods to measure 

glycolate and oxalate already in use in the laboratory, will permit the quantitation of all 

the relevant metabolites of glyoxylate metabolism. The application of these methods for 

the in vitro investigation of peroxisomal glyoxylate metabolism catalysed by GO and 

AGT is described in this chapter.
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7.2 Methods

7.2.1 HPLC Reagents

HPLC grade solvents purchased from BDH were used for mobile phases, which were 

freshly prepared weekly and filtered through a 0.2 pM filter before use. Keto acid 

standards were of Analar grade and were purchased from Sigma or Aldrich unless 

indicated otherwise.

7.2.2 Phenylhydrazine derivatisation

Keto acids were derivatised by phenylhydrazine hydrochloride (PHZ) to form 

hydrazones based upon the method of Petrarulo and colleagues (Petrarulo et a l, 1988).

Solutions:

PHZ reagent A 100 mM stock solution was prepared by dissolving

144.6 mg of PHZ in 10 ml of deionised water.

Potassium phosphate pH 8  A 0.1 M solution was prepared by combining 47.35 ml of

0.2 M K2HPO4 and 2.65 ml 0.2 M KH2PO4 and the total 

volume was made up to 100 ml with deionised water.

Derivatives were prepared as follows:

A 200 pi aliquot of the sample to be assayed was added to 600 pi of 0.1 M potassium 

phosphate buffer and 200 pi PHZ reagent. The tubes were vortexed and incubated at 

room temperature for 20 minutes prior to injection in the HPLC.
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7.2.3 O-phenylenediamine derivatisation

Keto acids were derivatised by o-phenylenediamine (OPD) to form quinoxalones based 

upon the method of Wulkan and colleagues (Wulkan et aL, 2001).

Solutions:

3 M HCl A 1 in 3 dilution of concentrated HCl was prepared and

stored in an amber glass bottle at room temperature.

OPD reagent A 12 mM solution was prepared by dissolving 12.97 mg

in 10 ml of3M H Cl.

Derivatives were prepared as follows:

A 250 pi aliquot of the sample to be measured was added to 1 ml of OPD reagent. The 

tubes were vortexed and incubated in a heating block at 60 °C for 1.5 h.

7.2.4 HPLC

The HPLC system (Cecil Instruments Ltd, Cambridge) consisted of two model CEI 100 

solvent pumps, a model CE1200 UV detector and a column oven, which housed a 

Lichrosorb guard column (Merck, Poole) coupled to a ‘pbondapack’ analytical column 

(0.39 X 15 cm, 10 pM particle size. Waters Ltd, Elstree). Gradient programming, peak 

integration and quantitation were controlled by a Datacontrol software package (Cecil). 

Solvent was degassed by means of an inline degasser.

20 pi samples were injected into the HPLC column and separated at 37 °C at a flow rate 

of 1 ml per minute. For HPLC of hydrazones, the mobile phase consisted of 5% ethanol 

in 25 mM potassium phosphate buffer pH 6. For HPLC of OPD quinoxalone
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derivatives, the mobile phase consisted of varying amounts of acetonitrile (%) in 10 mM 

potassium phosphate buffer pH 2.5. All derivatives were detected at 324 nm with the 

detector set at 0.02 absorbance units full-scale deflection. The optimisation of separation 

conditions is described in the results section.

7.2.5 Purification of recombinant AGT

Plasmid constructs of the pTrcHisA expression vector containing AGXT inserts 

corresponding to the major and minor allele as defined in section 1.5.1 were obtained 

from Professor Danpure (Department of Biology, University College London). 

Epicurean colt BL21 cells were transfected with these constructs according to the 

procedure outlined in section 2.3.6.

Expression of recombinant AGT protein from the minor allele (Pro 11 AGT) and the 

major allele (Leul 1 AGT) was induced by means of IPTG induction as described in 

section 2.3.7 and bacterial pellets were stored at -  80 °C. Crude bacterial extracts were 

prepared from pellets using ‘bug buster’ reagent (Novogen, Nottingham) as follows:

Pellets were resuspended in 5 ml of bug buster reagent and cell suspensions were treated 

with 100 pg/ml of lysozyme, 5 mg/ml RNase and 1 unit of DNase on ice for 15 minutes. 

The tubes were then rotated on a test tube rotator for 20 minutes at room temperature. 

Following this the tubes were centrifuged at 15,000 g for 15 minutes to pellet cellular 

debris. Supernatants containing soluble cellular proteins were dialysed overnight in T3 

dialysis membrane (Pierce and Warriner) against 300 volumes of 20 mM sodium 

phosphate buffer pH 7.8, containing 500 mM sodium chloride. AGT protein was 

purified from dialysed extracts by means of nickel affinity chromatography with elution
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by imidazole as described in section 4.2.1. Pure protein was quantified by measurement 

of its absorbance at 280 nm.

7.2.6 Western blot analysis of recombinant AGT

Western blotting and detection of recombinant AGT was carried out according to the 

procedures outlined in section 2.3.10. A polyclonal anti-AGT antibody obtained from 

Professor Danpure was used at a 1/300 dilution as primary antibody and alkaline 

phosphatase conjugated goat anti-rabbit IgG (Sigma) was used at a 1/1000 dilution as 

the secondary antibody.

7.2.7 Measurement of AGT enzyme activity

The catalytic activity of purified AGT was determined as previously described (Rumsby 

et a l, 1997) in which the sample to be measured is incubated with alanine and 

glyoxylate. Pyruvate produced as a result of glyoxylate transamination is measured 

indirectly by monitoring the utilisation of NADH at 340 nm, in a reaction catalysed by 

LDH. The reactions are as follows:

AGTalanine + glyoxylate --------- ► glycine + pyruvate

pyruvate + NADH + ^  ► lactate + NAD'"

7.2.8 In vitro Investigation of glyoxylate metabolism by GO and AGT

Solutions:

600 mM alanine 534.54 mg of alanine was dissolved in 10 ml deionised water

and used in experiments at a final concentration of 5 mM.
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20 mM serine 21.02 mg of serine was dissolved in 10 ml deionised water and

used in experiments at a final concentration of 2 mM.

10 mM glycolate 1.6 mg of glycolic acid was dissolved in 10 ml deionised water,

the pH was adjusted to pH 7 with a few drops of 8 M NaOH and 

it was used in experiments at a final concentration of 200 pM.

2 mM glyoxylate 9.2 mg glyoxylic acid was dissolved in 50 ml deionised water,

the pH was adjusted to pH 7 with a few drops of 8 M NaOH and 

it was used in experiments at a final concentration of 200 pM.

Incubations were carried out in volumes of 1 ml in a final concentration of 50 mM 

potassium phosphate buffer at 37 °C. GO was present at 1 unit per ml. Pro 11 AGT at 

10 units per ml. Leu 11 AGT at 6 units per ml and catalase at 70 units per ml, where 1 

unit is the utilisation of 1 pmole of substrate per minute. Reactions were stopped at 0, 5, 

10,15 and 25 minutes by the addition of 20 pi 50% trichloroacetic acid (TCA). The 

tubes were kept on ice for 5 minutes, following which they were centrifuged at 10,000 g 

for 5 minutes to remove acid-precipitated material. 250 pi aliquots of the supernatants 

were derivatised according to the method outlined in section 7.2.3 and glyoxylate, 

pyruvate and hydroxypyruvate measured by HPLC. 200 pi aliquots were taken and the 

pH adjusted to pH 7 with 4 pi 8 M NaOH. These aliquots were incubated with 10 units 

of AGT and a final concentration of 50 mM alanine at room temperature for 10 minutes 

to remove residual glyoxylate, which would otherwise interfere in the glycolate assay 

(section 7.2.9). Following this the samples were assayed for glycolate and oxalate by the 

methods outlined in sections 7.2.9 and 7.2.10 respectively.
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7.2.9 Assay for the measurement of glycolate

Glycolate was measured on the Cobas Bio centrifugal analyser (Roche Diagnostic

System, Welwyn Garden City, UK) using the method of Kasidas and Rose (Kasidas and

Rose, 1979).

Solutions:

Trinder reagent A stock solution was prepared by dissolving 10 mg of

horseradish peroxidase (~ 2,000 units), 100 mg 4- 

aminophenazone, 50 mg di-ammonium hydrogen 

phosphate, 174 mg di-potassium hydrogen phosphate and 

50 mg orthoboric acid in 100 ml of deionised water.

A working solution was prepared by adding 400 pi of sulphonated 2,4 dichlorophenol to

10 ml of stock reagent. This was prepared fresh and used within 1 hour.

20 mM glycolate stock 196 mg sodium glycolate was dissolved in 100 ml of

deionised water.

Glycolate working standards were prepared from the 20 mM stock solution as follows:

100 pM glycolate 0.5 ml stock was made up to 100 ml with deionised H2O.

200 pM glycolate 1.0 ml stock was made up to 100 ml with deionised H2O.

400 pM glycolate 2.0 ml stock was made up to 100 ml with deionised H2O.

100 pi of the samples to be measured were aliquoted into sample tubes placed in a

Cobas Bio sample rotor. Sufficient volumes of Trinder reagent (100 pi per reaction)

and glycolate oxidase (40 pi per reaction) and 500 pi of each glycolate standard solution
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were dispensed into the appropriate wells of the Cobas reagent tray. Glycolate 

concentrations of samples were determined by monitoring the production of a purple 

quinoneimine dye at 515 nm based upon the following reactions:

GO
glycolate + O2 ► glyoxylate + H2O2

ocroxidâSG
H2O2 + 2 , 4  DCP + 4-aminophenazone ---------------- ► quinoneimine dye + H2O

7.2.10 Assay for the measurement of oxalate

Oxalate was measured on the Cobas Bio centrifugal analyser (Roche Diagnostic 

Systems, Welwyn Garden City, UK) using a commercial oxalate kit (Sigma).

Solutions:

Oxalate reagent A 0.2 mM 3-methyl-2-benzothiazolinone hydrazone

3.2 mM 3-dimethylamino-benzoic acid.

Oxalate reagent B Barley oxalate oxidase 3,000 units/litre

Horseradish peroxidase 100,000 units/litre.

5 mM oxalate stock 126 mg oxalic acid dihydrate was dissolved in 200 ml

0.01 M HCl.

Oxalate working standards were prepared from the 5 mM stock solution as follows:

5 pM oxalate 0.2 ml stock was made up to 200 ml with 0.01 M HCl.

10 pM oxalate 0.4 ml stock was made up to 200 ml with 0.01 M HCl.

20 pM oxalate 0.8 ml stock was made up to 200 ml with 0.01 M HCl.

250 pi of the samples to be measured were aliquoted into sample tubes placed in a
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Cobas Bio sample rotor. Sufficient volumes of reagent A (220 pi per reaction) and 

reagent B (20 pi per reaction) and 500 pi of each oxalate standard solution were 

dispensed into the appropriate wells of the Cobas reagent tray. Oxalate concentrations 

of samples were determined by following the production of a purple indamine dye at 

580 nm based upon the following reactions:

oxalate + 0% oxalate oxidase ^ H2O2 + CO2

H2O2 +MBTH + DMAS ► indamine dye +H 2O

1 8 0



7.3 Results

7.3.1 Evaluation of phenyihydrazine derivatisation

Given the poor absorbance of glyoxylate and other small organic acids it was necessary 

to form derivatives prior to injection in the HPLC system to aid their UV-visible 

detection. Two derivatisation reagents (PHZ and OPD) were assessed in terms of 

production of adequate signal with all keto acids tested and the stability of the 

derivatives formed. Both these reagents have the advantage that they are specific for 

keto acids and will therefore potentially increase the specificity of the assay.

When derivatisation by PHZ was evaluated, several disadvantages of the method were 

revealed. Firstly, a final concentration of 20 mM PHZ was required to ensure adequate 

formation of derivatives. As can be seen in Figure 7.2 the absorbance was lower and 

derivative formation proceeded more slowly if concentrations of PHZ below 20 mM 

were used. Since the reaction is reversible it was not possible to remove the excess PHZ 

reagent prior to injection and hence the resulting chromatograms were compounded by 

the presence of a large PHZ peak, which obscured the hydroxypyruvate and pyruvate 

derivatives (Figure 7.3). Varying the solvent concentration, type of solvent, temperature 

and pH of the mobile phase did not prove effective at either changing the order of 

elution of the peaks of interest or moving them sufficiently away from the PHZ peak. 

Furthermore, analysis of derivative stability over 24 hours revealed that peak height was 

stable for only two hours. After this time the peak height decreased due to the 

breakdown of the hydrazone derivatives (Figure 7.4). The PHZ method of derivatisation 

was therefore rejected and the OPD method was evaluated.
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7.3.2 Evaluation of o-phenyienediamine derivatisation

The formation of quinoxalones by OPD is an irreversible reaction and derivatisation was 

complete within 1.5 hours when incubated at 60 ° C. No decrease in peak height was 

observed when the stability of derivatives was assessed over 24 hours (Figure 7.5).
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Figure 7.5 24 hour stability profiles o f a-keto acid quinoxalone derivatives. 500 juM

standard solutions were derivatised at 60 ° C for 1.5 hours and injected into the HPLC 

over a period o f 24 hours. Glx -  glyoxylate; pyr -pyruvate; hyd -  hydroxypyruvate; 

AKB -  alpha-ketobutyrate; MKB -  methyl-ketobutyrate.

The presence of excess OPD did not interfere in the chromatogram, because it showed 

minimal column retention and eluted before the peaks of interest (Figure 7.6). Therefore 

this derivatisation method was selected for optimisation of chromatographic separation.
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7.3.3 Optimisation of an HPLC method to measure a~keto acids

In order to determine whether isocratic elution was possible, a scouting gradient was 

carried out over the range 0-60 % acetonitrile in 10 mM potassium phosphate buffer pH

2.5 over 60 minutes. To ensure accurate peak identification, standards of each 

metabolite were injected separately and retention times determined. The results are 

summarised in Table 7.1.

Derivative Elution time (min)

glyoxylate 16

pyruvate 1 9

alpha-ketobutyrate 27

hydroxypyruvate 35

keto-methylbutyrate 37

Table 7.1 Retention times o f quinoxalone derivatives eluted by a scouting gradient o f  

0 - 6 0  % acetonitrile in 10 mM potassium phosphate buffer pH  2.5 over 60 minutes.

For the scouting gradient AtR/to = 0.31, where AIr is the difference between retention 

times of the first and last peaks and to is total gradient run time. This finding indicates 

that isocratic elution should be possible (Snyder et al., 1997), However, the range of 

retention values that would be expected under isocratic conditions would be 0.5 < k <

20, where

k = peak retention time (Ir) -  column dead time (to)

column dead time (to)
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To avoid the late eluting peaks being unacceptably broad it is more desirable to have 1 < 

k < 10. To satisfy this narrower retention range, the last peak in the scouting gradient 

would need to be eluted within 30 minutes. Therefore gradient elution was examined 

further. Based upon the elution times of the peaks in the scouting gradient, a gradient of 

10-30 % was carried out. An HPLC chromatogram of a mixture of a-keto acid 

derivatives is shown in Figure 7.6 (a). As can be seen in the figure, the pyruvate peak 

was now eluting at a very similar time to a background contaminant peak (*).

Therefore, isocratic elution for 5 minutes was added to the start of the run and the 

resulting chromatogram is shown in Figure 7.6 (b) in which it can be seen that pyruvate 

is completely resolved away from the contaminant.
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Figure 7.6 Gradient elutions o f  a-keto acid quinoxalone derivatives, (a) 10 -  30 %

acetonitrile gradient over 20 min and (b) 10% for 10 min and 1 0 -  30 % gradient over 

20 min. Peak 1 -  glyoxylate, peak 2 -  pyruvate, peak 3 -  alpha-ketobutyrate, peak 4 -  

hydroxypyruvate and peak 5 -  methyl-ketobutyrate. (* represents a contaminant peak.)
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The optimised gradient elution parameters are summarised in Table 7.2. Using these 

optimised parameters, a-keto acid standards were derivatised as described in section

7.2.3 and injected into the HPLC column. Calibration curves were constructed from the 

resulting chromatograms to enable the measurement of glyoxylate, pyruvate and 

hydroxypyruvate with alpha-ketobutyrate and methyl-ketobutyrate as internal standards. 

These calibration curves are shown in Figure 7.7.

Time (min, sec) % Buffer A % Buffer B Flow (ml/min)

0.00 100 0 0

0.01 100 0 1

4.59 100 0 1

24.59 0 100 1

29.59 100 0 1

34.59 100 0 1

35.00 100 0 0

Table 7,2 Optimised parameters for gradient elution o f OPD derivatives o f  a-keto 

acids from HPLC column. Buffer A is 10% acetonitrile in 10 mM potassium phosphate 

buffer pH 2.5 and buffer B is 30% acetonitrile in 10 mM potassium phosphate buffer pH  

2.5.
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7.3.4 Purification of AGT

To enable the investigation of peroxisomal glyoxylate metabolism, plasmid constructs 

of the major and minor AGXT alleles were obtained from Professor Danpure and 

recombinant AGT protein was expressed and purified according to the procedure 

outlined in section 7.2.5. Crude bacterial extracts and post nickel column extracts were 

analysed by SDS-PAGE with Coomassie blue staining and by western blotting with 

anti-AGT antibody as described in section 7.2.6. The results are shown in Figure 7.8.
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Figure 7.8 Purification o f AGT by nickel affinity chromatography, (a) SDS-PAGE; 

lane 1, molecular weight marker; lanes 2 - 3 ,  crude extracts and purified protein from  

major allele transfectants; lanes 4 - 5 ,  crude extracts and purified protein from minor 

allele transfectants (b) Western blot probed with anti-AGT antibody; lane 1, molecular 

weight marker; lane 2, purified protein from major allele transfectants; lane 3, purified 

protein from minor allele transfectants.

In order to estimate the concentration of AGT in human liver, known amounts of total 

liver proteins and known amounts of recombinant Pro 11 AGT were electrophoresed and 

western blots were incubated with anti-AGT antibody. The signal obtained with 12 pg 

of liver proteins was of a similar intensity to 375 ng of purified recombinant AGT 

(Figure 7.9), thus the concentration of AGT in human liver was estimated to be 

approximately 3% of soluble liver proteins. This result indicates that AGT is present in 

human liver at approximately 10 times the concentration o f GO (Chapter 6).
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Figure 7.9 Estimation o f the concentration o f AGT protein in human liver. Western 

blots o f 3, 6 and 12 pg o f total liver proteins were compared to known amounts ofpure 

AGT to estimate the level o f AGT present. Lane 1, molecular weight marker proteins; 

lane2, 3pg total liver protein; lane 3, 6 pg total liver protein; lane 4, 12 pg total liver 

protein; lanes 5 - 1 1  contain 1500, 750, 375, 150, 75, 50 and 20 ng ofpure AGT protein 

respectively.

Purified AGT was assayed by the method outlined in section 1.2.1. The Pro 11 AGT 

and Leu 11 AGT alleles yielded purified AGT protein with specific activities of 2513 

pmol and 1596 pmol pyruvate transformed/hour/mg protein respectively.
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7.3.5 In vitro investigation of giyoxyiate metaboiism by GO and AGT

To investigate the role of GO in peroxisomal glyoxylate metabolism in vitro, GO and 

AGT were incubated with glycolate and glyoxylate and a profile of the change in 

concentration of glycolate, glyoxylate and oxalate were determined as described in 

section 7.2.8. The experiments conducted are summarised in Table 7.3.

Enzymes Metabolites

No enzymes 200 fiM glycolate, 5 mM alanine, 2 mM serine

GO 200 nM glycolate, 5 mM alanine, 2 mM serine

GO and major allele AGT 200 (xM glycolate, 5 mM alanine, 2 mM serine

GO and minor allele AGT 200 fxM glycolate, 5 mM alanine, 2 mM serine

No enzymes As above plus 200 pM glyoxylate

GO As above plus 200 ^M glyoxylate

GO and major allele AGT As above plus 200 pM glyoxylate

GO and minor allele AGT As above plus 200 |xM glyoxylate

GO 200 |xM glyoxylate, 5 mM alanine, 2 mM serine

Table 7.3 Summary o f experimental conditions for the investigation o f peroxisomal 

glyoxylate metabolism.
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The results of HPLC analysis for incubations continuing glycolate, alanine and serine 

are shown in Figure 7.10.
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Figure 7.10 (a) HPLC chromatograms to show formation o f  glyoxylate in reactions 

containing GO, glycolate, alanine and serine. Reactions were stopped at 0, 5, 10, 15

and 25 minutes and aliquots were derivatised by OPD and injected into the HPLC. 

Chromatograms on the left are from incubations without enzyme and on the right from 

incubations with GO. Glx indicates the glyoxylate peak.
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Figure 7.10(b) HPLC chromatograms to show formation o f  glyoxylate and pyruvate 

in reactions containing GO, AGT, glycolate, alanine and serine. Reactions were 

stopped at 0, 5, 10, 15 and 25 minutes and aliquots were derivatised by OPD and 

injected into the HPLC. Chromatograms on the left are from incubations with GO and 

Pro 11 AGT (major allele) and on the right from incubations with GO and Leull AGT 

(minor allele). Glx and Pyr represent the glyoxylate and pyruvate peaks respectively.
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As can be seen from Figure 7.10 no glyoxylate or pyruvate were produced in the 

absence of GO and AGT. In the presence of GO alone, glyoxylate increased steadily 

over the course of the incubation, presumably due to the oxidation of glycolate by GO. 

This result is confirmed by the steady disappearance of glycolate during the time course 

of the incubation (Figure 7.11).
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I
® 50
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Figure 7.11 Time course o f glycolate oxidation by GO incubated with glycolate, 

alanine and serine with and without AGT, Results represent the mean ± S.D o f 

duplicate measurements.

In the presence of AGT, pyruvate steadily increased during the incubation, although at a 

slower rate with the Leul 1 AGT (minor allele) in comparison to Prol 1 AGT (major 

allele). This increase in pyruvate was only seen when AGT was present in the 

incubations, indicating that the reaction was not spontaneous but catalysed by AGT.
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Pyruvate formation also mirrored the decrease in glyoxylate, indicating that pyruvate 

was formed as a result of glyoxylate transamination (Figure 7.12).
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Figure 7.12 Time course o f  glyoxylate and pyruvate formation by GO and AGT 

incubated with glycolate, alanine and serine. Triangles are the results o f incubations 

with GO and Pro 11 AGT (major allele) and circles are the results o f incubations with 

GO and Leu 11 AGT (minor allele), open symbols represent glyoxylate and closed 

symbols represent pyruvate.

No increase in hydroxypyruvate was observed indicating that the SPT reaction of AGT 

was not functioning, despite the presence of serine in the reaction. Furthermore, no 

oxalate was detected in any samples tested and no decrease in glyoxylate was observed 

with GO alone suggesting that this enzyme was not oxidising glyoxylate to oxalate. To 

further investigate the potential of GO to produce oxalate, the incubations were repeated 

with equimolar concentrations of glycolate and glyoxylate. The results of HPLC 

analysis for the incubations with glycolate, glyoxylate, alanine and serine are shown in 

Figure 7.13.
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Figure 7.13 (a) HPLC chromatograms to show formation o f glyoxylate in reactions 

containing GO, glycolatCj glyoxylate, alanine and serine. Reactions were stopped at 0, 

5, 10, 15 and 25 minutes and aliquots were derivatised by OPD and injected into the 

HPLC. Chromatograms on the left are from incubations without enzyme and on the 

right from incubations with GO. Glx indicates the glyoxylate peak.
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Figure 7.13(b) HPLC chromatograms to show formation o f glyoxylate and pyruvate 

in reactions containing GO, AGT, glycolate, glyoxylate, alanine and serine. Reactions 

were stopped at 0, 5, 10, 15 and 25 minutes and aliquots were derivatised by OPD and 

injected into the HPLC. Chromatograms on the left are from incubations with GO 

andProll AGT (major allele) and on the right from incubations with GO and Leull 

AGT (minor allele). Glx and Pyr indicate the glyoxylate and pyruvate peaks 

respectively.
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As can be seen from Figure 7.13 (a) GO continued to synthesise glyoxylate from 

glycolate in the presence of equimolar amounts of glycolate and glyoxylate. This 

indicates that GO is only utilising glycolate as substrate and that glyoxylate oxidation is 

not favourable. This was confirmed by the absence of oxalate in all samples tested. 

Glycolate oxidation by GO occurred at comparable rates both in the presence and 

absence of AGT as reflected by the glycolate disappearance (Figure 7.14). In the 

incubations containing AGT in addition to GO, glyoxylate did not increase but fell 

gradually over the time course of the incubation as shown in Figure 7.13 (b). This 

decrease in glyoxylate was mirrored by an increase in pyruvate and the reaction 

progressed at a faster rate with Pro 11 AGT (major allele) in comparison to Leu 11 AGT 

(minor allele) (Figure 7.15).
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Figure 7,14 Time course o f  glycolate oxidation by GO incubated with glyoxylate, 

glycolate, alanine and serine with and without AGT, Results represent the mean ±S.D  

o f duplicate measurements.
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Figure 7.15 Time course o f glyoxylate and pyruvate formation by GO and AGT 

incubated with glyoxylate, glycolate, alanine and serine. Triangles are the results o f 

incubations with GO and Pro 11 AGT (major allele) and circles are the results o f 

incubations with GO and Leu 11 AGT (minor allele), open symbols represent glyoxylate 

and closed symbols represent pyruvate.

To determine whether GO was capable of catalysing the production of oxalate from 

glyoxylate in the absence of glycolate, incubations were carried out in which GO was 

incubated with glyoxylate, alanine and serine in the absence of AGT. The production of 

oxalate was not detected in any samples tested and glyoxylate levels remained the same 

over the time course of the incubation. This finding indicates that GO does not catalyse 

the oxidation of glyoxylate to produce oxalate at the 200 pM glyoxylate concentration 

tested.
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7.4 Discussion

An HPLC assay for the simultaneous detection of glyoxylate, pyruvate and 

hydroxypyruvate has been developed and successfully applied to the study of glycolate 

metabolism in vitro. The initial HPLC method investigated utilised derivatisation by 

PHZ. This procedure has a number of advocates and has been described for the analysis 

of glyoxylate in metabolic studies (Holmes, 1993; Poore et a l, 1997) and in body fluids 

(Petrarulo et a l, 1988; Lange and Malyusz, 1994). However, this method was found to 

be unsatisfactory for several reasons. Firstly, a huge excess of derivatisation reagent was 

required and this interfered with the detection of the peaks of interest in the 

chromatographs. Furthermore, the derivatives showed varying signal intensity and poor 

stability. This method was therefore rejected in favour of OPD derivatisation, which 

produced highly absorbing derivatives that were stable for 24 hours. The response of 

the HPLC instrument as assessed by peak height was linear over the range 0 to 1000 

pmoles. The limits of detection, defined as a peak height giving a signal to noise ratio 

of less than three was 50 mvolts, which equates to 100 pmoles. The method developed 

can be applied to the measurement of a-keto acids in bodily fluids and tissues, although 

further validation of the assay will be required before being adopted for routine use.

This evaluation would include an assessment of the accuracy, specificity and precision 

of the assay.

To evaluate the HPLC system for future use in in vitro investigations, the metabolic 

pathway from glycolate was studied by following the metabolism of the organic acid 

over time in the presence of GO and AGT, both major and minor allelic forms. The
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experiments were designed as far as possible to include AGT and GO in amounts 

reflecting the situation in liver. Thus the concentration of both enzymes was estimated 

by comparison of pure enzymes with liver. The amount of AGT present in human liver 

sonicates was estimated to be 3% of soluble liver proteins; a value 10 fold higher than 

that observed for GO (Chapter 6). These differences are consistent with findings based 

upon the measurement of catalytic AGT and GO. AGT activity was found to be 10 fold 

higher than GO activity in guinea pig liver (Holmes et a l, 1995). The same study found 

the activity of catalase to be 7 fold higher than that of AGT. Therefore the levels of GO, 

AGT and catalase in the incubations carried out here were of these relative amounts.

For the in vitro incubations, in order to produce relevant results the concentrations of 

metabolites used were based upon previous estimates of these metabolites in liver tissue. 

The concentrations of alanine and serine in human liver have been estimated to be 5 mM 

and 2 mM respectively (Holmes and Assimos, 1998). The concentration of glycolate in 

guinea pig liver has been estimated to be 0.2 mM (Holmes et ah, 1995). Little is known 

about the concentration of glyoxylate in human liver and hence the concentration of 

glyoxylate chosen for the incubations was the same as that for glycolate. Clearly other 

metabolites would be present in vivo, which have not been considered in these studies. 

For example, the concentration of lactate in liver has been found to be 200 times higher 

than glycolate. Hence the lactate level would be expected to be in the region of the Km 

of GO for lactate (Km = 30.9) and this suggests that lactate oxidation, catalysed by GO, 

is physiologically favourable.

The results of the incubations indicated that GO was effective at catalysing the oxidation 

of glycolate to glyoxylate as evidenced by the disappearance of glycolate coupled with
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the production of glyoxylate. AGT was very efficient at the removal of glyoxylate as 

reflected by its rapid disappearance coupled with the production of pyruvate. The 

minor allele AGT was slightly less efficient than the major allele AGT as evidenced by 

the slower rate of glyoxylate removal by the former (Figure 7.15). The rates of 

glycolate oxidation by GO were not influenced by the presence or absence of AGT. 

However, in the absence of AGT it was surprising that GO did not appear to metabolise 

the accumulated glyoxylate to oxalate. Further experiments using glyoxylate alone in 

the presence of GO also failed to elicit any oxalate production. There could be several 

reasons for these observations. Firstly, GO may have been oxidising the glyoxylate at a 

very slow rate and the levels of oxalate formed were below the limits of detection of the 

oxalate assay. Alternatively, the findings could simply reflect the fact that glyoxylate is 

not a satisfactory substrate for oxidation by GO.

The findings that GO did not produce oxalate from the accumulated glyoxylate in the 

absence of AGT are not consistent with similar studies of isolated peroxisomes. In a 

study with isolated guinea pig peroxisomes oxalate production occurred when the 

glycolate concentration fell below 50 pM. In total 25 pM oxalate was formed from 

200 pM glycolate in the absence of an amino donor for AGT transamination (Holmes et 

al, 1995). This observation was attributed to GO activity, however GO did not produce 

oxalate in the study described here. This discrepancy may be due to differences in the 

kinetics of glyoxylate oxidation between guinea pig and human GO or may indicate that 

another enzyme is present in guinea pig peroxisomes, which is capable of oxalate 

production from glyoxylate.
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The findings obtained here suggest that oxalate production by GO is not favoured and 

that the enzyme would not contribute to the pathophysiology of PHI. This suggests that 

the investigation of the potential role for LDH in oxalate production should be pursued. 

Whether or not LDH would catalyse glyoxylate oxidation to oxalate will be influenced 

by the concentrations of the relevant metabolites. Lactate has been estimated to be 1 

pmol / g wet weight (Yanagawa et a l, 1990) compared to 5 nmol glyoxylate / g wet 

weight in rat liver (Funai and Ichiyama, 1986). These differences would suggest that 

glyoxylate oxidation would be unfavourable in normal metabolism, due to the 

dominance of lactate oxidation. However, it is not known how high the level of 

glyoxylate becomes in the hyperoxaluric liver. Although it has been postulated that 

deficiency of AGT and GRHPR results in hepatic glyoxylate accumulation in PHI and 

PH2, an increase in liver glyoxylate concentration in these inherited diseases has not 

been demonstrated (Holmes, 2000). With the HPLC methods developed, it will now be 

possible to establish the concentration of glyoxylate in liver samples from normal 

individuals and PH patients, and this will be attempted in the future.
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8.0 Concluding remarks and future research

The main aims of this thesis have been achieved. The human HAOl gene has been 

cloned and the resulting recombinant GO protein has been expressed in vitro. Kinetics 

studies of purified GO showed that the enzyme has highest activity with glycolate as 

substrate and has 10 fold less affinity for glyoxylate as substrate. HPLC methods have 

been developed to enable the analysis of the metabolic pathways in vitro. However, in 

vitro studies of glyoxylate metabolism showed no evidence of oxalate production from 

glyoxylate in the presence of GO. Thus the studies reported in this thesis do not provide 

evidence of a role for GO in oxalate production in PH. However, a role for GO in 

glyoxylate production from glycolate has been firmly established. Furthermore, the 

efficiency of AGT in removing the potentially toxic glyoxylate has been shown in vitro.

The feasibility of a glyoxylate pathway in liver metabolism, previously only inferred by 

the observation of hyperoxaluria resulting from AGT deficiency, has been demonstrated 

in vitro. The liver specificity of such a pathway has been reinforced by the observation 

that GO is a liver specific enzyme. Whether or not other pathways of glyoxylate 

metabolism, catalysed by alternative enzymes, occur in other tissues such as kidney is 

not known and awaits investigation. The deficiency of these enzymes, should they exist, 

would be potential causes of hyperoxaluria not due to AGT or GRHPR deficiency, so- 

called atypical hyperoxaluria (Monico and Milliner, 1999).

It has been estimated that dietary intake can provide 33 mg of glycolate per day and that 

5% or more of urinary oxalate may be derived from dietary glycolate (Harris and
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Richardson, 1980). Since GO is responsible for the conversion of glycolate to glyoxylate 

its inhibition may reduce the production of oxalate. The extent to which this would be 

effective at reducing oxalate production in hyperoxaluric patients depends upon how 

much endogenously derived glyoxylate is formed from glycolate as opposed to other 

precursors such as glycine. The relative contribution of these precursors to glyoxylate 

production is not yet established. Furthermore, the inhibition of GO may have 

metabolic consequences as a result of the subsequent accumulation of glycolate. This 

metabolite is not thought to be toxic, although patients with hyperglycolic aciduria and 

normal levels of oxalate with nephrocalcinosis have been documented (Kist-van Holthe 

et a l, 2000).

The genes for GO, GRHPR and AGT have now all been cloned and the kinetics of the 

enzyme reactions catalysed by these proteins has been established. However, metabolic 

studies of the intact pathway at the cellular and whole body level have tended to focus 

on rodent metabolism. As discussed in chapter 1, a number of differences exist between 

rodent and human glyoxylate metabolism. These differences would limit the usefulness 

of knock out mice as animal models of PHI or PH2. Furthermore, human hepatocellular 

hepG2 cell lines show very different levels of expression of the crucial enzymes in the 

pathway including GO in comparison to human liver expression (Wanders et a l, \99\). 

Hence, studies have been initiated to form stable transformants expressing AGT, 

GRHPR and GO at levels equivalent to their human liver concentration. Figure 8.1 

shows immunocytochemistry images of Chinese hamster ovary (CHO) cells transfected 

with AGT and GO, where GO has been visualised by means of the anti-GO antibody 

developed here (chapter 6). As can be seen from the figures, GO co-localises with AGT
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confirming its peroxisomal location. The HPLC methods developed here are to be 

utilised in the study of glyoxylate metabolism in CHO cells expressing GO, AGT and 

GRHPR.

Further investigation of GO would include the kinetics of inhibition by metabolites such 

as oxalate. This metabolite would be expected to inhibit human GO since this effect has 

been documented with the spinach enzyme (Richardson and Tolbert, 1961). Studies are 

also underway within the laboratory to express and purify recombinant human liver 

LDH. Kinetic characterisation of purified LDH will assess the potential of the enzyme to 

catalyse oxalate production from glyoxylate and the effect of different redox states upon 

the reaction. Finally, cytosolic glyoxylate metabolism catalysed by purified GRHPR and 

LDH will be investigated in vitro, by means of HPLC as described in chapter 7. This 

analysis may establish a role for LDH in the pathophysiology of PH. However, the 

possibility remains of the existence of as yet undiscovered enzymes, which may be 

responsible for oxalate production in the primary hyperoxalurias.
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(a)

(b)

Figure 8.1 Immunocytochemistry images o f GO and AGT expressed in CHO cells, (a)

GO shown in green, visualised by means o f anti-GO antibody and (b) AGT shown in 

red, visualised by means o f anti-AGT antibody.
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Appendices

Appendix 1 -  Oligonucleotide primer sequences and PCR conditions

Primers were synthesised to order by Sigma Genosys Biotechnologies (Pampisford, 

UK).

Primer Primer sequence Extension 
time (secs)

Annealing 
temp. (°C)

RT-PCR to produce HAOl cDNA

GOl 5 ’ AACTGCAGTGA AA ATGCTCCCCC 90 66

G 02 5 ’ TCAAGCTTTGTGCACTGTCAGAT

3’ RACE to produce 3 ’UTR

GSPIA 5 ’ CTGAGTGGGTGCCAGAATGTG 45 58

AUAP 5' GGCCACGCGTCGACTAGTAC

GSP2A 5 ’ AAAGTCATCGACAAGACATTG 45 55

AUAP 5' GGCCACGCGTCGACTAGTAC

5’RACE to produce 5’UTR

AAP 5 ’ GGCCACGCGTCGACTAGTACG 
IIGGGIIGGGIIG

30 58

GSP2B 5’ GCAACATTCCGGAGCATCCT

AUAP 5’ GGCCACGCGTCGACTAGTAC 30 58

GSP3B 5’ CATCATTTGCCCCAGACCTGTA

PCR reactions were carried out in an OmniGene thermal cycler (Hybaid, Ashford, UK) 

The PCR conditions were as follows:

3 minutes dénaturation at 94°C 

30 cycles of:

10 seconds dénaturation at 94°C 

10 seconds annealing at temperature listed above 

30-90 seconds extension at 72°C 

7 minutes extension at 72°C
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Appendix 2 -  Calibration curves

a) Standard curve for determination of protein concentration (mg/ml) by the Lowry 
assay
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b) Calibration curve for determining the size of transcript observed in northern blot

size of RNA (log kb)
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c) Calibration curve for determining size o f  protein bands seen in SDS-PAGE gels
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Appendix 3 -  cDNA, EST and protein sequences

a) Human cDNA with peptide sequence similarity to Arabidopsis thaliana 
Accession number T64673

Insert size 1176, high quality sequence stops at base 333

1 a t a a c c t t g t g a a a a t g c t c c c c c g g c t a a t t t g t a t c a a t g a t t a t g a a
51 c a a c a t g c t a a a t c a g t a c t t c c a a a g t c t a t a t a t g a c t a t t a c a g g t c

101 t g g g g c a a a t g a t g a a g a a a c t t t g g c t g a t a a t a t t g c a g c a t t t t c c a

151 g a t g g a a g c t g t a t c c a a g g a t g c t c c g g a a t g t t g c t g a a a c a g a t c t g

201 t c g a c t t c t g t t t t a g g a c a g a g g g tc a g c a t g c c a a t a t g t g tg g g g g c

251 t a c g g c a t t g c ag c g cn g c c t a a t n g t g g g a c g g c g a g c t t g c c a c t g t g

301 a g g a g c c t g t c a g t c c c t g g g g aacgg g ca t g a t g t t g a g t t c c t g g g g c

351 c a c c t c c t c c a a t t t g a a g g a a g t t n g c c g g

b) Longer length human cDNA identified by screening of EST database 
Accession number T74667

Insert size 1195, high quality sequence stops at base 264

1 t g g g a t a g c a a t a a c c t t g t g a a a a t g c t c c c c c g g c t a a t t t g t a t c a a

51 t g a t t a t g a a c a a c a t g c t a a a t c a g t a c t t c c a a a g t c t a t a t a t g a c t

101 a t t a c a g g t c t g g g g c a a a t g a t g a a g a a a c t t t g g c t g a t a a t a t t g c a

151 g c a t t t t c c a g a t g g a a g c t g t a t c c a a g g a t g c t c c g g a a t g t t g c t g a

201 a a c a g a t c t g t c g a c t t c t g t t t t a g g a c a g a g g g tc a g c a t g c c a a t a t

251 g tg tg g g g g c t a c g g c a t g c a g c g n g t t c n a a t t g t t g g g a c g g c g a g c t

301 t t c c n g g g g n c a a c t n c t c a a t t g a a g g a g t t g c c g g a a
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c) Full length cDNA sequence o f  longer length clone T74667

1 t g g g a t a g c a a t a a c c t t g t g a a a a t g c t c c c c c g g c t a a t t t g t a t c a a

51 t g a t t a t g a a c a a c a t g c t a a a t c a g t a c t t c c a a a g t c t a t a t a t g a c t
101 a t t a c a g g t c t g g g g c a a a t g a t g a a g a a a c t t t g g c t g a t a a t a t t g c a

151 g c a t t t t c c a g a t g g a a g c t g t a t c c a a g g a t g c t c c g g a a t g t t g c t g a

201 a a c a g a t c t g t c g a c t t c t g t t t t a g g a c a g a g g g tc a g c a t g c c a a t a t

251 g tg tg g g g g c t a c g g c c a t g c a g c g c a tg g c t c a t g t g g a c g g c g a g c t t

301 g c c a c t g t g a g a g c c t g t c a g t c c c t g g g a a c g g g c a t g a t g t t g a g t t c

351 c tg g g c c a c c t c c t c a a t t g a a g a a g t g g c g g a a g c t g g t c c t g a g g c a c

401 t t c g t t g g c t g c a a c t g t a t a t c t a c a a g g a c c g a g a a g t c a c c a a g a a g

451 c t a g t g c g g c a g g ca g ag a a g a t g g g c t a c a a g g c c a t a t t t g t g a c a g t

501 g g a c a c a c c t t a c c t g g g c a a c c g t c t g g a t g a t g t g c g t a a c a g a t t c a

551 a a c t g c c g c c a c a a c t c a g g a t g a a a a a t t t t g a a a c c a g t a c t t t a t c a

601 t t t t c t c c t g a g g a a a a t t t t g g a g a c g a c a g t g g a c t t g c t g c a t a t g t

651 g g c ta a a g c a a t a g a c c c a t c t a t c a g c t g g g a a g a t a t c a a a t g g c t g a

701 g a a g a c t g a c a t c a t t g c c a a t t g t t g c a a a g g g c a t t t t g a g a g g g tg a

751 t g a t g c c a g g g a g g c t g t t a a a c a t g g c t t g a a t g g g a t c t t g g t g t c g a

801 a t c a t g g g g c t c g a c a a c t c g a t g g g g t g c c a g c c a c t a t t g a t g t t c t g

851 c c a g a a a t t g t g g a g g c t g t ggaagggaag g t g g a a g t c t t t c c t g g a c g

901

1001

g g g g tg tg c g

a a g g c t g t g t

g a a a g g c a c t

t t g t g g g g a g

g a t g t t c t g a

a c c a a t c g t t

a a g c t c t g g c

t g g g g c t t a

t c t t g g c g c c
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d) tblast of full length T74667 to show similarity to spinach GO

Query: T74667
Sbjct: P05414 GOX_SPIOL (S)-2-hydroxy-acid oxidase, peroxisomal (GOX) 
Identity 54%

Query : 45 INDYEQHAKSVLPKSIYDYYRSGANDEETLADNIAAFSRWKLYPRMLRNVAETDLSTSVL 
+N+YE AK LPK +YDYY SGA D+ TLA+N AFSR PR+L +V D++T++L 

Sbjct: 6 VNEYEAIAKQKLPKMVYDYYASGAEDQWTLAENRNAFSRILFRPRILIDVTNIDMTTTIL

Query: 225 GQRVSMPICVGATAMQRMAHVDGELATVRACQSLGTGMMLSSWATSSIEEVAEAGPEALR 
G ++SMPI + TAMQ+MAH +GE AT RA + GT M LSSWATSS+EEVA GP +R 

Sbj ct: 66 GFKISMPIMIAPTAMQKMAHPEGEYATARAASAAGTIMTLSSWATSSVEEVASTGP-GIR

Query: 4 05 WLQLYIYKDREVTKKLVRQAEKMGYKAIFVTVDTPYLGNRLDDVRNRFKLPPQLRMKNFE 
+ QLY+YKDR V +LVR+AE+ G+KAI +TVDTP LG R D++NRF LPP L +KNFE 

Sbjct: 125 FFQLYVYKDRNWAQLVRRAERAGFKAIALTVDTPRLGRREADIKNRFVLPPFLTLKNFE

Query: 585 TSTLSFSPEENFGDDSGLAAYVAKAIDPSISWEDIKWLRRLTSLPIVAKGILRGDDAREA 
L + N DSGL++YVA ID S+SW+D+ WL+ +TSLPI+ KG++ +DAR A 

Sbjct: 185 GIDLGKMDKAN DSGLSSYVAGQIDRSLSWKDVAWLQTITSLPILVKGVITAEDARLA

Query: 7 65 VKHGLNGILVSNHGARQLDGVPATIDVLPEIVEAVEGKVEVFLDGGVRKGTDXXXXXXXX 
V+HG GI+VSNHGARQLD VPATI L E+V+A +G++ VFLDGGVR+GTD 

Sbjct: 2 42 VQHGAAGIIVSNHGARQLDYVPATIMALEEWKAAQGRIPVFLDGGVRRGTDVFKALALG

Query: 945 XXXXXXXRPIVWGL 
RP+V+ L

Sbjct: 302 AAGVFIGRPWFSL
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e) Full length cDNA sequence o f  clone AB024079 identified by BLAST search

6
12
18
24
30
36
42
48
54
60
66
72
78
84
90
96

102
108

a t g c t c c c c c
a a g t c t a t a t
a t t g c a g c a t
g a t c t g t c g a
g c c a t g c a g c
c t g g g a a c g g
g c t g g t c c t g
a a g a a g c t a g
a c a c c t t a c c
c t c a g g a t g a
g a c g a c a g t g
g a t a t c a a a t
g g t g a t g a t g
g g g g c t c g a c
g c t g t g g a a g
c t g a a a g c t c
t t a g c t t t c c
c g g t t g g c c a
a g g a a a a a t c

g g c t a a t t t g
a t g a c t a t t a
t t t c c a g a t g
c t t c t g t t t t
g c a t g g c t c a
g c a t g a t g t t
a g g c a c t t c g
tg c g g c a g g c
t g g g c a a c c g
a a a a t t t t g a
g a c t t g c t g c
g g c t g a g a a g
c c a g g g a g g c
a a c t c g a t g g
g g a a g g tg g a
t g g c t c t t g g
ag g g g g a g a a
t g g c t c t g a g
c t t t g g c c g t

t a t c a a t g a t
c a g g t c t g g g
g a a g c t g t a t
a g g a c a g a g g
t g t g g a c g g c
g a g t t c c t g g
t t g g c t g c a a
a g a g a a g a tg
t c t g g a t g a t
a a c c a g t a c t
a t a t g t g g c t
a c t g a c a t c a
t g t t a a a c a t
g g t g c c a g c c
a g t c t t c c t g
c g c c a a g g c t
a g g t g t t c a a
t g g g t g c c a g
t t c c a a g a t c

t a t g a a c a a c
g c a a a t g a t g
c c a a g g a t g c
g t c a g c a t g c
g a g c t t g c c a
g c c a c c t c c t
c t g t a t a t c t
g g c t a c a a g g
g t g c g t a a c a
t t a t c a t t t t
a a a g c a a t a g
t t g c c a a t t g
g g c t t g a a t g
a c t a t t g a t g
g a c g g g g g tg
g t g t t t g t g g
g a t g t c c t c n
a a t g t g a a a g
t g a

a t g c t a a a t c
a a g a a a c t t t
t c c g g a a t g t
c a a t a t g t g t
c t g t g a g a g c
c a a t t g a a g a
a c a a g g a c c g
c c a t a t t t g t
g a t t c a a a c t
c t c c t g a g g a
a c c c a t c t a t
t t g c a a a g g g
g g a t c t t g g t
t t c t g c c a g a
tg c g g a a a g g
g g a g a c c a a t
a g a t a c t a a a
t c a t c g a c a a

a g t a c t t c c a
g g c t g a t a a t
t g c t g a a a c a
g g g g g c ta c g
c t g t c a g t c c
a g tg g c g g a a
a g a a g t c a c c
g a c a g t g g a c
g c c g c c a c a a
a a a t t t t g g a
c a g c t g g g a a
c a t t t t g a g a
g t c g a a t c a t
a a t t g t g g a g
c a c t g a t g t t
c g t t t g g g g c
g g a a g a a t t c
g a c a t t g g t g

f) Genomic structure of GO derived from clone accession number AL021879. Exons 

are shown in capital letters with partial flanking intronic sequences, both upstream and 

downstream, in small font. Bases are numbered as in clone AL021879.

1728
1734
1740
1746
1752
1758
1764
1770
1776

2304
2310
2316
2322
2328
2334
2340
2346
2352
2358

4326
4332
4338
4344
4350
4356
4362
4368
4374
4380

a a a t t t c a a a
t c t g a a c t t t
a a g caa ta ca
aaATGCTCCC
CAAAGTCTAT
ATATTGCAGG
caaag accg t
c a g a t t t g t g
a a a t t g t t a a

tg c t tg g g a a
g c c t c t t t t c
t t t t c t t t t a
t t t t a t t t t a
GTTGCTGAAA
GTGGGGGCTA
Ggtaggagga
tc t g a a tg c a
t g g a c t c t a t
tg ac tg g g c a

g a a a ta a c tc
g c c a g a c t t t
t g t c t t t a c t
c t t g a t c a t c
TCCTGGGCCA
CTGCAACTGT
AAGATGGGCT
GATGATGTGC
ccccgagctg
g c a a c g t tg c

g g c ta a g c a t
g gcaaaag tc
t t a a a a a a a a
CCGGCTAATT
ATATGACTAT
ATTTTCCAGg
ac c a a a a ta a
c t t a g ta g a g
a a a a t a t t c c

a t t c a t t a t c
c a t t a g c t t t
a c t a a a a t g t
t t t t a t t t t t
CAGATCTGTC
CGGCCATGCA
a g a t t g t c a c
ccaag caaa t
c a tc a a a a t a
a g a t a t c c t c

c a g ta g c c a t
c t t c t c t c t t
c a tc c a a c ta
c c c t t t c t t t
CCTCCTCAAT
ATATCTACAA
ACAAGGCCAT
GTAACAGATT
aggcgaaagg
t a a a c a t c t a

a t a a t g t t t g
t a t t a a t a a t
aaaaacaacg
TGTATCAATG
TACAGGTCTG
ta a g a a a a t t
g a t c t c c t a g
agggaaaagt
a a g cc tg tg a

c t c t a a t t g t
a tg a a g tc a t
a a tg tc a a a g
t a a t t c t a g A
GACTTCTGTT
GCGCATGGCT
cacagggaca
a t g t t c c t t g
c t t g t t c t t g
t c t c t g c a t t

t t g t a t c a g a
t a a g a g a t t t
c a a t tc a a a g
ctcagCCTGT
TGAAGAAGTG
GGACCGAGAA
ATTTGTGACA
CAAACTGCCG
g a t c t t g a c t
g t t a a t c t t c

c t c a c t t g a t
tg a c a a a ta a
a a c t c c a t c t
ATTATGAACA
GGGCAAATGA
t a t t t t t t a a
t t t t a c g t t g
t c t t g g g g c t
a t c t t g a g g a

t a a c t t t c t a
t t g c t t g t t t
t t t t g g t t a t
TGGAAGCTGT
TTAGGACAGA
CATGTGGACG
gaaggaggct
a t g t t t t t a c
c a tg t c c t g c
g g t t t c c t t g

ggaggtagaa
g a c t t c a t a t
g t t tg g g a g g
CAGTCCCTGG
GCGGAAGCTG
GTCACCAAGA
GTGGACACAC
CCACAACTCA
g g g a a tg t t a
a g c ta a tc a c

g taag caaca
cagaacag tg
gggatagcaa
ACATGCTAAA
TGAAGAAACT
a a t c a t g t t t
g t g g t g tg t a
g ta a g a a a tc
a c tg a c tg c a

accaaacaaa
g g aa aaa a tc
g a t t c t g a a a
ATCCAAGGAT
GGGTCAGCAT
GCGAGCTTGC
a a c g t t t a t c
ac tc a g a a a c
t c c t c t t c t t
g c t g t a a a a t

tc a g g a a a ta
t g c c a a a t t g
g ta a g c a a tg
GAACGGGCAT
GTCCTGAGGC
AGCTAGTGCG
CTTACCTGGG
G gtaacca tg
g g g tc tg g g t
a t c c c t t t t g

g ag aac taaa
a g g a tg ta g a
t a a c c t g t g a
TCAGTACTTC exonl
TTGGCTGATA
t a a a a t t a c a
a t t a t t t g t t
t t g g g c c t t t
aaagccaaac

c a g t a a a a t t
c a a t t a t a t t
c t c t a a a g c c
GCTCCGGAAT exon2
GCCAATATGT
CACTGTGAGA
g a c c t c c t t c
a t t a a g c t c a
t c c a g c tg tg
agggacaaaa

g a tg g ta tg g
c c c t t c t a g a
ccag g ccca t
GATGTTGAGT exon3
ACTTCGTTGG
GCAGGCAGAG
CAACCGTCTG
a tc a tg tg g g
t c t a c t g a t a
t a g a c a tc a c
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43861 tttttttgag atacacaata gaaacagaaa tggcctctat aaaagtccaa taaattttca

5136
5142
5148
5154
5160
5166
5172
5178
5184
5190

6246
6252
6258
6264
6270
6276
6282
6288

7182
7188
7194
7200
7206
7212
7218
7224
7230
7236
7242
7248
7254

7404
7410
7416
7422
7428
7434
7440
7446

ta a g a c c a c t  a g a g ta tc a c  a t t t a g t c t a  g a g tc c ta c a  t c a a a a t a t g  g a a a a t a t g t
g tg c a a t tg a  c t t a t a g a t a  a a tg a g c a g t  gaacagccaa t t g a t t t g a a  aaggg taaca
t t t t t c a t t g  a a tg a a t c a t  tg g a a a c g ta  t t t c t a a t t t  g g c a a a t t t c  t c a t t t t a t g

c a t t t c t t a t  tttagGATGA AAAATTTTGA AACCAGTACT TTATCATTTT CTCCTGAGGA exon4 
AAATTTTGGA GACGACAGTG GACTTGCTGC ATATGTGGCT AAAGCAATAG ACCCATCTAT
CAGCTGGGAA GATATCAAAT GGCTGAGAAG ACTGACATCA TTGCCAATTG TTGCAAAGGG
CATTTTGAGA G g t t c g t t t a  t t t c t c t a c t  t g a a t t c a t a  c t g a c t t t g t  g a t c c t t t g t
g g a t a c g t t c  a t a a t a t t c t  taaag g aaaa  taacaag g aa  a a a t t a a c a t  g g a a a t tg a g
a g a g a c a t tc  c a a c t c t c a a  t t c t c t g t t t  t c a t g t t a g t  g a g t a a a t a t  t t c t t c a t t c
t t a g g t a a t a  t t c t g a a g c a  g a g c ta a a c t  c t c a tg a a g c  acaaag tg ag  c t t t t t c a a a

a c a t t t t t t t  g t t g t t t t t g  gccaagaaaa c t a c c a c t a a  t a t t c t a g c g  c ta a c c c ta g
g g t a t a c t t t  t a t g c t a a g a  t t a t t g a c c c  a g g ta tg c ag  a tg g g a g tc a  g c c t c c a t t t
g a c tg g a a tg  tg g ag g cc tc  ta aa ccc aag  c t g c c t g t t a  a g t t a c a g t t  t c c c t a a g g t
g c t t g t t t t a  c t c t c t c c a g  GTGATGATGC CAGGGAGGCT GTTAAACATG GCTTGAATGG exon5
GATCTTGGTG TCGAATCATG GGGCTCGACA ACTCGATGGG GTGCCAGCCA C T g tg ag t t t
tggcagacgc t a a g a t t t c c  t t t t g g a g t t  c c c a t t t c c a  t c a c t g t g t t  a c t a t c t c t a
t g t c t t c c t c  c t c t c t g t g t  g t a c t t t g t g  t a a t c a c t c a  a g g tg a a a ta  c g tg c a a a ta
t g t g a g a t c t  t g g a t t t t a a  g t t t a g t g g c  a c a t a a c t a c  c c a a g t t a a a  a a t t t a t t t a

t t c c a a a t t t  a g t t g g t g t t  t t a g t t a c t a  g c a t t t g t a c  c t c t c t t c t t  tgagaaggaa
a t a a t t t t a c  c a t t t a c c c c  a a a c c t a c t t  g g c t t c t t t c  a c tc t a a g c c  c t a g c tg g a t
g tg tc a g tg g  t t t t t g g a g g  tg g a g t tg a a  t a a c a a t t c a  g t g t t a a t a g  a g t c a c a t t a
t t g a a c t t t t  c t t t c c c c a g  ATTGATGTTC TGCCAGAAAT TGTGGAGGCT GTGGAAGGGA exon6
AGGTGGAAGT CTTCCTGGAC GGGGGTGTGC GGAAAGGCAC TGATGTTCTG AAAGCTCTGG
CTCTTGGCGC CAAGGCTGTG TTTGTGGGGA GACCAATCGT TTGGGGCTTA GCTTTCCAGg
ta a c tg g a c a  aag aaa tg aa  t a t a t a a a a t  a g a c a a c t tg  a c a g ta a a a c  a a a tg a a ta a
aacaag tcag  a c t g a t t t a g  t t c t g a a t c a  c t c t g t a t c t  t t t c a c t t g g  t tagggggag
AAAGGTGTTC AAGATGTCCT CGAGATACTA AAGGAAGAAT TCCGGTTGGC CATGGCTCTG exon7
AGTGgtaaga c t c a t t c t t g  t t t a c a a c t t  t c t t t t c t t t  t a t g a t c t t t  a a g tc a a g g t
c c t tg g tg g a  gagaag tgaa  t t tg a a a g g g  aag ag tg tg g  g a t c a t t t g a  g t a c a t t a a a
t t t g a c g t t g  a c t c c a t a t t  t a c a g c t t t g  a g g a a c tc tg  c a tg tg c a g t  c t c t a g t a a t
t a c t t a a c c t  c t g t t t t t c a  c a g c t t t a t t  a g g a a t a t t t  t g g tg a g ta c  g a g ta c t tg g

t c a t t t t g t g  t t a a g g a c tg  t t t a g g t a a t  a a a a a a tg g t  c t c a tg c c a c  a t a a g a t t t g
gcaag cc tac  c t t g a a t c a t  a a a c c t t a c a  t t t g t c a a a t  t t t a c a t t c c  t tg g g a a a a c
g a t t a c c t g c  c t g a t t a t t a  t t g c a t t c a g  t t c a t a t t a a  a t g t a t g c a t  t a t t t t t t c a
gGGTGCCAGA ATGTGAAAGT CATCGACAAG ACATTGGTGA GGAAAAATCC TTTGGCCGTT exon8
TCCAAGATCT GAcagtgcac a a t a t t t t c c  c a t c t g t a t t  a t t t t t t t t c  a g c a t g t a t t
a c t tg a c a a a  g a g a c a c tg t  gcagagggtg a c c a c a g tc t  g t a a t t c c c c  a c t t c a a t a c
aa ag g g tg tc  g t t c t t t t c c  a a caa aa tag  c a a t c c c t t t  t a t t t c a t t g  c t t t t g a c t t
t t c a a t g g g t  g tc c ta g g a a  c c t t t t a g a a  ag aaa tg g ac  t t t c a t c c t g  g a a a t a t a t t
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GO is a peroxisomal flavoenzyme which catalyses the oxidation of short chain hydroxy acids. 
The enzyme utüises glycolate as substrate in a reaction which produces glyoxylate, a major 
precursor of endogenous oxalate. The pivotal role of the enzyme in glyoxylate production 
makes it of relevance to the field of hyperoxaluria.

We have recently cloned and expressed the gene for human liver GO, which has enabled 
characterisation of the protein. Comparison of the peptide sequence to GO from other species 
reveals 89% similarity to mouse and 53% to the enzyme from spinach. The protein shows 
hydroxy acid oxidase activity in vitro, and has been purified to homogeneity. The pure 
enzyme displays an absorption spectrum characteristic of the flavoproteins, with absorption 
peaks at 370 and 450 nm. Crosslinking studies indicate the protein has a tetrameric sub-unit 
structure. Kinetic analysis of the pure enzyme with several hydroxy acids shows it has 
highest affinity for glycolate (Km = 0.54 mM) as substrate, but has 10 fold less affinity for 
glyoxylate (Km = 5.1 mM ).

Multiple tissue northern blot analysis detects a 1.8 kb mRNA with expression restricted to 
liver. Western blot analysis with polyclonal anti-GO antibody raised in rabbits detects a 43 
kDa fiver protein. Work is ongoing to assess the potential of GO to contribute to oxalate 
production in the primary hyperoxalurias.
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