EDITORIAL: SPECIAL ISSUE ON “SOUNDSCAPES OF BUILDINGS AND BUILT ENVIRONMENTS”

Francesco Aletta \(^1,2*\), Arianna Astolfi \(^3\)

\(^1\)Institute for Environmental Design and Engineering – University College London, London WC1H 0NN, United Kingdom
\(^2\)Department of Information Technology – Ghent University, 9052 Ghent, Belgium
\(^3\)Department of Energy – Polytechnic Institute of Turin, Turin 10129, Italy

E-mail: f.aletta@ucl.ac.uk

The term soundscape has been defined in 2014 by the ISO 12913-1 standard as “[the] acoustic environment as perceived or experienced and/or understood by a person or people, in context” (International Organization for Standardization, 2014). However, the debate about soundscape and its meaning goes as back as the late Sixties when authors like Southworth and Schafer started to question how built environments should sound like (Southworth, 1969) (Schafer, 1977) (Truax, 1978). Such debate has been going on ever since, and in recent years researchers and practitioners have shown an increasing interest for the assessment, management and design of both outdoor and indoor acoustic environments, from a perceptual point of view (Aletta, Kang, & Axelsson, 2016). While much soundscape research has been conducted at a relatively large urban scale and for outdoor spaces (Schulte-Fortkamp & Dubois, 2006) (Schulte-Fortkamp & Kang, 2013) (Davies, 2013) (Kang, et al., 2016), the definition provided by the ISO standard focuses on “context”; thus, the concept also applies to buildings and indoor environments in general. Indeed, several studies went in this direction, addressing the perceived quality of the acoustic environment of (public) enclosed spaces (van den Bosch, 2015) (Lindborg, 2016) (Lindborg & Friberg, 2016) (Dokmeci Yorukoglu & Kang, 2016) (Xiao & Aletta, 2016) (Aletta, et al., 2017).

The present Special Issue on Soundscape of buildings and built environments aimed to gather new research results dealing with the relationship between soundscape, architecture and urban design, as well as the perception of indoor and outdoor acoustic environments and how buildings (and building elements) can mediate these two.

Papers generally considered the relationships between the physical elements of the acoustic environments and the perceptual constructs (i.e., the soundscapes) they elicit. Some studies focused explicitly on general assessment methodologies for indoor soundscapes (Dokmeci Yorukoglu & Kang, 2017) (Dokmeci Yorukoglu & Aburawis, 2018), while others sought to look for connections between conventional acoustic comfort measures used in building acoustics and subjective quality assessments (Vardaxis, Bard, & Persson Waye, 2018) (Vardaxis & Bard, 2018) (Vardaxis & Bard, 2018). Several papers addressed the perception of acoustic environments of indoor settings with specific functions, such as: worship spaces (Yilmazer & Acun, 2018), care facilities (Aletta, et al., 2018) (van den Bosch, Andringa, Post, Ruijssenaars, & Vlaskamp, 2018), learning and teaching environments (Rossi, Prato, Lesina, & Schiavi, 2018) (Lam, Hodgson, Prodi, & Visentin, 2018), or commuting hubs (Yilmazer & Bora, 2017). On the other hand, some papers looked at the built environment more broadly, to explore how buildings and building elements, as part of a more complex urban fabric, often play a crucial role in defining the acoustic quality of a context (Fusaro, D'Alessandro, Baldinelli, & Kang, 2018) (Calleri, Shtrepi, Armando, & Astolfi, 2018) (D'Alesandro, Evangelisti, Guattari, Grazieschi, & Orsini, 2018) (Estévez-Mauriz, Forssén, & Dohmen, 2018). The number (and quality) of the contributions published in this special issue reflects the growing interest for the emerging field of “indoor soundscaping” and points out that we should start looking at buildings also as mediators of our everyday aural experience.
As Editors, we can say that working on this special issue has been as demanding as rewarding a task. We would like to take this opportunity to thank all the authors, reviewers and assistant editors for their outstanding work, throughout this process.

References


