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Abstract Planning water supply infrastructure includes identifying interventions that cost-effectively
secure an acceptably reliable water supply. Climate change is a source of uncertainty for water supply
developments as its impact on source yields is uncertain. Adaptability to changing future conditions
is increasingly viewed as a valuable design principle of strategic water planning. Because present
decisions impact a system’s ability to adapt to future needs, flexibility in activating, delaying, and replacing
engineering projects should be considered in least-cost water supply intervention scheduling. This is a
principle of Real Options Analysis, which this paper applies to least-cost capacity expansion scheduling via
multistage stochastic mathematical programming. We apply the proposed model to a real-world utility with
many investment decision stages using a generalized scenario tree construction algorithm to efficiently
approximate the probabilistic uncertainty. To evaluate the implementation of Real Options Analysis, the
use of two metrics is proposed: the value of the stochastic solution and the expected value of perfect
information that quantify the value of adopting adaptive and flexible plans, respectively. An application
to London’s water system demonstrates the generalized approach. The investment decisions results are
a mixture of long-term and contingency schemes that are optimally chosen considering different futures.
The value of the stochastic solution shows that by considering uncertainty, adaptive investment decisions
avoid £100 million net present value (NPV) cost, 15% of the total NPV. The expected value of perfect
information demonstrates that optimal delay and early decisions have £50 million NPV, 6% of total NPV.
Sensitivity of results to the characteristics of the scenario tree and uncertainty set is assessed.

1. Introduction and Background

Water utilities aim to maintain an efficient and reliable water supply service by optimally combining the
scheduling of supply augmentation projects and demand reduction policies (Mortazavi-Naeini et al., 2014).
Water planners investigate a range of feasible interventions including both the supply-side (e.g., wastewater
reuse, desalination, and reservoirs) and demand-side interventions (e.g., demand reduction and leakage
reduction). In its simplest form, the capacity expansion problem refers to finding the optimum timing and
scale of predefined projects. Deterministic supply-demand optimization aims to meet service levels com-
mitments under historically dire conditions and identifies a fixed least-cost schedule of system upgrades
(Padula et al., 2013). However, fixed investment plans are brittle; that is, if future conditions turn out to be
different than assumed, the plan is likely to fail (Chung et al., 2009). The antidote to brittleness is robustness
(defined as a decision that performs acceptably well over a range of conditions) and flexibility (defined as the
ability to switch a decision depending on outcomes that materialize; Maier et al., 2016). Methods that use an
ensemble of plausible scenarios to seek robustness and flexibility are discussed below.

Robust decision making is an attempt to identify plans that perform well under a wide range of plausible
future conditions (Lempert et al., 2006). That is, investment plans should aim to be insensitive to the most
significant uncertainties (J. W. Hall, Lempert et al., 2012; Huskova et al., 2016; Lempert et al., 2006; P. A. Ray
& Brown, 2015). Robust plans trade optimality with the ability to perform acceptably well in a wide range of
future scenarios. Robust decision making has been applied in a range of water resource planning contexts,
such as in England (Matrosov et al., 2013), in Australia (Mortazavi-Naeini et al., 2015), and in Southern California
(Tingstad et al., 2013). Robust approaches accommodate for a wide range of possible future conditions
(i.e., mild to dire). Depending on the statistics used to quantify the performance of the system over the
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set of possible scenarios, they may lead to excess capacity (over investment; Herman et al., 2015) if an
excessively conservative set of actions is chosen (Shapiro, 2012). If optimization is used, different metrics to
define robustness will lead to different results (McPhail et al., 2018; Mortazavi-Naeini et al., 2015). A robust-
ness metric determines how a definition of robustness is operationalized (Kwakkel, Eker, & Pruyt, 2016).
Misdefined robustness metrics generally lead to solutions that underestimate the system performance with
respect to the one achievable with a better metric (Giuliani & Castelletti, 2016).

Adaptive approaches are based on considering the uncertain future and responding to future conditions
by adjusting intervention schedules as the future manifests (Maestu & Gómez, 2012). Adaptability enables
a system to change proactively to environments, markets, regulations, and technology (De Neufville &
Scholtes, 2011). Dynamic Adaptive Policy Pathways (DAPP) and Real Options Analysis (ROA) are among the
decision-making processes that differently identify adaptive strategies under uncertain future (P. A. Ray &
Brown, 2015). While DAPP appears in the literature to be implemented in situations with absence of infor-
mation on likelihood of the multiple plausible futures (Haasnoot et al., 2013; Kwakkel et al., 2015; Kwakkel,
Haasnoot, & Walker, 2016), ROA typically makes use of probability information (Dixit & Pindyck, 1994; P. A. Ray
& Brown, 2015) to treat future uncertainty.

DAPP is an amalgamation of two approaches, Adaptive Policy Making and Adaptation Pathways. The former
is a structured approach for designing dynamic robust plans (Dessai & Sluijs, 2007; Kwakkel et al., 2010; Walker
et al., 2001), and the latter approach uses adaptation tipping points to specify the conditions under which a
given plan will fail as it no longer meets the specified objectives (Kwadijk et al., 2010). DAPP includes tran-
sient scenarios representing multiple uncertainties used to analyze the vulnerabilities and opportunities of
policy actions and how they develop gradually over time. Alternative types of actions are then identified to
address these potential vulnerabilities and opportunities, specifying a dynamic adaptive plan (Hamarat et al.,
2014; Herman et al., 2015; Kwakkel et al., 2015). In a water resource management context, adaptation tipping
points could be a certain climate change trigger indicating that the current plan must change as new actions
are needed to ensure water supply security. The challenge of this approach for water resource management
applications is to identify good triggers for water management due to high natural variability as well as a
monitoring framework for short time period of measurements (Diermanse et al., 2010).

ROA is a probabilistic decision process with the ability to value the flexibility and adaptability in future decision
making when irreversibility and uncertainty are key characteristics of the decision problem (Dixit & Pindyck,
1994). While it can be used as part of the evaluation and design of DAPP (Buurman & Babovic, 2016), it is mainly
used to enable planners to examine the implications of future uncertainties. Within ROA, flexibility is valued
since it allows delaying commitment to large, costly, and irreversible decisions while either exercising differ-
ent interventions or incrementally implementing interventions with high regret cost and long construction
times until more information is available. Adaptation is enabled because ROA provides an optimal sequence
of future investment decisions that respond to changes in uncertainty over time. Traditional ROA methods
are based on financial theory, such as the Black-Scholes equation (Black & Scholes, 1973) or expected value
decision tree analysis (Dixit & Pindyck, 1994).

ROA is implemented through different techniques. These include decision trees, lattices, and Monte Carlo
analysis (Chow & Regan, 2011; De Neufville & Scholtes, 2011; Lander & Pinches, 1998; Trigeorgis, 1996) as
well as multistage stochastic optimization programs (De Weck et al., 2004; Wang & De Neufville, 2004, 2005;
Zhao et al., 2004). Combinations of staged decision making (Beh et al., 2014; Cai et al., 2015; Hobbs, 1997;
Kang & Lansey, 2012; Kracman et al., 2006; P. Ray et al., 2011; Vieira & Cunha, 2016) and ROA (Jeuland &
Whittington, 2014; Steinschneider & Brown, 2012; Woodward et al., 2014) can be found in the water and
flood management literature. The number of decision stages in these multistage problems defines the fre-
quency that intervention strategies can be modified in the planning horizon. For example, P. Ray et al., 2011’s
(2011) long-term water supply planning under climate change uncertainties extends 75 years into the future
and the decision stages are made in years 2035, 2060, and 2085. In another work, Woodward et al. (2014)’s
model stages flood risk interventions every 50-year time step over a 100-year time horizon. There has been
significant effort by using different decomposition methods (Escudero, 2009; Mulvey & Ruszczyński, 1995;
Rockafellar & Wets, 1991), and/or uncertainty reduction and clustering techniques (Dupačová et al., 2003;
Gröwe-Kuska et al., 2003; Gülpınar et al., 2004; Heitsch & Römisch, 2005; Housh et al., 2013; Latorre et al., 2007;
Šutienė et al., 2010) to represent long-term future uncertainty in stages using a scenario tree. Nevertheless,
applying ROA in water resource planning is still challenging for three reasons. First, ROA is sensitive to the
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structure of the scenario tree so the parameterization of its design must be defensible. This includes decid-
ing the number of nodes over the planning horizon and choosing the branching between states. Second, the
probability assignment to scenario branches and nodes affects the optimized investment decisions. This can
become intractable for a relatively complex problem. Lastly, as the number of scenarios used grows, the prob-
lem becomes more complex, often without increasing the quality of the solution (Lander & Pinches, 1998;
Wang & De Neufville, 2004).

The decision-making process presented in this paper aims to explicitly seek adaptability and flexibility in
least-cost supply-demand infrastructure investment planning. We estimate the value of adaptability and
flexibility under conditions of probabilistic uncertainty where probabilities are assigned to future states of
supply. This is different from decision making under deep uncertainty approaches (Lempert et al., 2006) where
key criteria for evaluating alternative decisions such as robustness, adaptability, and trading-off conflicting
objectives are addressed without requiring probabilities (Kasprzyk et al., 2012; Lempert et al., 2006).

To account for the above, this paper proposes a generalized uncertainty sampling and optimized scenario tree
construction approach for multistage investment planning. We optimally build a scenario tree with multiple
decision stages to allow for frequent and regular modifications to the investment strategies. The decision tree
presented in this paper uses a range of supply scenarios to represent uncertainties of future climate change
effects from mild to dire. The range of possible climate change futures was defined by the UKCP09 weather
generator, which provides probabilistic projections of precipitation, temperature, and other variables for the
United Kingdom using perturbed physics ensemble simulations (J. Murphy, Sexton, Jenkins, Boorman, et al.,
2009). The analysis has used UKCP09 data assuming that the impacts are for a medium emissions scenario,
as reported in Thames Water (2014). The scenario tree is incorporated into a multistage stochastic optimiza-
tion formulation that applies ROA for enabling flexible and adaptive water resource investment decisions.
Frequent corrective decisions allow the model to compensate for insufficient or excessive investment made in
initial decision stages. The recommendations of the proposed method depend on the probabilities assigned
to the supply scenarios; errors in those probabilities will lead to errors in the models recommendations.
To measure the adaptability and flexibility enabled by the ROA implementation, two metrics are used and dis-
cussed. We apply the model to a water supply infrastructure planning problem in England over 50 years with
a 5-year decision-making time step.

The proposed approach is described in section 2 and the results of its application to Thames Water’s London
supply zone are presented and discussed in sections 3 and 4. Two metrics to evaluate the implementation of
ROA are proposed in section 4.2. Sensitivity of results to the use of different scenario trees and the character-
istics of the uncertainty set used to create the trees are in section 4.3. Section 4.4 discusses the limitation of
the proposed method, and section 5 concludes the paper.

2. Adaptive and Flexible Formulation for ROA Implementation

We take two steps in formulating a multistage stochastic program for ROA implementation. In the first step,
a scenario tree (see definition in section 2.1) is generated to approximate the stochastic supply representing
an ensemble of plausible futures. In the second step, a multistage mathematical programming formulation
is solved on the scenario tree to obtain the future plan under plausible future scenarios. The section con-
cludes with an illustration of a utility that practices real-options investment decision making provided by the
proposed formulation (section 2.3).

2.1. Scenario Tree Approximation
We consider a discrete time horizon T in which decisions are made at each stage t ∈ T . To facilitate adaptive
decision making to changing future condition, and to represent the multistage planning for flexible decision
making, a set of paths is built to represent the evolution of an uncertain future. The paths, or trajectories,
correspond to a particular state of the uncertain parameter in time. These paths are approximated using a tree
structure which we refer to as a scenario tree. The scenario tree, schematized in Figure 1a, is built by creating
the root node at time stage 1 associated with the first stage deterministic decision. The successor nodes to
the root depict the possible outcomes of the next decision point at time index 2. This process is repeated
until the end of the planning horizon resulting in a tree structure. A single scenario is then defined as a unique
path from the root node to the terminal node defined by a leaf showing one realization of the future. The
probability of scenario occurrence is defined by multiplying all state transition probabilities of the scenario
path starting from root leading to the leaf. The scenario tree is an approximation of the stochastic process
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Figure 1. (a) A simple scenario tree structure with 14 nodes represented with letters A–N. The parameters si and pi
are the scenarios and the transition probabilities for each outcome branch, respectively; for each pair of branches the
sum of the probabilities adds to 1. A path is defined from root node to leaf node at the end of the planning horizon.
(b) An illustration of a simple water resource problem solved with the proposed real-options formulation. The
supply-demand gap and the activated intervention are provided above and below each tree node, respectively.

and is suitable for multiperiod decision making as until a given point on the tree, the past is shared among
a set of scenarios while a future event is yet to manifest. In Figure 1a, an example scenario tree structure is
presented. We see that tree nodes F and G share a common point C and all decisions that come before it.
Nonanticipativity enforces that investment decisions at time t only utilize any information that is available up
to this stage. Hence, this dictates that all decisions made for scenarios 2 and 3 should be the same on nodes
A and C. The path indicates that the possible outcomes from C in the next stage is transition to either F with
probability p5 or G with probability p6, subject to p5 + p6 = 1. The number of leaf nodes corresponds to the
number of distinct scenarios and their probabilities are calculated as the multiplication of associated transition
probabilities starting from root leading to the leaf node. For instance, the probability for supply scenario s3 to
occur, from root to the end of the planning horizon is p2 × p6 × p11.

Manually generating the above scenario tree and deciding on the number of nodes, leafs, and probabil-
ity information on each node for practical purposes requires complex calculation and sufficient judgment
(Lander & Pinches, 1998). This is especially a major deterrent to ROA implementation in complex decision
problems as scenario trees can quickly grow large. To account for this, we automatically construct the sce-
nario tree by implementing the fast forward iterative greedy algorithm, which aims to minimize a so-called
probability distance between the uncertainty sets (Gröwe-Kuska et al., 2003). The algorithm optimally creates
a most informative scenario tree based on the original stochastic process by successively bundling the tree
nodes into separate sets to be later represented by a new node while maintaining the probability information
of the constructed uncertain process as close as possible to the original stochastic process. By bundling similar
scenarios and reducing the number of nodes this not only produces a valuable and smaller computationally
accessible multistage decision model but also reduces the burden of manually representing the uncertainty
through scenario tree generation for multistage stochastic ROA implementation. Appendix A gives details
of the construction algorithm where the quality of the constructed tree is controlled by a metric that calcu-
lates the percentage of information lost known as relative probability distance (Heitsch & Römisch, 2011).
The lower the metric value is, the less information is lost and hence the more accurate the constructed tree
becomes. This is set to 5% in this study, as we assume that this is an acceptable loss of information. The tol-
erance indicates the relative probability distance between the constructed tree and the original stochastic
process and consequently determines the number of scenarios preserved in the scenario tree.

2.2. Staged Mathematical Model
With a scenario tree constructed, we formulate a mathematical program to represent the staged decision
process for obtaining an optimal decision for each node of the scenario tree. This provides adaptive opti-
mal solutions which propose actions to be implemented at each decision-making time interval and for each
estimate of the uncertain future. We introduce a binary decision variable dS representing the activation of
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an intervention at each node of the tree where the decision at each stage only depends on the information
available up to that point. The following formulation defines the staged mathematical program for sequential
capacity investment decision making over time. Let N be the set of nodes on a scenario tree and Nt be the set
of nodes belonging to stage t. For a node n ∈ N we denote with n− 1 and n+ 1, respectively, the predecessor
and successor nodes on the scenario and with pn the probability that node n is realized. For a node n ∈ N and
scenario s ∈ Ω, Ωn is the set of nodes that belong to scenario s.

min z =
∑

n∈Nt ,i∈I

pn

(1 + r)t
[cCi × (dSn,i − dSn−1,i) + fCi × dSn,i + vCi × Sn,i],

s.t.

(1)

∑
i∈I

Sn,i + eSn ≥

∑
t∈T

Dt, ∀n ∈ Nt, (2)

Sn,i ≤ aSl,t,i, ∀t ∈ T , n ∈ Nt, i ∈ I, l ∈ Ωn, (3)

aSl,t+𝜆i ,i
≤ dSn,i × cSi, ∀t ∈ T , n ∈ Nt, i ∈ I, l ∈ Ωn, (4)

aSl,t,i = 0, ∀i ∈ I, t ∈ T ∧ t ≤ 𝜆i, n ∈ Nt, l ∈ Ωn, (5)

dSn,i ≤ dSn+1,i, ∀n ∈ N, i ∈ I, (6)

∑
i∈Im

dSn,i,≤ 1 ∀n ∈ N, (7)

dSn,i ≤ dSn−1,j, ∀n ∈ N, i ∈ Id, j ∈ Ip, (8)

Sn,i ≥ 0, ∀n ∈ Nt, i ∈ I, (9)

dSn,i ∈ {0, 1}, ∀n ∈ Nt, i ∈ I, (10)

where n is a node, t denotes time (stages), i is an intervention, pn is the probability that node n is realized, r
is the discount rate, eSn,i denotes levels of existing supply from intervention i, cCi is the undiscounted capital
cost of intervention i, cFi is the undiscounted fixed operational cost of intervention i, cVi is the undiscounted
variable operational cost of intervention i, Dt is demand in time t, cSn,i is the maximum capacity of intervention
i in node n, 𝜆i is the construction time period for intervention i, dSn,i is the activation of intervention i for node
n, Sn,i is the supply from intervention i for node n, and aSn,t,i is the associate supply on the intervention i to
supply on node n in time t.

The optimization model minimizes the expected cost of investments discounted back to the present.
Constraint (2) makes sure that the supply balances the demand in each node of the tree. Constraints (3)–(5)
allow an intervention to be utilized up to its capacity considering its construction period, 𝜆i , before its acti-
vation; constraint (3) sets an earliest year for the yield, constraint (4) sets the available supply to associate
with construction period, and constraint (5) prevents yield from being used during the construction period.
Constraint (6) forces an intervention once activated to remain active at later nodes of the tree. Activation of
two interventions that are mutually exclusive is avoided by introducing constraint (7) over the set of mutually
exclusive interventions, Im. Constraint (8) ensures that modular interventions can be further expanded as long
as the previous phase has been completed. Id denotes the set of dependent interventions and Ip denotes the
set of prerequisite interventions. The proposed problem structure follows a node-based formulation related to
the multistage stochastic program. Intervention activation constraints, due to path dependency are nonan-
ticipative. For instance, although scenarios si and sj end up in different terminal nodes, they can be passing
through the same node in time t. In that case, the intervention activation decision variables at time stage
t in scenario si equals that of the other scenario sj . This means that the multistage stochastic program will
determine an optimal decision for each node of the scenario tree, given the information up to time stage t.
Given that there are multiple succeeding nodes, the optimal decisions will not exploit hindsight, but they
should anticipate future events. The mathematical model above allows nonanticipativity to be incorporated
implicitly through its scenario tree formulation. Constraint (10) makes sure that an intervention can only be
activated at most once in any scenario.
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Table 1
Cost, Capacity, and Design of a Reservoir for the Illustrative Example

Intervention Capex cost/expansion (£millions) Capacity Modularity

50 Ml/d fx 1,000 50 Ml/d No ability to expand

100 Ml/d fx 1,200 100 Ml/d No ability to expand

150 Ml/d fx 1,400 150 Ml/d No ability to expand

50 Ml/d mod 1 1,100 50 Ml/d Ability to expand to 100 Ml/d

100 Ml/d mod 2 140 100 Ml/d Ability to expand to 150 Ml/d

150 Ml/d mod 3 160 150 Ml/d No ability to expand

2.3. Real-Options Principles: A Synthetic Example
Figure 1b illustrates a simplified scenario tree for the purpose of demonstrating the ROA implementation. We
consider a utility that wants to cost-effectively balance future supply-demand by investing in a new reservoir
with three possible capacities (50, 100, or 150 Ml/d). The 50 Ml/d reservoir can be built with a fixed or mod-
ular capacity. As shown in Table 1, if the utility builds a 50 Ml/d fixed capacity reservoir with 1,000 £m cost,
they cannot expand it later. Alternatively, if they pay a higher initial capex cost (1,100 £m) for a modular 50
Ml/d reservoir design, they are able to expand later to 100 Ml/d or further to 150 Ml/d by paying the rele-
vant expansion cost (Table 1). The 100 £m premium is an upfront cost that the utility pays to reserve the right
for expansion in later stages if required. This premium allows the utility to delay investment for the sake of
acquiring information. The mathematical formulation in section 2.2 finds the minimum discounted expected
investment cost of capacity expansion over a four-stage planning horizon. The supply-demand gap is shown
in each node of the tree. In t2 node B, a fixed reservoir of 50 Ml/d capacity is activated (50 Ml/d fx) since its
capacity is sufficient to balance the supply-demand gap till the end of the planning horizon. In t2 node C,
however, a 50 Ml/d modular capacity is the most cost effective intervention that gives the ability to respond
uncertain supply-demand level in the future. If s2 happens, it avoids further investment till the end of plan-
ning horizon, while under s3, it requires the planner to expand capacity by an extra 50 Ml/d at t4 to balance
the larger supply-demand gap. In t2 node D, the 50 Ml/d modular reservoir is again picked by the mathemat-
ical model, incrementally increasing capacity by an extra 50Ml/d and 100 Ml/d under s4 and s5, respectively,
till the end of planning horizon. This example shows how the ROA implementation is used to assess under
different future scenarios the suitability of paying a premium to postpone capacity expansion.

3. Application to Infrastructure Investment Planning

England offers an interesting context to apply adaptive and flexible multistage investment planning, because
every 5 years, the economic regulator requires the water utilities to produce a plan demonstrating that the
supply-demand balance is satisfied throughout their operating area over a long-term planning period. A plan
is an optimal combination of new supply and demand management interventions, scheduled to meet esti-
mated water supply zone demand plus an uncertainty allowance at least cost and is periodically updated.
That is, company asset planners must select short-term (5 years) interventions for the next planning decision
period and be able to demonstrate how they fit within a strategic long-term plan (25 years or more). Current
water capacity expansion scheduling approaches used by water companies in England are based on deter-
ministic annual supply-demand balance (Padula et al., 2013). However, present investment decisions need to
account for significant uncertainty.

Climate change projections for the United Kingdom in 2009 (UKCP09) is usually used to define the climate
states in relevant studies of water asset planning in England (J. M. Murphy, Sexton, Jenkins, Booth, et al., 2009).
Borgomeo et al. (2014, 2016) use daily time series of precipitation and temperature derived from the UKCP09
projections coupled with a transient stochastic weather generator produced by Glenis et al. (2015). They use a
rainfall runoff model to generate daily flow time series to simulate the Thames water resource system. The out-
put from each simulation is a record of the annual frequency of water shortages of different levels of severity
(Borgomeo et al., 2016). The baseline supply uncertainty presented in this paper has several sources of uncer-
tainty including vulnerable surface and groundwater licenses, the impact of climate change on source yields,
the gradual pollution of sources causing a reduction in abstraction as well as accuracy of supply-side data,
which depends on the nature of the intervention (pumping, aquifer, etc.; Thames Water, 2014). Supply uncer-
tainty is calculated using the UKCP09 for the current annual supply-demand planning framework, termed
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Economics of Balancing Supply and Demand (EBSD; Padula et al., 2013), where annual central estimates of
supply are compared to central estimates of demand (see Thames Water, 2014 for details). Multimodel ensem-
bles of general circulation models (GCMs) can be used by water planners to derive probability distributions of
climate change impacts (Dessai & Hulme, 2007; Fowler et al., 2007). The resulting scenarios define the domain
of plausible outcomes under climate change.

We use deployable output which is the volume of water that can be supplied from a water company’s sources
(surface water, groundwater, etc.) or bulk supply, constrained by environment, licensing, hydrological or
hydrogeological factors, water quality, and works capacity. In England, deployable output is estimated using
prescribed methodologies as outlined in Water Resources Planning Tools (United Kingdom Water Industry
Research, 2012), commonly through system simulation of long historical or plausible future hydrological
time series.

We apply the proposed multistage modeling to the London urban water supply area which is located in the
Thames basin, southeast England. This basin has been classified as water stressed and is facing high popula-
tion growth (Environment Agency, 2013) making it a suitable case study to investigate the use of the proposed
flexible approach, as without investment security of supply cannot be achieved. Water supply is managed by
Thames Water, a privately owned water utility, serving 15 million customers across London and the Thames
Valley. Financial costs include the net present value (NPV) of capital expenditures incurred when selecting an
intervention and operational expenditures, using a discount rate of 4.5% (Thames Water, 2014).

In this case study, a scenario tree is constructed to approximate the continuous distribution of the under-
lying London water supply (the annual yield or deployable output) provided by London’s water utility
(Thames Water). We used the supply’s cumulative distribution function (CDF) and evenly partitioned the CDF
into 100 regions. Each region’s highest percentile value is picked up as the sample point. The probability of a
scenario occurring is equal to the probability that supply falls within that region (supply range of each scenario
interval is defined by the upper and lower percentile values). For instance, the scenario interval for scenario 2
is defined by (X1, X2) and its probability P(S2) is calculated by

P(S2) = P(X1 < X ≤ X2) = P(X ≤ X2) − P(X ≤ X1). (11)

Given the evenly partitioned CDF using the percentile values, the probability of occurrence of each sce-
nario is 1%. This is shown in Figure 2. This set is used to efficiently construct the scenario tree where the
probability of each node and the threshold value for branching from one node to the other is calculated opti-
mally. The constructed optimal scenario tree is used for multistage stochastic programming model for ROA
implementation.

We do not consider uncertainty around demand growth rate and assume that the demand for water is
expected to increase at a known rate. Figure 3 shows the supply uncertainty range for London as well as
the deterministic demand values. The problem is structured so as to allow asset managers to review the
plan in the distinct decision points (every 5 years) and respond through selecting additional interventions or
expanding existing ones, by taking advantage of the observed changes to the main uncertainty drivers (e.g.,
water supply, demand, capital, and operational cost of intervention). We assume deployable outputs remain
constant during the 5-year planning decision periods. Large water resource schemes can be built in phases.
The flexibility to build resources in incremental stages allows for improved supply estimates before commit-
ting to larger schemes. Final plans are submitted in the year before the first planning decision period covered,
and in practice, the proposed approach would allow planners to decide on their investment plans depending
on the supply-demand gap a year ahead of the 5-year period end. Although the plans should demonstrate
security of supply over the entire 50-year planning period, the main focus of asset managers is to decide which
interventions should be implemented in the short term, that is, the optimal investment portfolios for planning
decision period 2020–2024.

The scenario tree to approximate the stochastic London water supply-demand balance (due to supply uncer-
tainty) is optimally produced as described in section 2.1 using the uncertainty over the deployable outputs.
Each of the 100 unique paths denotes a plausible supply scenario (a set of deployable output values for each
source). Each path starts from the unique root node at the first period and is linked to a supply scenario at each
distinct time period (see Figure 4). The 50-year planning period was divided in 5-year time steps forming 10
discrete time periods t. Asset managers can rebalance their infrastructure portfolios at the beginning of each
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Figure 2. Cumulative distribution function of supply.

planning decision period. Submission of final Water Resource Management Plans occurs 1 year before the
plan is due to come into action following a consultation period. At each time step, the scenario tree branches
into nodes that belong to the next period.

As seen in the simplified scenario tree in Figure 1a, in t2 node C has a decision which leads to nodes F and
G in the next period representing different levels of supply-demand balance. The branching continues up to
the nodes of the final period whose number corresponds to the number of supply scenarios. See Table 2 for
the number of nodes used at each time step. We note that the scenario tree approximation method is inde-
pendent from the staged mathematical model presented earlier and allows consideration of other sources of
uncertainty through the use of joint probability distributions of random variables. This can be achieved if the
uncertainty set is more than one dimensional, for instance, if it has both supply and demand distributions.
The joint probability density function of supply-demand gap, which represents the stochastic component, is
used to derive the scenario tree. Appendix A gives details of deriving the scenario tree when the uncertainty
has more than one dimension.

Figure 3. London deterministic demand- and supply-side uncertainty for 5-yearly predicted levels during the
planning period.
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Figure 4. Clustering of solutions optimized for the nine nodes in planning decision period 2020–2024 into six sets of
interventions.

We consider 47 alternative supply interventions in the appraisal process. Some interventions have been devel-
oped as long-term water resource interventions and are expected to be operated at high utilization given their
capacity (e.g., intervention i28), while others are being considered by Thames Water as contingency interven-
tions (e.g., intervention i21), expected to be operated at low utilization to avoid excessive operational costs.
The type and capacity ranges of the interventions are given in Table 3 and are provided by Thames Water.
Large interventions of 50 Ml/d or greater (such as effluent reuse schemes, desalination plants, and reservoirs)
can also be built with a modular capacity that allows expanding later on. This ability for future expansion
comes at a price. For each type of intervention, the premium for modular capacity is expressed as a percent-
age. The percentage value expresses how much larger the initial capital investment cost of the intervention
with modular capacity is compared to the fixed (unexpandable) one.

4. Results and Discussion
4.1. Solving the Water Resource Planning Problem at Multiple Stages Over Time
Figure 4 shows the nine supply scenarios in planning decision period 2020–2024, at t2 magnified from the sce-
nario tree. The solutions in 2020 are clustered into six sets of optimal interventions, by identifying the common
sets of interventions across the nine nodes. Decision paths are formed using supply-demand gap thresh-
old values. Each threshold value designates which set of interventions are optimal for the given forecasted
deficit and leads to different amounts of water capacity increase for the planning decision period 2020–2024.
The added water supply capacity is optimal for each scenario if it occurs. The scenario tree within the ROA
incorporates uncertainty about how the evolution of different futures may trigger the selection of different

Table 2
Number of Nodes in Each Time Step of Scenario Tree Representing a Planning
Decision Period (PDP)

PDP First year Period Nodes

PDP15 2015 2015–2019 1

PDP20 2020 2020–2024 9

PDP25 2025 2025–2029 11

PDP30 2030 2030–2034 15

PDP35 2035 2035–2039 30

PDP40 2040 2040–2044 40

PDP45 2045 2045–2049 50

PDP50 2050 2050–2054 60

PDP55 2055 2055–2059 60

PDP60 2060 2060–2064 100
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Table 3
List of Available London Water Resource Supply Intervention Types Considered in the Appraisal Process

Resource type Capacity range Construction period range Premium for modular design Intervention code

Aquifer recharge 2–8 Ml/d 2–3 years - i1–i4

Desalination 50–150 Ml/d 4–7 years 8% i5–i12

Effluent reuse 50–150 Ml/d 3–6 years 16% i13–i35

Groundwater 1.5–9 Ml/d 1–3 years - i36, i37

River regulation reservoir 75–150 Ml/d 8–12 years 12% i38–i45

Transfer 158–242 Ml/d 7 years - i46, i47

Note. The 47 interventions considered in the London case study are mapped to their type. Information on interventions used in this paper may not be consistent
with the most recent data available (TWUL, 2018).

interventions and hence examines the implications of future uncertainty. In this long-term water resource
planning problem, sequential decisions are made at multiple stages over time. Early stage decisions are based
on long-term supply-demand forecasts whose accuracy decreases over time. The multistage optimization
model formulation allows adjusting earlier stage decisions in later stages. This way the model compensates
for the impact of earlier decisions made under supply-demand forecast inaccuracy.

In the London case study, the scenario tree is made based on the state of the world as known in 2015; from
that vantage point the future is described via six supply scenarios for 2020. In our case study, if the planner
in 2015 considers that the supply-demand balance in 2020 is most likely to be between 10.5 Ml/d and −32.5
Ml/d, then set 4 is the best intervention response. This short-term set of investment interventions is optimally
obtained using a scenario tree that considers the longer-term future, and hence, the interventions associated
with this set of interventions delineate the best response to uncertainty. The proposed approach is significant
because least-cost scheduling of water supply infrastructure is required of English water utilities, and there is
wise-spread support at the policy level for improving it to consider flexibility and adaptability.

Table 4 shows that 40% of the 100 supply scenarios were directed to the top two paths (sets 5 and 6) where no
extra capacity is needed in planning decision period 2020–2024. However, in set 5, an intervention is planned
to be delivered in planning decision period 2025–2029 to meet the future demand for water beyond the
5-year period. The remaining 60% is directed into paths where London water capacity is increased by selecting
alternative interventions. When supply deficit is greater than 10.5 Ml/d, intervention i28 is always selected
with increasing utilization, the amount of water supplied from an intervention, as levels of existing supply
decrease. Figure 5 shows the utilization of interventions i28 of 150 Ml/d capacity and intervention i4 of 5 Ml/d
capacity indicating that small schemes are selected to postpone the activation of large schemes in case water
supply in 2020 is no greater than 2,036.4 Ml/d.

Table 4
Six Alternative Sets of Interventions (S1– S6) for Planning Decision Period 2020– 2024, New Capacity in Planning Decision
Period 2020–2024 (Ml/d), Planned Capacity (Ml/d), and Percentage of Supply-Demand Scenarios Where Each Set of
Interventions Is Activated

Interventions S1 S2 S3 S4 S5 S6

i1 2

i2 8

i3 6

i4 5 5

i21 150 150 150

i25 60

i28 150 150 150

i37 9 9

PDP 2020–2024 capacity 180 210 150 14 0 0

Planned capacity 330 210 150 164 150 0

Scenarios 2% 7% 29% 22% 13% 27%
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Figure 5. Utilization of interventions based on levels of existing supply in planning decision period 2020–2024.

In set 4, intervention i28 is replaced by i21 in planning decision period 2020–2024 as an alternative interven-
tion with 150 Ml/d (see Table 4). The two interventions have equal capacity but contrasting intentional usage
in terms of the amount of water produced. Intervention i21 has a relatively lower cost to build and a higher cost
to operate and is considered to be a provisional contingency scheme. Contingency schemes are not expected
to have a high capacity utilization, resulting in an excess capacity due to their higher operational cost com-
pared to the average cost of taking the water from alternative water sources. Due to their higher operational
cost, these schemes can be substituted if less expensive interventions are available in the future.

Conversely, intervention i28 is an irreversible long-term interventions (once built, it is used for the rest of the
modeled time horizon) with an expected high utilization rate given its relatively higher construction costs but
lower operational costs. This indicates that the selection of schemes is decided on the basis of the estimated
required water utilization under different future uncertainty. In doing so, overspending on capital is avoided.
When the lower operational costs outweigh the savings in the capital expenditure due to higher utilization
then the long-term intervention i28 is selected. Decision on long-term intervention i28 is, however, delayed
on the three paths that begin with sets 4, 5, and 6 of investment interventions in 2020. Instead, the modeling
suggests to replace this with activation of the contingency intervention i21 in sets 4 and 5 and no interven-
tions activation in set 6. Interventions i1, i2, and i3 are only selected in the path that begins with set 1 in 2020,
as these contingency schemes are only required when the supply-demand balance is expected to be less than
−179.7 Ml/d.

A key strength of ROA is the opportunity it provides for exploiting learning over time. For example, Figure 6
shows that if the estimated supply-demand gap is greater than 16.0 Ml/d, there is no need to make
an investment in the current planning decision period. This flexibility is valuable because by not selecting an
intervention now and deferring it to the next planning period, asset managers avoid the costs of building
an intervention until it is needed later.

The results, shown as a colored bar chart in Figure 7, depict the frequency of activation of interventions in
nodes at each time step on a scale from 0% (white) to 100% (black). A high percentage of activation denotes
that the selection of this intervention is robust across a number of supply-demand scenarios. For instance, as
shown in Table 4 in the S1 set of interventions, i1, i2, and i3 are all contingency interventions of small capacities,
which get activated at t2 in the most extreme scenarios that correspond to 2% of all scenarios in t2. As shown
in Figure 4, these extreme scenarios, where S1 is selected at t2, pass through one node. Since interventions i1,
i2, and i3 are selected only in S1, they have an activation frequency of 11% (one out of nine nodes) in Figure 7
in t2. By the end of the planning period, unlike interventions i2 and i3, i1 has an increased activation frequency.
This implies that contingency interventions i2 and i3 are only selected in extreme scenarios, while activation
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Figure 6. Set of interventions in planning decision period 2020–2024 for each decision path using supply
threshold values.

of i1 is more robust across a number of supply-demand scenarios, that is, intervention i1 will also be activated
in less extreme scenarios.

4.2. Metrics for Flexibility and Adaptability Assessment
We introduce two metrics used in stochastic programming problems (Birge & Louveaux, 1997; Escudero et al.,
2007), namely, value of the stochastic solution (VSS) and expected value of perfect information (EVPI), to mea-
sure the adaptability and flexibility of the decisions suggested by the ROA formulation. VSS is calculated by
replacing the uncertain variables with their expected values and measuring the performance of this expected
value problem to future uncertainty.

EVPI is estimated by comparing the solution of the ROA-based approach with the optimal solution for the
wait-and-see problem with perfect information. Appendix B gives mathematical detail on the calculations
of VSS and EVPI.

In the context of this paper, VSS indicates the difference of implementing ROA via a multistage stochastic
program that explicitly allows adaptation to different future conditions via a distribution of uncertain future
supply instead of using the average supply values in each stage. VSS quantifies the cost of not recognizing the
uncertainty and hence ignoring the adaptability advantage ROA provides. For the London case study, VSS is
£113,206,815 discounted over the 50-year planning period. VSS estimates the value of adaptability by quan-
tifying the cost of ignoring uncertainty by Thames Water that can be avoided by adaptive plans to changing
future conditions. For the London case study, the VSS result is significant when it is compared to the total
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Figure 7. Frequency of activation of interventions in supply scenarios (nodes) at each time step.

investment NPV cost of £737,648,067. That is, VSS corresponds to 15.4% of the total NPV cost. This relatively
high VSS value is an indication that supply uncertainty is an important factor in London’s supply-demand
problem where adaptive solution to changing future can mitigate its consequences.

EVPI measures the value of information in planning under uncertainty. EVPI estimates how important, in
the context of uncertainty, evolution of information over time is and therefore it indicates the value of a
wait-and-see decision; how valuable it is to know the future before making a decision. In the context of ROA
implementation, EVPI is a measure of valuing flexibility of delaying irreversible investment commitments
and taking early provisional actions until new information is available. For the London case study, EVPI is
£44,092,250 discounted over the 50-year planning period, which is 6% of the total NPV cost. EVPI estimates
that the value of waiting to gain more information corresponds to 6% of total NPV. Even this small percent-
age reflects a significant value for the implementation of large irreversible long-term interventions given their
large socioeconomic and environmental impacts.

4.3. Sensitivity to Scenario Tree
It is relevant to explore the sensitivity of results to the use of different scenario trees as well as the charac-
teristics of the uncertainty set used to create the trees. We have performed two types of sensitivity analysis.
First we investigated the consequences of generating and using alternative scenario trees in the analysis. The
London case study was run using 30 different and randomly generated scenario trees from the stochastic Lon-
don supply distribution making sure that each tree has the same uncertainty source data but has a different
structure, that is, different number of nodes at each time step as well as different branching structure. Then,
we performed a second type of sensitivity analysis, to investigate the consequences of using random sub-
sets of the full set of scenarios. Each tree was generated using a different subset of supply scenarios randomly
sampled from the full set of 100 scenarios.

The results of both types of sensitivity analysis, shown as a bar chart in Figures 8 and 9, respectively, depict the
activation frequency of the interventions in planning decision period 2020–2024. It can be appreciated from
both types of sensitivity analysis that most interventions suggested by the multistage optimization planning
have a high frequency of selection (more than 75%) indicating the quality of the interventions’ activation
recommendation regardless of whether a different scenario tree (first type of sensitivity analysis) or different
subsets of the full set of scenarios were used (second type of sensitivity analysis).

Other types of sensitivity analysis could include understanding the impact of using different relative toler-
ances by varying the relative distance between the constructed tree and the original stochastic process.
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Figure 8. Activation frequency of interventions in planning decision period 2020–2024 using 30 scenario trees.

4.4. Limitations of the Approach
The proposed approach is an extension of least-cost supply-demand planning (Padula et al., 2013) aiming
to optimize for flexibility and adaptability in addition to cost when investing in infrastructure under supply
uncertainty. Planning resources via the yield or deployable output concept implies simplifying the problem
by comparing a single value of annual regional supply with an annual demand. Although the use of regional
annual supply and demand balancing is conceptually simple, these aggregate quantities are difficult to vali-
date (J. Hall, Watts, et al., 2012). Unlike simulation-based optimization approaches that have become routine
for analyzing water policies (Brown et al., 2015), the proposed optimization model does not rely on simulating

Figure 9. Activation frequency of interventions in planning decision period 2020–2024 using 30 subsets of the full set
of scenarios.
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alternative observable outcomes, such as the frequency with which customers are predicted to experience
water shortages.

The analysis uses supply uncertainty data from the UKCP09 weather generator that addresses GCM uncer-
tainties. Although the GCM-based climate projections are obtained from the most credible climate change
information available, concerns in the assignment and use of probabilities to these future climate change sce-
narios have been raised (Maier et al., 2016). These climate models use numerous assumptions about how the
future will unfold (Taner et al., 2017) which impact results. For instance, climate projections are contingent
on greenhouse gas (GHG) emissions scenarios and future reductions in atmospheric aerosols (Stouffer et al.,
2017) which are unknown. Such assumptions impact the probability distributions in climate model outputs
which in turn will impact the supply probabilities and the findings of the analysis in our proposed approach
(Dessai & Sluijs, 2007).

Another limitation of least-cost supply-demand planning is that plans are optimized using a single least-cost
objective, requiring all aspects of system performance to be monetized, leading to potentially imbalanced
decisions (Matrosov et al., 2015). Using a single objective might prevent the finding of good solutions
(Kasprzyk et al., 2015).

5. Conclusion

This paper described how a least-cost scheduling approach for water infrastructure investment planning, used
currently at national scale in England, can be extended to explicitly enable flexibility and adaptability given
future supply uncertainty. The RO concept using scenario trees over a predefined planning horizon with dis-
tinct decision points has been applied to allow rebalancing of the supply-demand system at intermediate
stages. A compact scenario tree is generated to approximate the stochastic supply representing an ensemble
of plausible futures. At each time step of the planning horizon, an optimal set of interventions is identified
in each node of the scenario tree according to plausible source yield scenarios. Supply-demand gap thresh-
old values are used to determine which path to follow in order to minimize the NPV cost of investments. The
staged decision process provides the planner with adaptive solutions whose implementation can be delayed
and replaced as information on future supply-demand balance is gradually revealed.

The proposed flexible and adaptive approach is applied to London’s water supply planning problem. In the
appraisal process, 47 interventions of different capacities (ranging from 1.5 Ml/d to 150 Ml/d) and alternative
types (e.g., wastewater reuse, desalination, and reservoirs) are considered. The 50-year planning period using
100 equally probable supply scenarios identified six optimal sets of investment interventions for the planning
decision period 2020–2024. Depending on the forecasted short-term supply-demand balance, the planned
capacity expansion ranges from 0 Ml/d (no intervention) to 330 Ml/d (as a result of activation of seven interven-
tions). The results show that the large forecasted gap between supply and demand in London is being bridged
through long-term (maintained after selection) interventions and through contingency schemes when the
gap is smaller.

The results demonstrate the benefits of ROA to enable adaptive and flexible decision making in water resource
planning. These are quantified using the VSS and EVPI metrics showing that, respectively, ignoring adap-
tive planning costs 15.4% of the total NPV and flexible decision making has a value of 6% of the total NPV
of London’s water supply system. Sensitivity of results to the use of different scenario trees as well as the
characteristics of the uncertainty set used to create the trees are assessed. They point toward high-quality
intervention activation selections by the proposed model.

Appendix A: Scenario Tree Construction Algorithm

The scenario tree construction uses the original supply scenarios to build a tree with probabilistic weights
assigned to each nodes used in the optimization model. The tree construction is an optimization method
based on Kantorovich transport functional (developed by Gröwe-Kuska et al., 2003) as follows, where 𝜉, 𝜉 is
n-dimensional stochastic processes, 𝜉 i , 𝜉 j is scenarios (sample path of 𝜉), pi, qj is scenario probabilities, proba-
bility distribution of the processes 𝜉 and 𝜉, respectively, S is number of scenarios in the initial scenario set, J is
index set of deleted scenarios, cJ is cardinality of the index set J; i.e., the number of deleted scenarios, s = S - cJ
is number of preserved scenarios, 𝜀 is tolerance for the relative probability distance, and ct(𝜉 i, 𝜉 j) is distance
between scenario 𝜉 i, 𝜉 j .
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Let P be the set of original scenarios. Scenario set Q based on the scenarios having minimal Kantorovich DK

distance to P is computed in equation (A1),

DK (P,Q) =
∑
i∈J

pi min
j∉J

cT (𝜉 i, 𝜉 j). (A1)

The probability qj of the preserved scenarios is given by the rule

qj ∶= pj +
∑
i∈J(j)

pi, (A2)

where

J(j) ∶= {i ∈ J ∶ j = j(i)}, j(i) ∈ arg min
j∉J

cT (𝜉 i, 𝜉 j), ∀i ∈ J.

That is, Kantorovich transport functional make sure that the scenario sample is the best possible approx-
imation of the stochastic process. By bundling similar scenarios and reducing the number of nodes, this
produces a smaller, computationally accessible multistage scenario tree that is the solution of the following
optimal problem,

min

{∑
i∈J

pi min
j∈J

cT (𝜉 i, 𝜉 j) ∶ J ⊂ {1,… , S}, cJ = S − s

}
, (A3)

where s = S - cJ is the number of preserved scenarios. The maximal reduction strategy is deduced to determine
a reduced probability distribution Q of 𝜉 such that the maximum number of scenarios are deleted subject to

DK (P,Q) < 𝜀. (A4)

Appendix B: Computational Insight on the Metrics Used to Evaluate
the Implementation of ROA

The calculations of the two metrics, namely, the EVPI and the VSS, in multistage problems are explained below.
These metrics were developed for the case of two-stage problems (Birge & Louveaux, 1997) and have been
extended to multistage problems (Escudero et al., 2007).

For the minimization model the following inequalities are satisfied:

WS ≤ AP ≤ EV, (B1)

where WS denotes the expected value of the objective function obtained by replacing all random variables
by their expected values; WS is known in the literature as the wait-and-see resolution value. AP denotes the
optimal solution value to the adaptive multistage stochastic problem presented in this paper. EV denotes
the expected result of expected value problem and measures how the optimal solution of the expected
value problem performs allowing the other stages decisions to be chosen optimally as functions of different
scenarios.

From equation (B1), EVPI and VSS are calculated as follows,

EVPI = AP − WS, (B2)

VSS = EV − AP. (B3)

To calculate the EVPI, nonanticipativity constraints are relaxed at each time step so that decisions are made
with perfect information about the future. From equation (B2), the difference AP − WS displays the value
of perfect information. From equation (B3), the difference EV − AP, known as the VSS, indicates the ben-
efit of finding different solutions for each scenario by solving the stochastic program than to assume lack
of uncertainty.

ERFANI ET AL. 5084



Water Resources Research 10.1029/2017WR021803

In the work of Escudero et al. (2007) those parameters are generalized to the multistage case explained below.
Let the expected result in t of using the expected value solution, denoted by EVt for t = 2,… ,T , be the optimal
value of the AP model, where the decision variables until stage t − 1, (x1,… ,xt−1), are fixed at the optimal
values obtained in the solution of the average scenario model.

For any multistage stochastic program, the following relations hold:

EVt+1 ≤ EVt ∀t = 1,… , T − 1,

0 ≤ VSSt ≤ VSSt+1 ∀t = 1,… , T − 1.

The value of the stochastic solution is defined in t, denoted by VSSt , as

VSSt = AP − EVt ∀t ∈ T .

This sequence of nonnegative values represents the cost of ignoring uncertainty and not providing adap-
tive solution to future condition until stage t in the decision making of multistage models. VSS and EVPI in
multistage problems are then calculated as

VSS =
∑
t∈T

VSSt, (B4)

and,

EVPI =
∑
t∈T

EVPIt. (B5)

Notation

n Nodes
t Time (stage)
i Intervention

pn Probability that node n is realized
r Discount rate

eSn,i Levels of existing supply from intervention i for node n
cCi Undiscounted capital cost of intervention i
fCi Undiscounted fixed operational cost of intervention i
vCi Undiscounted variable operational cost of intervention i
Dt Demand in time t

cSn,i Maximum capacity of intervention i in node n
𝜆i Construction time period for intervention i

dSn,i Activation of intervention i for node n
Sn,i Supply from intervention i for node n

aSn,t,i Associate supply on the intervention i to supply on node n in time t
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Šutienė, K., Makackas, D., & Pranevičius, H. (2010). Multistage k-means clustering for scenario tree construction. Informatica, 21(1), 123–138.
Taner, M. Ü., Ray, P., & Brown, C. (2017). Robustness-based evaluation of hydropower infrastructure design under climate change. Climate

Risk Management, 18, 34–50.
Thames Water, L. (2014). Water resources management plan 2015–2040. UK: Reading.
Tingstad, A. H., Groves, D. G., & Lempert, R. J. (2013). Paleoclimate scenarios to inform decision making in water resource management:

Example from Southern California’s inland empire. Journal of Water Resources Planning and Management, 140(10), 4014025.
Trigeorgis, L. (1996). Real options: Managerial flexibility and strategy in resource allocation. Cambridge, MA: MIT Press.
United Kingdom Water Industry Research (2012). Water resources planning tools. Reference: 12/WR/27/6.
Vieira, J., & Cunha, M. (2016). Systemic Approach for the Capacity Expansion of Multisource Water-Supply Systems under Uncertainty.

Journal of Water Resources Planning and Management, 142(10), 04016034.
Walker, W. E., Rahman, S. A., & Cave, J. (2001). Adaptive policies, policy analysis, and policy-making. European Journal of Operational

Research, 128(2), 282–289.
Wang, T., & De Neufville, R. (2004). Building Real Options into Physical Systems with Stochastic Mixed-Integer Programming. Montreal, Canada:

Eighth Real Options Annual International Conference.
Wang, T., & De Neufville, R. (2005). Real options in projects. In Real Options Conference, Paris, France, Citeseer.
Woodward, M., Kapelan, Z., & Gouldby, B. (2014). Adaptive flood risk management under climate change uncertainty using real options and

optimization. Risk Analysis, 34(1), 75–92.
Zhao, T., Sundararajan, S. K., & Tseng, C.-L. (2004). Highway development decision-making under uncertainty: A real options approach.

Journal of Infrastructure Systems, 10(1), 23–32.

ERFANI ET AL. 5087

https://doi.org/10.1002/2017EF000649
https://doi.org/10.1002/2013WR014569
https://doi.org/10.1029/2011WR011540

	Abstract
	References

