Supplemental Material for

”Topological phase transitions driven by strains in monolayer tellurium”

Wei Zhang,1,2,3 Quansheng Wu,4,5 Oleg V. Yazyev,4,5 Hongming Weng,*,6,7 Zhengxiao Guo,8 Wen-Dan Cheng,2 and Guo-Liang Chai†,2

1Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China
2State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
3Fujian Provincial Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Xiamen, 361005, China
4Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
5National Center for Computational Design and Discovery of Novel Materials MARVEL, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
6Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
7Collaborative Innovation Center of Quantum Matter, Beijing, 100084, China
8Department of Chemistry, University College London, London WC1H 0AJ, UK
The SOC energy bands for structures with different strains in BS phase I are shown below.

Fig. S1 Energy bands for structures with different strains in BS phase I, when considering SOC interaction. (a) When $\Delta = -5\%$, the band gap is 0.016 eV. (b) When $\Delta = -6\%$, the band gap is 0.048 eV. (c) When $\Delta = -7\%$, the band gap is 0.08 eV.
In equation (1), \(H(k) = A k_x + B k_y + (a k_x + c k_y) \sigma_y + (b k_x + d k_y) \sigma_x + m \sigma_z \).

\(m \) is the mass term which opens the band gap. Other parameters near the crossing points are listed below.

Table S1: Parameters used in equation (1) for BS structures with different strains and BS Te/SrTiO\(_3\), respectively.

<table>
<thead>
<tr>
<th>Strain</th>
<th>A (10^5 m/s)</th>
<th>B (10^5 m/s)</th>
<th>(\sqrt{a^2 + b^2}) (10^5 m/s)</th>
<th>(\sqrt{c^2 + d^2}) (10^5 m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4.5%</td>
<td>8.30</td>
<td>8.27</td>
<td>1.06</td>
<td>1.16</td>
</tr>
<tr>
<td>-5%</td>
<td>8.36</td>
<td>8.39</td>
<td>0.96</td>
<td>1.05</td>
</tr>
<tr>
<td>-6%</td>
<td>8.42</td>
<td>8.41</td>
<td>0.85</td>
<td>0.93</td>
</tr>
<tr>
<td>-7%</td>
<td>8.50</td>
<td>8.50</td>
<td>0.73</td>
<td>0.77</td>
</tr>
<tr>
<td>BS Te/SrTiO(_3)</td>
<td>7.98</td>
<td>7.96</td>
<td>0.99</td>
<td>1.03</td>
</tr>
</tbody>
</table>

To estimate the accuracy of the parameters, the parameters are fit to the first-principles energy bands of BS structures with various strains and BS Te/SrTiO\(_3\). The red dots are parameter fitting bands, while black lines are energy bands from first-principles calculations.

Fig. S2 (a) \(\Delta = -4.5\% \), (b) \(\Delta = -5\% \), (c) \(\Delta = -6\% \), (d) \(\Delta = -7\% \), (e) BS Te/SrTiO\(_3\)