Genetic variation in the ADIPOQ gene, adiponectin concentrations and risk of colorectal cancer – a Mendelian Randomization analysis using data from three large cohort studies

Katharina Nimptsch1,2, Mingyang Song2,3,4,5, Krasimira Aleksandrova6, Michail Katsoulis7,8, Heinz Freisling7, Mazda Jenab9, Marc J. Gunter9, Konstantinos K. Tsilidis10,11, Elisabete Weiderpass12,13,14,15, H Bas Bueno-De-Mesquita10,16,17, Dawn Q Chong4,5,18, Majken K. Jensen2,19, Chunsen Wu20,21,22, Kim Overvad20, Tilman Kühn23, Myrto Barrdahl23, Olle Melander24, Karin Jirström24, Petra H. Peeters25,26, Sabina Sieri27, Salvatore Panico28, Amanda J. Cross10, Elio Riboli10, Bethany Van Guelpen29, Robin Myte29, José María Huerta30,31, Miguel Rodriguez-Barranco31,32, José Ramón Quirós33, Miren Dorronsoro34, Anne Tjønneland35, Anja Olsen35, Ruth Travis36, Marie-Christine Boutron-Ruault37,38, Franck Carbonnel37,38,39, Gianluca Severi37,38,40,41, Catalina Bonet42, Domenico Palli43, Jürgen Janke1, Young-Ae Lee44, Heiner Boeing6, Edward L. Giovannucci2,3,19, Shuji Ogino3,19,45,46, Charles S. Fuchs19,45, Eric Rimm2,3,19, Kana Wu2, Andrew T. Chan4,5,19,47, Tobias Pischon1,48

1 Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
2 Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
3 Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
4 Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
5 Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
6 Department of Epidemiology, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Nuthetal, Germany
7 Hellenic Health Foundation, Athens, Greece
8 Farr Institute of Health Informatics Research at London, UCL, London, UK
9 International Agency for Research on Cancer (IARC-WHO), Lyon, France
10 Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, United Kingdom
11 Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
12 Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
13 Department of Research, Cancer Registry of Norway, Oslo, Norway
14 Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
15 Samfundet Folkhälsan, Helsinki, Finland
Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands

Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia

Division of Medical Oncology, National Cancer Centre Singapore, Singapore

Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA

Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark

Institute of Clinical Research, University of Southern Denmark

Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany

Department of Clinical Sciences Lund, Lund University, Malmö, Sweden

Dept of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands

MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, UK

Epidemiology and Prevention Unit Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy

Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy

Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden

Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain

CIBER Epidemiología y Salud Pública (CIBERESP), Spain

Escuela Andaluza de Salud Pública. Instituto de Investigación Biosanitaria ibs.GRANADA. Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain

Public Health Directorate, Asturias, Spain

Public Health Direction and Biodonostia Research Institute-Ciberesp, Basque Regional Health Department, San Sebastian Spain

Danish Cancer Society Research Center, Copenhagen, Denmark

Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK

Université Paris-Saclay, Université Paris-Sud, UVSQ, CESP, INSERM, Villejuif, France

Gustave Roussy, F-94805, Villejuif, France

Department of Gastroenterology, Assistance Publique-Hôpitaux de Paris (AP-HP), University hospitals Paris-Sud, Site de Bicêtre, Paris Sud University, Paris XI, Le Kremlin Bicêtre, Villejuif, France
40 Human Genetics Foundation (HuGeF), Torino, Italy
41 Cancer Council Victoria and University of Melbourne, Australia
42 Unit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO), Barcelona, Spain.
43 Cancer Research and Prevention Institute (ISPO) Florence, Italy
44 Genetics of Allergic Disease Research Group, Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
45 Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
46 Division of MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, Massachusetts, USA
47 Broad Institute, Cambridge, Massachusetts, USA
48 Charité Universitätsmedizin, Berlin, Germany

Corresponding author:
Dr. Katharina Nimptsch
Molecular Epidemiology Research Group
Max Delbrück Center for Molecular Medicine (MDC)
Robert-Rössle-Straße 10
13125 Berlin
Tel.: ++49 30 / 9406 – 4573
Fax: ++49 30 / 9406 – 4576
e-mail: katharina.nimptsch@mdc-berlin.de

Acknowledgements: The coordination of EPIC is financially supported by the European Commission (DG-SANCO) and the International Agency for Research on Cancer. The national cohorts are supported by Danish Cancer Society (Denmark); Ligue Contre le Cancer, Institut Gustave Roussy, Mutuelle Générale de l’Éducation Nationale, Institut National de la Santé et de la Recherche Médicale (INSERM) (France); Deutsche Krebshilfe, Deutsches Krebsforschungszentrum and Federal Ministry of Education and Research (Germany); the Hellenic Health Foundation (Greece); Associazione Italiana per la Ricerca sul Cancro-AIRC-Italy and National Research Council
(Italy); Dutch Ministry of Public Health, Welfare and Sports (VWS), Netherlands Cancer Registry (NKR), LK Research Funds, Dutch Prevention Funds, Dutch ZON (Zorg Onderzoek Nederland), World Cancer Research Fund (WCRF), Statistics Netherlands (The Netherlands); ERC-2009-AdG 232997 and Nordforsk, Nordic Centre of Excellence Programme on Food, Nutrition and Health (Norway); Health Research Fund (FIS), PI13/00061 to Granada; PI13/01162 to EPIC-Murcia), Regional Governments of Andalucía, Asturias, Basque Country, Murcia (no. 6236), and Navarra, ISCIII RETIC (RD06/0020) (Spain); Swedish Cancer Society, Swedish Research Council and County Councils of Skåne and Västerbotten (Sweden); Cancer Research UK (14136 to EPIC-Norfolk; C570/A16491 and C8221/A19170 to EPIC-Oxford), Medical Research Council (1000143 to EPIC-Norfolk, MR/M012190/1 to EPIC-Oxford) (United Kingdom). Measurement of biomarkers in EPIC was partly supported by World Cancer Research Fund International and Wereld Kanker Onderzoek Fonds (WCRF NL). The research based on the Nurses’ Health Study and the Health Professional Follow-up Study are financially supported by U.S. NIH grants [P01 CA87969, UM1 CA186107, R01 CA49449 (to NHS), P01 CA55075, UM1 CA167552 (to HPFS), P50 CA127003 (to C.S. Fuchs), R01 CA151993, R35 CA197735 (to S. Ogino), K24 DK098311 and R01 CA137178 (to A.T. Chan)]. A.T. Chan is a Damon Runyon Clinical Investigator. We would like to thank the participants and staff of the Nurses’ Health Study and Health Professionals Follow-up Study for their valuable contributions as well as the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, WV. The authors assume full responsibility for analyses and interpretation of these data.
Abstract

Higher levels of circulating adiponectin have been related to lower risk of colorectal cancer in several prospective cohort studies, but it remains unclear whether this association may be causal. We aimed to improve causal inference in a Mendelian Randomization meta-analysis using nested case-control studies of the European Prospective Investigation into Cancer and Nutrition (EPIC, 623 cases, 623 matched controls), the Health Professionals Follow-up Study (HPFS, 231 cases, 230 controls) and the Nurses’ Health Study (NHS, 399 cases, 774 controls) with available data on pre-diagnostic adiponectin concentrations and selected single nucleotide polymorphisms (SNPs) in the ADIPOQ gene. We created an ADIPOQ allele score that explained approximately 3% of the interindividual variation in adiponectin concentrations. The ADIPOQ allele score was not associated with risk of colorectal cancer in logistic regression analyses (pooled OR per score-unit unit 0.97, 95% CI 0.91, 1.04). Genetically determined two-fold higher adiponectin was not significantly associated with risk of colorectal cancer using the ADIPOQ allele score as instrumental variable (pooled OR 0.73, 95% CI 0.40, 1.34). In a summary instrumental variable analysis (based on previously published data) with higher statistical power, no association between genetically determined two-fold higher adiponectin and risk of colorectal cancer was observed (0.99, 95% CI 0.93, 1.06 in women and 0.94, 95% CI 0.88, 1.01 in men). Thus, our study does not support a large causal effect of circulating adiponectin on colorectal cancer risk. Due to the limited genetic determination of adiponectin, larger Mendelian Randomization studies are necessary to clarify whether adiponectin is causally related to lower risk of colorectal cancer.

Keywords: adiponectin, ADIPOQ, colorectal cancer, Mendelian Randomization
Background

Obesity, in particular abdominal obesity is an established risk factor for the development of colorectal cancer (1). Although the underlying biological mechanisms have not been fully elucidated, it is widely accepted that the adipose tissue, particularly visceral adipose tissue, is an active endocrine organ secreting various bioactive substances collectively named adipokines, which may provide an important link between body fatness and colorectal cancer risk (2). In contrast to many other adipokines, adiponectin expression is suppressed in obesity and plasma concentrations are lower in obese than in lean individuals (3). Adiponectin has been suggested to play a protective role in the development of cancer either directly through inhibition of cell growth (e.g. via RAS signaling(4)) and induction of apoptosis, or indirectly through improved insulin sensitivity and reduced inflammation(5). The association between circulating adiponectin concentrations and risk of colorectal cancer has been investigated in several prospective cohort studies, with mixed findings: Higher plasma adiponectin concentrations were associated with lower risk of colorectal cancer (slightly stronger in women than men, but no statistically significant sex-differences) in the European Prospective Investigation into Cancer and Nutrition (EPIC) (6) and in the Health Professionals Follow-up study (HPFS), while no association was observed in the Nurses’ Health Study (NHS)(7). A meta-analysis of ten case-control or nested case-control studies (not including the data from EPIC, NHS or HPFS) reported a statistically significant two percent lower risk of colorectal cancer or adenoma for a 1 µg/mL increment in adiponectin in men whereas among women no association was observed(8).

To date, it remains unclear whether adiponectin plays a causal role in the development of colorectal cancer not least because it cannot be excluded that residual confounding and/or reverse causation bias might have introduced bias in observational associations (Figure 1). Mendelian Randomization is a statistical approach that can improve causal inference(9). The principle is that under the assumption of the random assortment of alleles at conception, genetic variants that are associated with biomarker levels can be used as relatively unbiased proxies for biomarker concentrations due to two advantages. First, since the genotype of an individual is determined at gamete formation and cannot be altered later on (e.g. by disease onset), there is no possibility of reverse causation(10). Second, the relationship between genetic variants and disease risk can be assumed to be not confounded by lifestyle and behavioral factors that can confound the observed association between circulating biomarkers and risk of disease. Therefore, using genetic variants associated with circulating biomarker concentrations in a Mendelian Randomization approach may...
provide insight into the underlying causal relationships by circumventing reverse causation and residual confounding. In a pooled analysis from the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO), which includes data from NHS, HPFS and eight other studies comprising overall more than 7,000 colorectal cancer cases and approximately the same number of controls, genetic variants in the gene encoding adiponectin (ADIPQ) were not associated with colorectal cancer risk(11). However, a simultaneous analysis of adiponectin concentrations, ADIPQ genetic variants and colorectal cancer was not conducted, because adiponectin plasma levels were only available in a subset of included studies, namely NHS and HPFS. With a dataset including individual participant data on genetic variants, biomarker concentration and disease outcome, a traditional Mendelian Randomization analysis taking into account the actual strength of the association between ADIPQ-SNPs and adiponectin concentrations in the study population can be performed, which has the advantage that instrumental variable assumptions can be directly assessed (12, 13). The aim of our investigation was therefore to improve causal inference in the association between circulating adiponectin and colorectal cancer risk using ADIPQ genetic variants in a Mendelian Randomization meta-analysis with individual participant data from the EPIC, HPFS and NHS cohorts.

Methods

Study population

The three studies included in the present investigation were all nested case-control studies of large prospective cohorts with long follow-up. In all nested case-control studies, colorectal cancer was defined according to the International Statistical Classification of Diseases, Injury and Causes of Death (ICD-10) as cancers of the colon (C18.0-C18.7), cancers of the rectum (C19-C20) and tumors that were overlapping or unspecified (C18.8-C18.9). Blood samples were collected prior to diagnosis and matched control participants were selected using incidence density sampling, i.e. selection was performed among study participants who were alive and free of cancer (except non-melanoma skin cancer) at the time of diagnosis of the colorectal cancer case. The EPIC study is a large multicenter prospective cohort including more than 520,000 study participants from 10 European countries who were aged between 35 and 70 years at recruitment which took place from 1992 to 2000(14). Baseline examinations included anthropometric measurements, standardized ascertainment of lifestyle characteristics and medical history.
information as well as collection of blood samples. The EPIC study was approved by the ethical review board of the International Agency for Research on Cancer (IARC, Lyon, France) and the institutional review boards of each participating study center and informed consent was obtained from all participants. Incident cancer cases including colorectal cancer cases were determined through record linkage with local cancer registries in most countries (Denmark, Naples (Italy except), the Netherlands, Norway, Spain, Sweden, United Kingdom, complete up to 2003). In some countries (France, Germany, Naples (Italy), Greece, complete up to 2002) active follow-up was organized by contact of participants or next of kin through mailed questionnaires, followed by verification of self-reported cases by study physicians using health insurance data, data from cancer and clinical registries as well as medical records provided by the treating physicians. In the present analysis, colorectal cancer cases with available prediagnostic blood samples and DNA were included. As has been described previously(6), the nested case-control design matched each case to one control using incidence density sampling. Control participants were selected matched on age at blood collection (2 months to 4-year intervals), study center, fasting status (<3, 3-6, or>6 hours) as well as menopausal status and hormone use in women. The nested case-control study was designed to be applicable for several biomarker studies, which explains inclusion of the latter matching criteria which were not relevant for the present analysis. The number of cases and matched controls included in the present study is 1,246 (623 cases, 623 matched controls) which is 52% of the study size of the previous analysis on circulating adiponectin and risk of colorectal cancer in EPIC (1,206 cases, 1,206 matched controls) (6). This difference is largely explained by unavailability of DNA samples from the Danish EPIC centers due to local technical and organizational issues.

The HPFS and NHS are two large US cohort studies, detailed descriptions of which are provided elsewhere (15, 16). In brief, the HPFS started in 1986, including 51,529 men aged 40-75 years, and the NHS started in 1976 and included 121,701 women aged 30-55 years. In both cohorts, study participants provided information on medical history and lifestyle at recruitment. Since then, follow-up questionnaires were administered biennially to collect and update medical and lifestyle information and to elicit medical diagnoses. The follow-up rates in both cohorts exceeded 90% in each 2-year cycle and the cumulative follow-up rate (percentage of potentially collected person-years) was 94% in HPFS and 93% in NHS. Blood specimens were provided by 18,225 HPFS participants (35%) between 1993 and 1995 and by 32,826 NHS participants (27%) between 1989
and 1990 by overnight courier. Details on the procedures of blood collection as well as handling and storage of blood samples have been described previously (17, 18). Among the participants for whom blood samples and DNA were available, 231 colorectal cancer cases were confirmed after blood collection in HPFS (up to January 1st 2008) and 399 in NHS (up to October 1st 2008). For each case up to two controls were randomly selected using incidence density sampling. The majority of individuals included in the nested case-control studies were of Caucasian ancestry in both HPFS (95.5%) and NHS (99.9%). All study participants provided informed consent and the study protocol was approved by the Institutional Review Board of the Brigham and Women’s Hospital and the Harvard T.H. Chan School of Public Health.

The total number of participants in the present investigation is 2,880 (1,253 cases and 1,627 controls), including 1,246 in EPIC (623 cases and 623 controls), 461 in HPFS (231 cases, 230 controls) and 1,173 in NHS (399 cases, 774 controls).

Adiponectin measurement

Total circulating adiponectin concentration was measured using enzyme-linked immunosorbent assays from ALPCO Diagnostics (Salem, New Hampshire) in the three studies (6, 7). Based on quality control samples, interbatch coefficients of variation were 8.3% in EPIC and 8.6% in HPFS and NHS. Adiponectin measurements in n=300 paired samples from HPFS showed high reliability, with intraclass correlation coefficient of 0.85 when measured within the same persons one year apart (19).

SNP selection and genotyping

In EPIC, a set of tagging SNPs covering variations in the ADIPOQ gene in populations of European ancestry was selected using HapMap 22/phase II CEPH population data (Utah residents with northern and western European descent) applying stringent criteria (minor allele frequency >5% and pairwise \(r^2 \geq 0.8 \)). A total number of 15 SNPs were genotyped using TaqMan methodology (genotype call rates >99.2% for all the assays), of which one (rs7649121) was not in Hardy-Weinberg equilibrium in control participants (p<0.0001) and therefore was excluded from analysis. In HPFS and NHS SNPs in the ADIPOQ gene were selected based on previous evidence from genome-wide association studies (GWAS) on circulating adiponectin concentrations (20-23). Additional SNPs in adiponectin-related genes that have been associated
with colorectal cancer risk were genotyped (24-26). A total of 19 SNPs were genotyped using Illumina HumanOmniExpress as part of the GECCO project (11). Missing SNPs were imputed to HapMap II release 24. All genotyped SNPs were in Hardy-Weinberg equilibrium in control participants. Eight ADIPOQ SNPs were available in all three included studies (rs1063539, rs16861194, rs822394, rs17300539, rs17366568, rs17366743, rs266729, rs1501299) and minor allele frequencies were comparable.

Statistical analysis

We created an ADIPOQ allele score that was used to derive Mendelian Randomization estimates using two different approaches: Firstly, we analyzed the ADIPOQ allele score in relation to colorectal cancer risk. Secondly, we applied an instrumental variable approach, simultaneously incorporating ADIPOQ genetic variation and plasma adiponectin concentrations, to model the association between genetically determined circulating adiponectin and colorectal cancer risk. While the first approach, which is considered as an equivalent to the intention-to-treat analysis in a randomized controlled trial (27), can only test for the existence of a causal association, the second approach aims at estimating the magnitude of a causal association (e.g. risk estimate per 2-fold higher genetically determined adiponectin) (28).

ADIPOQ allele score

The weighted ADIPOQ allele score was constructed by summing alleles that have been associated with higher adiponectin with genome-wide significance in a previous meta-analysis of GWAS on adiponectin levels, using their GWAS-coefficients as weights (20). Only SNPs not highly correlated ($r^2<0.8$) were included in the score. For NHS and HPFS, the included SNPs were rs17300539, rs17366568, rs266729, rs1501299 and rs6810075. The score in EPIC was built using the same SNPs, except that for rs6810075 the proxy SNP rs182052 was used. To examine whether the ADIPOQ allele score is independent of potentially confounding factors, we compared baseline characteristics in each study across score categories (approximate tertiles).

The associations between the individual ADIPOQ SNPs as well as the ADIPOQ allele score and adiponectin concentrations were examined using linear regression models with robust variance in control participants (29). Adiponectin concentrations were naturally log-transformed (because of skewed distribution) and we calculated the estimated relative change in percent in adiponectin per
minor allele (with genotypes coded 0, 1 or 2 according to the number of variant alleles) or per score unit, respectively. In addition, R^2 and F-values as measures of instrument strength are presented. In the previous publication by Song et al. (11) the association between ADIPOQ SNPs and plasma adiponectin concentrations was presented for HPFS and NHS, but the here included colorectal cancer controls were only a small subset of the individuals included in that analysis.

Association between ADIPOQ allele score and colorectal cancer

The association between the ADIPOQ allele score (per score-unit) in relation to risk of colorectal cancer was calculated in each study. In EPIC, we used conditional logistic regression conditioning on the matching variables and calculating odds ratios (ORs) and 95% confidence intervals that approximate incidence rate ratios and can be interpreted as relative risks. In HPFS and NHS, we used unconditional logistic regression adjusted for matching variables (age at blood draw and date of blood draw) to estimate relative risks. In sensitivity analyses, we restricted the logistic regression models to individuals with Caucasian ancestry (n=16 excluded in HPFS and n=1 excluded in NHS). Because multivariable adjustment is per definition not required in Mendelian Randomization studies, only minimally adjusted (conditional logistic regression conditioned on the matching variables or unconditional logistic regression adjusted for matching factors) estimates are presented. We pooled the study-specific results using a meta-analytic approach with random effects (30), thereby also assessing potential heterogeneity across studies.

Instrumental variable analysis

For the joint analysis of adiponectin concentrations, genetic variants of the ADIPOQ gene and colorectal cancer risk, we performed an instrumental variable analysis using two-stage regression. In the first stage, adiponectin concentrations were predicted based on the ADIPOQ allele score by means of linear regression. In order to avoid potential bias (31), the first stage regression was performed only in control participants and genetically determined adiponectin was predicted for the total study population including participants without measured adiponectin. In the second stage, a logistic regression of colorectal cancer on the predicted adiponectin concentrations was performed in each study. In EPIC, the second stage was a conditional logistic regression appropriate for the matched design, whereas in HPFS and NHS, the second stage was an unconditional logistic regression adjusted for matching factors. For HPFS and NHS, we restricted instrumental variable analyses to individuals of Caucasian ancestry in sensitivity analyses. The risk estimates resulting from the instrumental variable analysis display the association between 2-
fold genetically determined higher adiponectin in relation to risk of colorectal cancer. Pooled associations were determined using random effects model and potential heterogeneity was assessed. We tested whether the causal risk estimates of the individual SNPs included in the ADIPOQ allele score were of similar magnitude using an over-identification test. Finally, to increase statistical power, we performed a summary instrumental variable analysis using published data (13). Parameters for the association between the SNPs included in the ADIPOQ allele score and circulating adiponectin were taken from GWAS data (20) and parameters for the association between the SNPs and colorectal cancer were derived from the analysis in GECCO (11). Because summary instrumental variable analysis can be biased when correlated SNPs are included, we omitted rs266729 from this analysis, because it is in linkage disequilibrium with rs6810075 (r^2 0.5).

All statistical tests are two-sided with significance at the 5% level. Instrumental variable analyses were performed using the STATA SE 12 (StataCorp, College Station, Texas, USA). Summary instrumental variable analyses were performed with a publicly available R-Studio application (Foundation for Statistical Computing, Vienna, Austria). All other analyses were performed using SAS (for EPIC data: SAS Enterprise Guide 4.3; for HPFS and NHS data: SAS 9.3; SAS Institute Inc., Cary, North Carolina, USA).

Results

Baseline characteristics of study participants in EPIC, HPFS and NHS are displayed in table 1. In EPIC and HPFS, incident colorectal cancer cases had a statistically significantly higher body mass index (BMI) and waist circumference than controls at baseline, whereas in NHS, these anthropometric measures did not differ between case and control participants. In EPIC, colorectal cancer cases consumed more alcohol and red and processed meat than control participants, whereas in the US cohorts, no such differences were observed. Other potentially confounding factors including physical activity and fiber intake did not differ remarkably between cases and controls in any study. In EPIC and HPFS, but not in NHS, adiponectin concentrations were lower in cases than in control participants in univariate comparisons.

Of the 14 ADIPOQ SNPs available for analysis in EPIC, five SNPs were statistically significantly associated with circulating adiponectin (Table 2). Each unit of the GWAS-based ADIPOQ allele
score was associated with 6.5% (95% CI 3.6, 9.4) higher adiponectin. The ADIPOQ allele score explained 3.2% of the interindividual variation in adiponectin concentrations (F-value 20.2). In HPFS, three of the 19 genotyped SNPs were statistically significantly associated with adiponectin concentrations (Table 3). Each unit of the ADIPOQ allele score was associated with 7.7% (95% CI 0.9, 14.9) higher adiponectin (F-value 5.0). In NHS, six of the 19 available SNPs were statistically significantly associated with circulating adiponectin. The ADIPOQ-score was associated with 7.7% (95% CI 4.1, 11.3) higher adiponectin concentrations and explained 3.6% of the interindividual variation in circulating adiponectin (F-value 14.2).

Potentially confounding factors assessed in the three cohorts did not differ remarkably across categories (approximate tertiles) of the external ADIPOQ-score (all P-values >0.05, supplemental table 1).

The ADIPOQ allele score was not statistically significantly associated with risk of colorectal cancer (pooled OR per score-unit 0.97, 95% CI 0.91, 1.04) in logistic regression analysis (table 4). This result was not altered when logistic regression analyses were restricted to Caucasian individuals in HPFS and NHS (pooled OR 0.97, 95% CI 0.91, 1.04). In the instrumental variable analysis taking measured adiponectin and ADIPOQ genetic variation in our study population simultaneously into account (table 5), using the ADIPOQ allele score as instrumental variable, genetically determined two-fold higher adiponectin was not statistically significantly associated with lower risk of colorectal cancer (pooled OR 0.73, 95% CI 0.40, 1.34). These associations were not altered by restriction to Caucasians in HPFS and NHS (pooled OR 0.73, 95% CI 0.41, 1.33). Over-identification tests suggested that the effects of all SNPs included in the ADIPOQ allele score were similar with respect to colorectal cancer risk in all three studies (P-values were 0.64 in EPIC, 0.81 in HPFS and 0.52 in NHS).

In the summary instrumental variable analysis using published data (GWAS on adiponectin(20); associations of ADIPOQ-SNPs with colorectal cancer published by the GECCO consortium(11)), no association between genetically determined higher adiponectin and risk of colorectal cancer was observed (OR per 2-fold higher adiponectin 0.99, 95% CI 0.93, 1.06 in women and 0.94, 95% CI 0.88, 1.01 in men) using the four SNPs rs1730539, rs17366568, rs1501299 and rs6810075 as instruments.

Discussion
In this Mendelian Randomization analysis using data from three nested case-control studies of large prospective cohorts, we did not find evidence for a causal contribution of high adiponectin levels to lower risk of colorectal cancer. However, adiponectin concentrations were genetically determined only to a limited extent, which limited statistical power for our Mendelian Randomization analysis.

In a genetic association meta-analysis, the minor alleles of three ADIPOQ SNPs (rs1501299, rs2241766, rs266729) were associated with colorectal cancer risk (32), but associations were only seen in Asians and not in Caucasians. Individual SNPs at the ADIPOQ loci, including those incorporated in the ADIPOQ allele score in the present study (rs17300539, rs17366568, rs17366743, rs1501299, rs3774261 (the proxy SNPs rs2241766 was used in GECCO), rs6810075, rs266729, rs6773957, rs6444175, rs1063538) were unrelated to risk of colorectal cancer in GECCO (11). In the same study, the allele-sum of 16 SNPs that have been related to higher adiponectin concentrations in previous GWAS were combined in a genetic score, which was not related to colorectal cancer risk in women (OR per ten-allele increment 1.08, 95% CI 0.95, 1.22) or men (OR 1.01, 95% CI 0.90, 1.13). In contrast, in a two-sample Mendelian Randomization meta-analysis (33) using the ADIPOQ SNP rs2241766 as instrumental variable, 1 mg/L genetically determined higher adiponectin was associated with a 20-40% higher risk of colorectal cancer.

The strength of our study is the ability to jointly investigate adiponectin, genetic variation in the ADIPOQ gene and risk of colorectal cancer. In contrast to a two-sample Mendelian Randomization design, a full sample design, where genetic information and intermediate phenotype data (i.e. measured adiponectin concentration) are available in the same study participants, generally requires less assumptions and allows for systematic evaluation of instrumental variable assumptions (34). Thus, we were able to estimate the strength of the association between the ADIPOQ SNPs as well as the ADIPOQ allele score and adiponectin concentrations in our sample, thereby showing that the first Mendelian Randomization assumption was fulfilled. Furthermore, we showed that potentially confounding lifestyle factors did not vary substantially across categories of the instrumental variable, i.e. the second Mendelian Randomization assumption was also satisfied (35). It should be noted that only potentially confounding factors measured in the three studies could be investigated, thus, it
cannot be entirely excluded that unmeasured confounders varied by categories of the ADIPOQ allele score. Assessment of the third Mendelian Randomization assumption (instrumental variable is associated with the outcome only through the intermediate exposure of interest, i.e. no pleiotropy) is not as straightforward, but the use of multiple SNPs as instrumental variables argue against unknown pleiotropy given that all genetic variants have a similar effect on the outcome, which was confirmed in our samples by the non-significant over-identification test results. Furthermore, the genetic variants used as instrumental variables were restricted to the ADIPOQ gene and therefore likely act directly on the adiponectin trait, which argues also against pleiotropic effects (27).

However, our study has also several limitations: Given the limited genetic determination of adiponectin concentrations, our sample sizes from three nested case-control studies of prospective cohorts was limited to derive robust causal estimates. The ADIPOQ-score applied here explained only a low proportion (2.9%-3.6%) of the interindividual variation in adiponectin concentrations. With this genetic instrument and our sample size, the minimal OR that could have been detected with 80% statistical power was 0.61 per standard deviation in adiponectin, which is a stronger association than has been observed in most observational studies (8). Even with the relatively large sample size in GECCO (7,020 cases, 7,631 controls) no association between a genetic score of variants associated with adiponectin and colorectal cancer was detected(11). Furthermore, in our summary data instrumental variable analysis, genetically determined higher adiponectin was not associated with colorectal cancer risk (minimal detectable OR with 80% power: 0.76 per standard deviation in adiponectin). A much larger sample size (n=33,960 cases, 33,960 controls) would be necessary to detect a moderate effect (e.g. OR 0.89 per 1 SD as observed in EPIC(6)) of adiponectin and colorectal cancer. Therefore, with our study and the summary instrumental variable analysis based on GECCO, we cannot rule out causality in the association between circulating adiponectin and risk of colorectal cancer. Although it has been suggested that the 2-stage instrumental variable estimator may result in biased estimates under case-control sampling, it has been shown to be unbiased under the null hypothesis of no causal effect as in the present study (36).

In conclusion, this Mendelian Randomization meta-analysis using data from three nested case-control studies of prospective cohorts does not support a large causal effect of circulating adiponectin on colorectal cancer risk. This lack of association may be related to the limited
genetic determination of adiponectin and the limited sample size. Therefore, larger Mendelian Randomization studies are necessary to clarify whether adiponectin is causally related to lower risk of colorectal cancer.

Potential conflict of interest

Andrew T. Chan declared consultancies for Bayer Healthcare and Pfizer Inc. Ruth Travis declared salary and support for EPIC-Oxford from Cancer Research UK (paid by the University of Oxford), support for prostate cancer research project on metabolomics from the World Cancer Research Fund as well as support for EPIC-Oxford from the UK Medical Research Council. All other authors declared no potential conflict of interest.
References

Society for Oncodevelopmental Biology and Medicine. 2015;36(2):585-94. doi:10.1007/s13277-014-2654-x

Overview of figures and tables

Figure 1. Directed acyclic graph (DAG) for Mendelian Randomization Study on adiponectin and colorectal cancer risk.

Table 1 Baseline characteristics of study participants in EPIC, HPFS and NHS

Table 2 Association between all ADIPOQ SNPs genotyped in EPIC and plasma adiponectin levels in control participants (n=623)

Table 3 Association between all ADIPOQ SNPs genotyped in NHS and HPFS and plasma adiponectin levels in control participants (n=167 in HPFS, n=510 in NHS)

Table 4. Association between internal and external ADIPOQ-scores in EPIC, HPFS, and NHS

Table 5. Instrumental variable estimation of the association between genetically determined adiponectin concentrations with risk of colorectal cancer in EPIC, HPFS, and NHS
Figure 1. Directed acyclic graph (DAG) for Mendelian Randomization Study on adiponectin and colorectal cancer risk. X: modifiable exposure of interest; Y: outcome; C: confounder(s); Z: instrumental variable. NOTE: The effect of Z on Y should be mediated only through X (no pleiotropy), therefore this line is dashed. Associations [ZX] and [ZY] are used to estimate the causal effect of a biomarker on an outcome circumventing residual confounding and reverse causation.
Table 1 Baseline characteristics of study participants in EPIC, HPFS and NHS

<table>
<thead>
<tr>
<th></th>
<th>EPIC (n=1,246)$</th>
<th>HPFS (n=461)$</th>
<th>NHS (n=1173)$</th>
<th>Controls (n=623)</th>
<th>Cases (n=623)</th>
<th>Controls (n=230)</th>
<th>Cases (n=231)</th>
<th>Controls (n=774)</th>
<th>Cases (n=399)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female sex, n (%)</td>
<td>289 (46.4)</td>
<td>289 (46.4)</td>
<td>*</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>*</td>
<td>*</td>
<td>771 (100)</td>
<td>398 (100)</td>
<td></td>
</tr>
<tr>
<td>Age at blood collection, years, mean (SD)</td>
<td>58.3 (8.2)</td>
<td>58.3 (8.2)</td>
<td>*</td>
<td>66.1 (8.8)</td>
<td>66.1 (8.8)</td>
<td>*</td>
<td>59.1 (6.7)</td>
<td>59.2 (6.7)</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Current smoking, n (%)</td>
<td>124 (19.9)</td>
<td>122 (19.6)</td>
<td>0.88</td>
<td>8 (3.6)</td>
<td>0.35</td>
<td>90 (11.7)</td>
<td>48 (12.1)</td>
<td>0.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caucasian ethnicity, n (%)</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>226 (98.3)</td>
<td>219 (94.8)</td>
<td>*</td>
<td>773 (99.9)</td>
<td>399 (100)</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td>Physical activity (MET-hours/week), mean (SD)</td>
<td>89.1 (52.1)</td>
<td>90.4 (54.8)</td>
<td>0.59</td>
<td>35.8 (41.3)</td>
<td>0.70</td>
<td>16.4 (19.8)</td>
<td>16.5 (19.2)</td>
<td>0.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body mass index, kg/m2, mean (SD)</td>
<td>26.4 (3.8)</td>
<td>27.1 (4.4)</td>
<td>0.001</td>
<td>26.0 (3.1)</td>
<td>0.004</td>
<td>25.4 (4.4)</td>
<td>25.3 (4.3)</td>
<td>0.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waist circumference, cm, mean (SD)</td>
<td>89.3 (12.3)</td>
<td>91.9 (13.1)</td>
<td><0.0001</td>
<td>96.8 (8.4)</td>
<td>0.004</td>
<td>79.5 (10.7)</td>
<td>80.3 (10.9)</td>
<td>0.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcohol intake, g/day, median (IQR)</td>
<td>6.4 (1.0-21.1)</td>
<td>7.8 (0.8-22.6)</td>
<td>0.02</td>
<td>6.9 (0.9-18.7)</td>
<td>0.86</td>
<td>1.1 (0.0-6.9)</td>
<td>1.8 (0.0-8.5)</td>
<td>0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiber, g/day, median (IQR)</td>
<td>21.8 (17.7-27.0)</td>
<td>21.5 (16.8-27.5)</td>
<td>0.77</td>
<td>22.2 (18.6-28.8)</td>
<td>0.34</td>
<td>18.1 (15.1-21.3)</td>
<td>17.7 (15.2-21.1)</td>
<td>0.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red and processed meat, g/day, median (IQR)</td>
<td>69.1 (45.4-101.5)</td>
<td>72.3 (49.4-108.8)</td>
<td>0.02</td>
<td>64.5 (37.5-105.5)</td>
<td>0.20</td>
<td>52.4 (33.4-81.2)</td>
<td>55.8 (33.4-91.7)</td>
<td>0.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total adiponectin (μg/mL), median (IQR)$</td>
<td>6.3 (4.8-8.7)</td>
<td>5.9 (4.3-8.2)</td>
<td>0.01</td>
<td>5.3 (3.5-7.2)</td>
<td>0.21</td>
<td>8.5 (6.0-11.0)</td>
<td>8.5 (6.0-11.5)</td>
<td>0.64</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SD, standard deviation, IQR, inter-quartile range, MET, metabolic equivalent of task
aP-values for the difference between cases and controls were determined by McNemar’s test for variables expressed as %, by student’s paired t-test for variables expressed as means, and by Wilcoxon’s signed rank test for variables expressed as medians
b P-values for the difference between cases and controls were determined by Chi2-test for variables expressed as %, analysis of variance (general linear model) for variables expressed as means, and by the non-parametric Kruskal-Wallis test for variables expressed as medians
Adiponectin measurement was not available in n=16 controls and n=7 cases in EPIC, in n=63 controls and n=56 cases in HPFS, and in n=264 controls and n=112 cases in NHS; some study participants had missing values for the here displayed diet and lifestyle factors: in EPIC, there were missing values on physical activity (n=69 controls, n=67 cases) and waist circumference (n=65 controls, n=65 cases); in HPFS, there were missing values on smoking status (n=7 controls, n=6 cases), waist circumference (n=25 controls, n=46 cases), alcohol (n=4 controls, n=5 cases), fiber (n=1 case) or red and processed meat (n=4 controls, n=5 cases) intake; in NHS, there were missing values on alcohol (n=8 controls, n=1 cases), fiber (n=11 controls, n=2 cases) and red and processed meat (n=8 controls, n=1 case) intake.
Table 2. Association between ADIPOQ SNPs genotyped in EPIC, ADIPOQ allele score and plasma adiponectin levels in control participants

<table>
<thead>
<tr>
<th>SNP</th>
<th>MAF</th>
<th>Relative change (95% CI), %<sup>a</sup></th>
<th>(p_{\text{trend}})</th>
<th>F-Value</th>
<th>(R^2) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs1063539</td>
<td>G>C</td>
<td>13%</td>
<td>0.9 (-6.2; 8.6)</td>
<td>0.81</td>
<td>0.1</td>
</tr>
<tr>
<td>rs16861194</td>
<td>A>G</td>
<td>8%</td>
<td>-4.4 (-12.9; 4.8)</td>
<td>0.34</td>
<td>1.0</td>
</tr>
<tr>
<td>rs12495941</td>
<td>G>T</td>
<td>37%</td>
<td>0.1 (-5.0; 5.5)</td>
<td>0.96</td>
<td>0.0</td>
</tr>
<tr>
<td>rs822391</td>
<td>T>C</td>
<td>19%</td>
<td>5.2 (-1.7; 12.6)</td>
<td>0.14</td>
<td>2.2</td>
</tr>
<tr>
<td>rs822394</td>
<td>C>A</td>
<td>17%</td>
<td>4.1 (-2.9; 11.6)</td>
<td>0.26</td>
<td>1.3</td>
</tr>
<tr>
<td>rs17300539b</td>
<td>G>A</td>
<td>9%</td>
<td>18.2 (8.5; 28.8)</td>
<td><0.0001</td>
<td>14.5</td>
</tr>
<tr>
<td>rs17366568b</td>
<td>G>A</td>
<td>11%</td>
<td>-12.3 (-19.0; -5.0)</td>
<td><0.0001</td>
<td>10.3</td>
</tr>
<tr>
<td>rs17366743</td>
<td>T>C</td>
<td>3%</td>
<td>20.6 (3.0; 41.2)</td>
<td>0.02</td>
<td>5.4</td>
</tr>
<tr>
<td>rs182052b,c</td>
<td>G>A</td>
<td>35%</td>
<td>-2.8 (-7.8; 2.5)</td>
<td>0.29</td>
<td>1.1</td>
</tr>
<tr>
<td>rs266729b</td>
<td>C>G</td>
<td>27%</td>
<td>-1.6 (-7.1; 4.2)</td>
<td>0.59</td>
<td>0.3</td>
</tr>
<tr>
<td>rs1501299b</td>
<td>G>T</td>
<td>28%</td>
<td>6.3 (0.3; 12.5)</td>
<td>0.04</td>
<td>4.3</td>
</tr>
<tr>
<td>rs2241766</td>
<td>T>G</td>
<td>13%</td>
<td>2.3 (-5.1; 10.3)</td>
<td>0.56</td>
<td>0.3</td>
</tr>
<tr>
<td>rs3774261</td>
<td>G>A</td>
<td>41%</td>
<td>5.3 (0.1; 10.9)</td>
<td>0.05</td>
<td>3.9</td>
</tr>
<tr>
<td>rs3821799</td>
<td>C>T</td>
<td>47%</td>
<td>0.0 (-4.9; 5.2)</td>
<td>0.99</td>
<td>0.0</td>
</tr>
</tbody>
</table>

ADIPOQ allele score
6.5 (3.6; 9.4)
<0.0001
20.2
3.2

MAF: Minor allele frequency; 95% CI, 95% confidence interval
^a Percent change in adiponectin concentrations per copy of minor allele (effect allele) or score unit, estimated in univariable linear regression models.
^b incorporated in ADIPOQ allele score for EPIC
^c proxy SNP for rs6810075

in bold: statistically significant associations (p<0.05)
<table>
<thead>
<tr>
<th>SNP</th>
<th>MAF</th>
<th>Rel. change (95% CI), % (^a^)</th>
<th>(p_{\text{end}})</th>
<th>F-Value</th>
<th>(R^2) (%)</th>
<th>SNP</th>
<th>MAF</th>
<th>Rel. change (95% CI), % (^a^)</th>
<th>(p_{\text{end}})</th>
<th>F-Value</th>
<th>(R^2) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs1063539 G>C</td>
<td>15%</td>
<td>-5.6 (-20.0; 11.5)</td>
<td>0.50</td>
<td>0.5</td>
<td>0.3</td>
<td>rs1063539 G>C</td>
<td>12%</td>
<td>-1.4 (-9.4; 7.4)</td>
<td>0.75</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>rs16861194 A>G</td>
<td>9%</td>
<td>-1.5 (-19.0; 19.8)</td>
<td>0.68</td>
<td>0.0</td>
<td>0.0</td>
<td>rs16861194 A>G</td>
<td>5%</td>
<td>-9.1 (-19.1; 1.9)</td>
<td>0.10</td>
<td>2.7</td>
<td>0.5</td>
</tr>
<tr>
<td>rs7615090 T>G</td>
<td>5%</td>
<td>-7.4 (-29.0; 20.8)</td>
<td>0.57</td>
<td>0.3</td>
<td>0.2</td>
<td>rs7615090 T>G</td>
<td>6%</td>
<td>-7.3 (-18; 4.8)</td>
<td>0.23</td>
<td>1.5</td>
<td>0.3</td>
</tr>
<tr>
<td>rs822394 C>A</td>
<td>15%</td>
<td>-2.3 (-16.3; 13.9)</td>
<td>0.76</td>
<td>0.1</td>
<td>0.1</td>
<td>rs822394 C>A</td>
<td>17%</td>
<td>6.1 (-1.3; 14.0)</td>
<td>0.11</td>
<td>2.6</td>
<td>0.5</td>
</tr>
<tr>
<td>rs17300539 G>A</td>
<td>9%</td>
<td>13.5 (-5.8; 36.6)</td>
<td>0.19</td>
<td>1.8</td>
<td>1.1</td>
<td>rs17300539 G>A</td>
<td>8%</td>
<td>13.3 (2.8; 25.0)</td>
<td>0.01</td>
<td>6.3</td>
<td>1.2</td>
</tr>
<tr>
<td>rs17366568 G>A</td>
<td>8%</td>
<td>-9.7 (-26; 10.1)</td>
<td>0.32</td>
<td>1.0</td>
<td>0.6</td>
<td>rs17366568 G>A</td>
<td>7%</td>
<td>-18.5 (-26.8; -9.2)</td>
<td>(<0.0001)</td>
<td>13.8</td>
<td>2.7</td>
</tr>
<tr>
<td>rs17366743 T>C</td>
<td>3%</td>
<td>0.9 (-26.4; 38.3)</td>
<td>0.96</td>
<td>0.0</td>
<td>0.0</td>
<td>rs17366743 T>C</td>
<td>3%</td>
<td>2.5 (-11.7; 18.9)</td>
<td>0.75</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>rs6810075 T>C</td>
<td>33%</td>
<td>-11.8 (-21.2; -1.2)</td>
<td>0.03</td>
<td>4.6</td>
<td>2.7</td>
<td>rs6810075 T>C</td>
<td>31%</td>
<td>-5.0 (-10; 0.7)</td>
<td>0.09</td>
<td>3.0</td>
<td>0.6</td>
</tr>
<tr>
<td>rs6773957 G>A</td>
<td>41%</td>
<td>9.2 (-26.6; 22.3)</td>
<td>0.13</td>
<td>2.3</td>
<td>1.4</td>
<td>rs6773957 G>A</td>
<td>38%</td>
<td>6.5 (0.9; 12.5)</td>
<td>0.02</td>
<td>5.2</td>
<td>1.0</td>
</tr>
<tr>
<td>rs822354 G>A</td>
<td>36%</td>
<td>7.6 (-4.1; 20.9)</td>
<td>0.22</td>
<td>1.5</td>
<td>0.9</td>
<td>rs822354 G>A</td>
<td>33%</td>
<td>1.4 (-4.2; 7.4)</td>
<td>0.62</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>rs6444175 G>A</td>
<td>28%</td>
<td>11.4 (-0.7; 25.0)</td>
<td>0.07</td>
<td>3.3</td>
<td>2.0</td>
<td>rs6444175 G>A</td>
<td>27%</td>
<td>7.6 (1.2; 14.5)</td>
<td>0.02</td>
<td>5.5</td>
<td>1.1</td>
</tr>
<tr>
<td>rs266717 T>C</td>
<td>49%</td>
<td>-3.2 (-13.3; 8.0)</td>
<td>0.56</td>
<td>0.3</td>
<td>0.2</td>
<td>rs266717 T>C</td>
<td>47%</td>
<td>-3.8 (-8.8; 1.5)</td>
<td>0.16</td>
<td>2.0</td>
<td>0.4</td>
</tr>
<tr>
<td>rs1426810 A>G</td>
<td>37%</td>
<td>0.7 (-9.8; 12.4)</td>
<td>0.91</td>
<td>0.0</td>
<td>0.0</td>
<td>rs1426810 A>G</td>
<td>40%</td>
<td>3.9 (-1.7; 9.9)</td>
<td>0.17</td>
<td>1.9</td>
<td>0.4</td>
</tr>
<tr>
<td>rs1342387 T>C</td>
<td>43%</td>
<td>2.9 (-7.9; 15.0)</td>
<td>0.62</td>
<td>0.3</td>
<td>0.2</td>
<td>rs1342387 T>C</td>
<td>45%</td>
<td>-4.4 (-9.5; 1.0)</td>
<td>0.11</td>
<td>2.5</td>
<td>0.5</td>
</tr>
<tr>
<td>rs12733285 C>T</td>
<td>30%</td>
<td>-2.7 (-13.7; 9.8)</td>
<td>0.66</td>
<td>0.2</td>
<td>0.1</td>
<td>rs12733285 C>T</td>
<td>30%</td>
<td>-4.1 (-9.6; 1.7)</td>
<td>0.16</td>
<td>2.0</td>
<td>0.4</td>
</tr>
<tr>
<td>rs266729 C>G</td>
<td>24%</td>
<td>-12.6 (-22.8; -1.2)</td>
<td>0.03</td>
<td>4.6</td>
<td>2.7</td>
<td>rs266729 C>G</td>
<td>26%</td>
<td>-4.4 (-10; 1.8)</td>
<td>0.16</td>
<td>2.0</td>
<td>0.4</td>
</tr>
<tr>
<td>rs1501299 G>T</td>
<td>26%</td>
<td>13.4 (1.0; 27.4)</td>
<td>0.04</td>
<td>4.4</td>
<td>2.6</td>
<td>rs1501299 G>T</td>
<td>27%</td>
<td>8.6 (2.2; 15.5)</td>
<td>0.01</td>
<td>7.0</td>
<td>1.4</td>
</tr>
<tr>
<td>rs1063538 C>T</td>
<td>41%</td>
<td>9.2 (-2.6; 22.3)</td>
<td>0.13</td>
<td>2.3</td>
<td>1.4</td>
<td>rs1063538 C>T</td>
<td>38%</td>
<td>6.6 (0.9; 12.5)</td>
<td>0.02</td>
<td>5.2</td>
<td>1.0</td>
</tr>
<tr>
<td>rs3774262 G>A</td>
<td>15%</td>
<td>-6.0 (-20.0; 10.5)</td>
<td>0.46</td>
<td>0.6</td>
<td>0.3</td>
<td>rs3774262 G>A</td>
<td>11%</td>
<td>-0.7 (-9.0; 8.4)</td>
<td>0.88</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

ADIPOQ allele score

<table>
<thead>
<tr>
<th>Men (n=167), HPFS</th>
<th>Women (n=510), NHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.7 (0.9; 14.9)</td>
<td>7.7 (4.1; 11.3)</td>
</tr>
</tbody>
</table>

\(^a^\) Percent change in adiponectin concentrations per copy of minor allele (effect allele) or score unit, estimated in univariable linear regression models.

\(^b^\) incorporated in **ADIPOQ** allele score for HPFS/NHS

in bold: statistically significant associations (p<0.05)
Table 4. Association between *ADIPOQ* allele score and colorectal cancer risk in EPIC, HPFS, and NHS

<table>
<thead>
<tr>
<th>No. Cases/No. Controls</th>
<th>Relative change %<sup>a</sup></th>
<th>OR</th>
<th>(95% CI)</th>
<th>p<sub>trend</sub></th>
<th>p<sub>het.</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>EPIC<sup>b</sup></td>
<td>623/623</td>
<td>6.5</td>
<td>0.95</td>
<td>(0.87, 1.03)</td>
<td>0.23</td>
</tr>
<tr>
<td>HPFS<sup>c</sup></td>
<td>231/230</td>
<td>7.7</td>
<td>1.00</td>
<td>(0.85, 1.17)</td>
<td>0.97</td>
</tr>
<tr>
<td>NHS<sup>c</sup></td>
<td>399/774</td>
<td>7.7</td>
<td>0.98</td>
<td>(0.88, 1.09)</td>
<td>0.73</td>
</tr>
<tr>
<td>Pooled</td>
<td>1253/1627</td>
<td>0.97</td>
<td>(0.91, 1.04)</td>
<td>0.43</td>
<td>0.86</td>
</tr>
</tbody>
</table>

^a Per score unit, estimates based on univariate linear regression in controls

^b Conditional logistic regression, controlling for matching factors (age at blood collection, study center, fasting status, menopausal status and hormone use in women)

^c Unconditional logistic regression, adjusted for matching factors (age at blood draw, date of blood draw)

OR, odds ratio; 95% CI, 95% confidence interval; p_{het.}, P value for heterogeneity by study

Table 5. Instrumental variable estimation of the association between genetically determined adiponectin concentrations with risk of colorectal cancer in EPIC, HPFS, and NHS (*ADIPOQ* allele score as instrumental variable)

<table>
<thead>
<tr>
<th>No. Cases/No. Controls</th>
<th>IV-OR</th>
<th>(95% CI)</th>
<th>p<sub>trend</sub></th>
<th>p<sub>het.</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>EPIC</td>
<td>623/623</td>
<td>0.61</td>
<td>(0.25, 1.49)</td>
<td>0.28</td>
</tr>
<tr>
<td>HPFS</td>
<td>231/230</td>
<td>0.90</td>
<td>(0.21, 3.84)</td>
<td>0.89</td>
</tr>
<tr>
<td>NHS</td>
<td>399/774</td>
<td>0.83</td>
<td>(0.31, 2.22)</td>
<td>0.71</td>
</tr>
<tr>
<td>Pooled</td>
<td>1253/1627</td>
<td>0.73</td>
<td>(0.40, 1.34)</td>
<td>0.31 0.86</td>
</tr>
</tbody>
</table>

IV-OR, instrumental variable odds ratio; 95% CI, 95% confidence interval; p_{het.}, P value for heterogeneity by study

IV-OR derived from two-stage regression. First stage was a linear regression. In EPIC, the second stage was a conditional logistic regression controlling for matching factors (age at blood collection, study center, fasting status, menopausal status and hormone use in
women); in HPFS and NHS, the second stage was an unconditional logistic regression adjusting for matching factors (age at blood draw, date of blood draw)

p_{het}, P value for heterogeneity by study