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ARTICLE INFO ABSTRACT

Keywords: Quantitative Susceptibility Mapping (QSM), best known as a surrogate for tissue iron content, is becoming a
Magnetic susceptibility highly relevant MRI contrast for monitoring cellular and vascular status in aging, addiction, traumatic brain injury
Quantitative MRI and, in general, a wide range of neurological disorders. In this study we present a new Bayesian QSM algorithm,
Iron mapping named Multi-Scale Dipole Inversion (MSDI), which builds on the nonlinear Morphology-Enabled Dipole Inversion
Venography

(nMEDI) framework, incorporating three additional features: (i) improved implementation of Laplace's equation
to reduce the influence of background fields through variable harmonic filtering and subsequent deconvolution,
(ii) improved error control through dynamic phase-reliability compensation across spatial scales, and (iii) sca-
lewise use of the morphological prior. More generally, this new pre-conditioned QSM formalism aims to reduce
the impact of dipole-incompatible fields and measurement errors such as flow effects, poor signal-to-noise ratio or
other data inconsistencies that can lead to streaking and shadowing artefacts. In terms of performance, MSDI is
the first algorithm to rank in the top-10 for all metrics evaluated in the 2016 QSM Reconstruction Challenge. It
also demonstrated lower variance than nMEDI and more stable behaviour in scan-rescan reproducibility exper-
iments for different MRI acquisitions at 3 and 7 Tesla. In the present work, we also explored new forms of sus-
ceptibility MRI contrast making explicit use of the differential information across spatial scales. Specifically, we
show MSDI-derived examples of: (i) enhanced anatomical detail with susceptibility inversions from short-range
dipole fields (hereby referred to as High-Pass Susceptibility Mapping or HPSM), (ii) high specificity to venous-
blood susceptibilities for highly regularised HPSM (making a case for MSDI-based Venography or VenoMSDI),
(iii) improved tissue specificity (and possibly statistical conditioning) for Macroscopic-Vessel Suppressed Sus-
ceptibility Mapping (MVSSM), and (iv) high spatial specificity and definition for HPSM-based Susceptibility-
Weighted Imaging (HPSM-SWI) and related intensity projections.

Variational regularisation
Laplacian pyramid

1. Introduction (Haacke et al., 2015; Wang and Liu, 2015). QSM's potential for clinical
neurology and neuroscience applications chiefly lies on its sensitivity to
Quantitative susceptibility mapping (QSM) is a descriptor of tissue variations in content of brain iron and other chemical species such as

magnetic susceptibility that has attracted much interest in recent times lipids (e.g. myelin phospholipids) or calcium (Wang et al., 2017). QSM is
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also known for its sensitivity to differential oxygen-saturation levels in
venous blood (Fan et al., 2014), and might also be sensitive to variations
across white matter microstructure at the sub-voxel level (Wharton and
Bowtell, 2015). QSM has undergone post mortem validation (Langkam-
mer et al., 2012; Sun et al., 2015; Zheng et al., 2013); and has shown
exquisite anatomical detail in vivo, particularly at ultra-high field (Bian
et al., 2016; Costagli et al., 2016; Deistung et al., 2013).

In the field of applications, QSM has successfully been used to detect
brain alterations in e.g. aging (Acosta-Cabronero et al., 2016; Betts et al.,
2016; Darki et al., 2016; Li et al.,, 2014; Persson et al., 2015), drug
addiction (Ersche et al., 2017), Alzheimer's disease (Acosta-Cabronero
et al., 2013; Ayton et al., 2017; Moon et al., 2016; van Bergen et al.,
2016b), Parkinson's disease (Acosta-Cabronero et al., 2017; Guan et al.,
2017; He et al., 2015), Huntington's disease (Dominguez et al., 2016; van
Bergen et al., 2016a), neurodegeneration with brain iron accumulation
(Lobel et al., 2014), neuromuscular disease (Acosta-Cabronero et al., In
Press; Costagli et al., 2016; Schweitzer et al., 2015), demyelinating dis-
ease (Bian et al., 2016; Chen et al., 2014; Cronin et al., 2016; Li et al.,
2016; Wisnieff et al., 2015; Zhang et al., 2016) and traumatic brain injury
(Liu et al., 2016). QSM has also been proposed for vascular monitoring
both at single time points (Fan et al., 2015, 2016; Ozbay et al., 2015) or in
combination with the MRI technique of arterial spin labelling to infer
cerebral metabolic rates of oxygen extraction (Buch et al., 2017; Zhang
et al., 2018); and dynamically, using fast echo-planar acquisitions for
functional MRI (fMRI) applications (Balla et al., 2014; Bianciardi et al.,
2014; Chen and Calhoun, 2015; Ozbay et al., 2016; Sun et al., 2017).

In brief, a typical QSM reconstruction routine requires accurate coil-
combination, often followed by phase unwrapping and background-field
extraction steps to isolate local-field offsets, which must then be decon-
volved (typically using a dipole kernel) to retrieve the underlying tissue
susceptibilities. At present, the overwhelming majority of QSM methods
formulate this field-to-source inversion problem in Bayesian terms (de
Rochefort et al., 2010); that is, trading data/model inconsistencies with an
energy functional that promotes some prior knowledge (mathematical
and/or anatomical), e.g. that the 3D gradient of the susceptibility distribu-
tions must be sparse (e.g using #;-norm based regularisation penalties) or
that the solution must share edges with a structural image (e.g. by spatially
weighting the regulariser). Such priors help condition an otherwise ill-posed
inversion operation (Kee et al., 2017; Wang et al., 2013, 2016).

Indeed, variational methods are currently the highest performing
algorithms for QSM reconstruction (Langkammer et al., 2018), though
importantly, they are not immune to poor pre-conditioning making them
notoriously dependent on e.g. effective background-field cancellation
prior to inversion (Schweser et al., 2017). In order to reduce the de-
pendency on optimal background field removal, further pre-conditioning
can be achieved through incorporating harmonic-field estimation prin-
ciples such as the spherical mean - value (SMV) property or satisfying the
relevant Laplace's (or Poisson's) equations within single-step Bayesian
formulations (Chatnuntawech et al., 2017; Kee et al., 2017; Langkammer
et al,, 2015; Liu et al, 2017). Such approaches have successfully
demonstrated solid improvements e.g. in reducing so-called “shadow” or
“shadowing” artefacts (Kee et al., 2017). Notably, at least in their current
form, these approaches offer limited error/artefact propagation control
beyond the mathematical prior imposed by their variational term; often
promoting sparsity in the gradient of the solution to prevent over-fitting,
thereby helping to constrain convolution errors introduced by the
double-conical distribution of zero dipole-kernel coefficients, i.e.
“streaking” artefacts. These methods are therefore somewhat reliant on
having relatively consistent input data in order to avoid systematic
over-regularisation.

Beyond the action range of variational regularisers, some previously
proposed (inversion-only) algorithms have shown relative success in
controlling reconstruction artefacts. For example, the nonlinear
Morphology-Enabled Dipole Inversion (nMEDI) approach (Liu et al.,
2013) capitalises on the following additional strategies: (i) it in-
corporates a nonlinear consistency term to improve noise management,
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(ii) it dynamically rejects cost contributions from potentially inconsistent
data (to prevent them from dominating the data-fidelity weight), and (iii)
it promotes piece-wise constant susceptibility distributions except at lo-
cations of strong 3D magnitude gradient, which reduces streaking arte-
facts and helps better resolve the vasculature and other local features
(Kee et al., 2017; Liu et al., 2011, 2012a; Wang et al., 2016).

In practice, however, both approaches are vulnerable to streaking and
shadowing artefacts originating from dipole-incompatible fields (Kee
et al., 2017). Thus, the goal of this work was to merge and extend both
methodological strands with the development of a new Multi-Scale
Dipole Inversion (MSDI) algorithm, which, building on the nMEDI
framework, implements Laplace's equation by splitting the QSM problem
in parts through variable SMV-based filtering and subsequent deconvo-
lution, in turn also conveniently enabling adaptive (spatial-scale depen-
dent) strategies for error control and regularisation, which we
hypothesised would result in more robust convergence pathways.

In order to contextualise its performance, the proposed approach
(MSDI) was compared with other algorithms in the framework of the
2016 QSM Reconstruction Challenge (Langkammer et al., 2018). We
investigated the algorithm's test-retest reproducibility and the reliability
of L-curve analysis for free-parameter estimation (Hansen and O'Leary,
1993) using different gradient-echo sequences; single- and multi-echo
acquisitions with isotropic and anisotropic image resolutions at
different field strengths of 3 and 7 Tesla. Finally, we explored new
post-processing strategies that capitalise on MSDI's source-separation
ability across spatial scales, with a focus on improving visualisation
and tissue specificity relative to conventional QSM and
Susceptibility-Weighted Imaging or SWI (Haacke et al., 2004).

2. Materials and methods
2.1. Multi-scale dipole inversion (MSDI)

Broadly, the proposed algorithm aims to construct a Laplacian pyra-
mid (Burt and Adelson, 1983) via serial bandpass filtering for an
improved implementation of Laplace's equation and more adaptive noise
modelling. MSDI is thus formulated as a multi-scale variational problem
where the initial field map is inverted in parts by modulating the spatial
scale of the deconvolution operation. In practice, splitting the full
inversion into a sequence of differential sub-problems enables a more
selective use of priors and tighter error control moving from short- to
long-range dipole field components. The algorithm formulation is spe-
cifically set to minimise noise amplification, artefact propagation and
mask erosion across scales as described below.

In MSDI the susceptibility distribution, X;, is the sum of susceptibility
estimates from [ pyramid levels (or spatial “scales” — terminology used
hereafter), ie. X; = Y X;, each scale is subject to specific pre-

1

conditioning in the spatial domain such that:
¢}:¢1*51*¢1:(5*51)*(/’1a (@]

where ¢ and ¢, represent a phase distribution and its high-pass filtered
counterpart, respectively; S; is the SMV kernel (Schweser et al., 2017)
with radius, r; § represents the Dirac delta function; and * is the 3D
convolution operator. Eq. (1) can also be expressed as ¢, = F5Fg,
where §; = F(6 — S;). The latter is the high-pass complement of the SMV
kernel in the frequency domain and F is the Fourier transform operator
with inverse, F'L.,

Turning to the initialisation of Eq. (1), ¢ can be seen as a starting field
including all phase contributions unaccounted for in previous scales (or
simply the initial phase for the first scale, [=1), i.e.:

¢ = ¢ — FUDFX,_y, 2

where ¢ is the initial phase, X;; is the susceptibility-sum from the
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previous (finer) scale (starting from a null matrix for X;), and D is the
dipole kernel in the frequency domain (Marques and Bowtell, 2005;
Salomir et al., 2003) which includes a X-scaling factor to match ¢ units.
Such an approach enables the use of scale-specific constraints; with the
added desirable characteristic that stepwise re-initialisation (Egs. (1) and
(2)) prevents noise amplification and mask erosion leading to the
following sub-problem:

X, = argmin AHQ,W, (e‘FHS’DFX — e”/’l> Hz + HM,VVX Hl 3
.

In Eq. (3), 4 is the regularisation parameter, V represents the 3D
gradient (implemented as a finite-differencing operator), My is a scale-
dependent edge-mask ie. a dynamic morphological constraint to the
regulariser, W is a data-driven weighting matrix that adaptively (with
updates at each iteration) compensates for ¢/’ noise non-uniformities, and
Q is an additional scale-specific phase-reliability mask that increasingly
suppresses consistency cost contributions as a function of the SMV-kernel
size.

Eq. (1) and Eq. (3) imply Eq. (2) may be initialised for the first scale
(I=1) with an unwrapped phase distribution without additional pre-
processing. In practice, however, this study found MSDI benefits from
prior background-field elimination using standard methods (details
provided in the following subsections).

2.2. Dynamic error control

In line with Egs. (1) and (2), the fidelity term in Eq. (3) defines a
scalewise (S; kernel-size dependent) dipole deconvolution operation that
stratifies source inversions by the spatial extent of their associated dipole
field, hence enabling more adaptive error control.

W,, in analogy to nMED], is initialised as an estimate of the inverse of
the ¢’ noise distribution in order to compensate for spatially non-uniform
measurement reliability. This noise distribution can be approximated by
the inverse of the signal magnitude (Gudbjartsson and Patz, 1995), A~}
for ¢, and by A;! = S; x A~! for the second term in Eq. (1). Therefore, the
inverse of the composite noise distribution at each scale can be expressed

as A = (a}ljk) = [.7(2 +K;2] ! , with A and A; normalised by their
respective mean over a region/volume of interest (ROI/VOI), Q, e.g. a
whole-brain mask.

Subsequently at each iteration, W; is dynamically downscaled, by the
square of the residual value, at locations returning large normalised-
consistency residuals, IA{lmr = (?l-,iterljk) > f, greater than a defined
threshold, f. This approach is equivalent to the previously proposed
model-error reduction through iterative tuning (MERIT) method, which
prevents unphysical model departures from dominating the forward-
consistency cost (Liu et al., 2013). W; can thus be expressed as:

a, R
= “ 3 V(l,],k) P Literyy >f

Plitery, “)

U’\:

a, otherwise

i ?

Furthermore, on the empirical observation that data inconsistencies
generate more reconstruction artefacts (such as streaking and shadow-
ing) when using large SMV kernels, we also introduce an empirically
determined masking rule (applied to all scales except the initialisation,
[=1) to dynamically prevent cost contributions from the top q:—; th
percentile (P) of the measured-phase second differences, A"¢ (Abdul--
Rahman et al., 2007). Q; can be expressed as:

e —

0. V(i.j k) : A"y > Py | A", 122 -

1, otherwise

Clearly a potentially intractable number of strategies exist for
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dynamic error control. In this study, the scales defined by r; and the
masking rule in Eq. (5) were empirically optimised (qualitatively, and
quantitatively where possible) within the experimental framework of this
study (described below).

2.3. MSDI implementation

Fig. 1 schematically illustrates the procedural steps for the proposed
MSDI implementation, where each row represents a different spatial
scale (or Laplacian-pyramid level).

Through empirical observation (i.e. for the experiments described
below using a range of r; settings), we deemed four scales with increasing
power-of-two kernel radii (r;=2, 4, 8 and 16 mm, or the nearest multi-
ples of voxel resolution) as optimal for the present MSDI implementation.
Briefly, contrasting to over-determined solutions for a range of experi-
ments, we observed that large initial SMV radii are greatly inefficient at
preventing spurious background contributions to X;, whereas relatively
small final radii (e.g. r; < 6 mm) result in excessively attenuated solutions
from a quantitative standpoint. Small SMV radii, however, have merit for
some applications, e.g. where isolating short-extent dipole fields
emanating from the vasculature might be desirable.

Taking this into consideration, the first MSDI scale (row #1 in Fig. 1)
is expected to recover susceptibility sources (X;) from highly localised

dipole fields (¢,), i.e. those resulting from selective high-pass SMV pre-
filtering with a small kernel radius, ; = 2 mm (Eq. (1)). Filtered phases
are then deconvolved as in Eq. (3); with Wj initialised as A'l, f=6 for
intra-scale dynamic error control (MERIT default), and applying the
anisotropic morphological prior, MlT . In keeping with a previous MEDI
optimisation, My in MSDI was set to mask out the location of the top-30%
magnitude gradients (Liu et al., 2012b), though only for the first scale
(ie. rp =2 mm) where vascular features are most prominent, i.e. where
sharing edges with the magnitude image is a justified prior.

The constrained minimisation problem described in Eq. (3) is some-
what analogous to that in nMEDI (Liu et al., 2013). As such, MSDI's
Lagrangian formalism is also linearised to a first-order Taylor expansion
and solutions are approximated by the same quasi-Newton fixed-point
method provided in the MEDI toolbox (http://weill.cornell.edu/mri/
pages/qsm.html), including nested solution updates calculated via
conjugate-gradient matrix inversions (Kee et al., 2017). The weak de-
rivative of the #;-norm term results in a smoothing parameter, e, which
was set to 107%; default in recent—but not older—versions of the MEDI
toolbox. We found this setting ensures conjugate-gradient termination at
each quasi-Newton iteration is dictated by a given update step tolerance,
not a maximum number of iterations; in this study, CG;,;= 0.1 (MEDI
default). In addition, the global stopping tolerance for each scale was set
to a normalised residual step size of 0.1 (MEDI default).

Subsequent steps (rows #2-4 in Fig. 1) are expected to gradually
recover increasingly lower spatial-frequency features through iteration of
Egs. (1)-(5) with ever-increasing SMV kernel radii. Of note, in this study
we chose to keep susceptibility values unreferenced (i.e. zero DC-offset
throughout).

Turning to Eq. (2), rewriting it for &, ; and by substitution, it can also
be expressed as ¢; = ¢,_; — F'DFX; ,, which more clearly illustrates that
the proposed method is in essence a Laplacian pyramid (Burt and Adel-
son, 1983) that solves Laplace's equation by integrating differential so-
lutions from layers of increasing dipole extent (as defined by r). In these
sub-scales, Mlv in Eq. (3) is set to unity across the whole VOI, hence
disabling the morphological prior (which acts only on the Il =1 sub-scale
in the present implementation), whereas consistency contributions from
voxels with large local variations (predictive of measurement unreli-
ability) are gradually suppressed as described in Eq. (5) to prevent these
inconsistencies from dominating the data fidelity cost function. Through
empirical observation and quantitative validation (where possible with
experiments described below), the initial masking percentile was
empirically set to =10, ie. the extents of consistency masking across
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Fig. 1. Schematic illustration of the proposed multi-scale dipole inversion (MSDI) method. Each row illustrates the application of Egs. (1)-(4) across spatial scales. The
routine is initialised with SMV filtering with a small kernel radius of 2 mm. The first-scale deconvolution operation uses magnitude priors to ensure accurate depiction
of the vasculature and other focal susceptibility gradients if they are co-localised with rapid magnitude variations. Gradually increasing the background-filtering kernel
radius in subsequent scales (without using the magnitude prior) gradually recovers sparse susceptibility distributions from increasingly larger-scale fields. In MSDI, to
control for the impact of data inconsistencies, a weighting matrix, W;, is applied to compensate for phase-noise non-uniformities in a scale-dependent manner. In
addition, the masking rule imposed by Q; increasingly lowers the threshold for exclusion of noisy phase-neighbourhoods from the data fidelity term.

Q2.4 were 10, 20 and 40%. Inline Supplementary Figs. S1, S2 and S3
illustrate the basis for selecting optimal MSDI model parameters and
phase pre-processing in this study.

2.4. QSM Reconstruction Challenge assessments

In order to assess its performance, MSDI was compared with nMEDI
and other state-of-the-art methods in the context of the 2016 QSM
Reconstruction Challenge (Langkammer et al., 2018), where 27 algo-
rithms—initialised with single head-orientation data—were set to mini-
mise several error/dissimilarity metrics with respect to the susceptibility
tensor component, y33. Metrics were: root-mean-square error (RMSE, as a
percentage of the absolute ground-truth reference), high-frequency error
norm (HFEN) (Ravishankar and Bresler, 2011), structure “dissimilarity”

10

index or 1-SSIM (Wang et al., 2004) and mean absolute error across
several grey and white matter regions of interest (ROI Error). In the
present study, we also calculated performance metrics relative to a
Calculation of Susceptibility through Multiple Orientation Sampling
(COSMOS) ground-truth reconstruction (Liu et al., 2009). Subsequently,
we assessed the reliability of L-curve analysis (Hansen and O'Leary,
1993) for optimal regularisation parameter estimation through a
covariance study of maximum L-curvature versus algorithm
performance.

2.5. Scan-rescan stability tests

The reproducibility of the proposed algorithm was systematically
investigated with data from a single subject (38y. o. male) who was
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scanned on a Siemens Trio 3T MRI system using a 32-channel receive
array coil (Siemens Healthcare, Erlangen, Germany) on five consecutive
days using a 2 x 2-accelerated, spoiled 3D gradient-recalled echo (GRE)
sequence with 0.8-mm isotropic voxels (320 x 280 x 224 matrix, head-
foot readout direction and 30° field-of-view angulation to minimise the
impact of eye-movement artefact in the cortex), 12° flip angle (@) and
eight bipolar echoes with minimum echo time (TEy;), 2.34 ms; inter-
echo spacing (ATE), 2.30 ms; repetition time (TR), 25 ms; and receiver
bandwidth (BW) set to 488 Hz/pixel; giving a total acquisition time (TA)
of 7:08 min. Hereafter this acquisition will be referred to as “3T Multi-
Echo”. Of note, the same positioning routine was adopted for all scans
(same head padding, leg-resting cushion, etc), but the exact head orien-
tation was not systematically controlled for. This approach was adopted
in order to capture the variance that one might expect from serial scan-
ning in normal conditions.

Raw data were reconstructed offline with a sensitivity-encoding al-
gorithm, SENSE (Pruessmann et al., 1999), followed by spatial (best--
path) phase unwrapping (Abdul-Rahman et al, 2007),
magnitude-weighted least-squares phase fitting with bipolar-readout and
transmit-related offset adjustment (see Inline Supplementary Fig. S4),
ROI estimation—with the brain extraction tool, BET2 (Smith, 2002),
fractional threshold set to 0.1—from the root-mean-square echo--
combined magnitude image, and background-phase removal in two
steps: LBV (Zhou et al., 2014) with two-layer ROI peeling (otherwise
default settings) and vSMV (Li et al, 2011) with rp=40mm and
step-size/final kernel radius of 1 voxel (see Inline Supplementary
Fig. S2).

2.6. General assessment of acquisition dependencies

We investigated the robustness of the MSDI approach both for 3T and
7T MRI acquisitions. At 3T, in addition to those for “3T Multi-Echo”,
summary measures (QSM mean/o across repetitions) were also calculated
for data acquired with a 2 x l-accelerated, fully flow-compensated,
spoiled 3D GRE pulse sequence (“3T Single-Echo”). These data were
acquired five times for the same subject during the same five sessions as
the “3T Multi-Echo” data with the following scan parameters: a =13°,
single TE/TR =20/27 ms, BW =120 Hz/pixel, 256 x 200 x 80 matrix
(no field-of-view angulation) with 1 x 1 x 2 mm? voxel resolution giving
a TA of 4:10 min.

Quantitative susceptibility maps for the “3T Single-Echo” datasets
were processed as follows: 3D complex-valued data from each coil ele-
ment—reconstructed using the Generalised Autocalibrating Partially
Parallel Acquisitions (GRAPPA) algorithm (Griswold et al., 2002)—were
resliced to 1 mm isotropic resolution via zero-padding. 3D phase maps
were then unwrapped with a discrete implementation of the Laplacian
method (Schofield and Zhu, 2003), and were subsequently
background-filtered using the same two-step harmonic-removal proced-
ure as for “3T Multi-Echo”. This pre-processing step removed coil-specific
phase offsets, thus artefact-free, coil-combined filtered phases were
inferred from a direct magnitude-square weighted sum.

As for “3T Multi-Echo”, regularisation parameters for inversion were
also optimised with L-curve analyses (Hansen and O'Leary, 1993).
Regarding spatial normalisation, GRE-magnitude images for each scan
repetition were nonlinearly coregistered (using ANTSs) to the mean “3T
Multi-Echo” magnitude image (in study space), then resulting trans-
formations were applied to each “3T Single-Echo” QSM (with high-order
interpolation to 0.8-mm isotropic resolution). These maps were finally
brain-masked to enable direct comparisons between the two scan types.
In addition to whole-brain maps, mean QSM values were also extracted
bilaterally from selected ROIs — globus pallidus, putamen, caudate nu-
cleus, thalamus, hippocampus, amygdala, and mid-sagittal corpus cal-
losum (CC). All ROIs were segmented using previously validated
coregistration-based methods (Acosta-Cabronero et al., 2016; Betts
et al., 2016).

MRI scanning at high field was performed on Magdeburg's 7T

11
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whole-body system (Siemens Healthcare, Erlangen, Germany) in
conjunction with a quadrature-transmit/32-channel receive-array coil
(Nova Medical Inc., Wilmington, Massachusetts, USA). In this experi-
ment, we evaluated the consistency of three high-resolution acquisi-
tions - all fully flow-compensated, spoiled 3D GRE scans with voxel
resolutions 0.33 x 0.33 x 1.25 mm3, 0.35 x 0.35 x 1.25mm°® and
0.5x 0.5 x 0.5mm® respectively. Imaging parameters for the
0.35 x 0.35 x 1.25 mm°> acquisition were a=10°, TE/TR=10/18 ms,
BW =100 Hz/pixel, 640 x 560 x 120 matrix (no angulation) with
2 x 1 acceleration and further 7/8 partial Fourier sub-sampling along
both phase-encoding directions giving a TA of 8:46 min. Of note, this
sequence has been adopted by EUFIND - a European Union funded
consortium concerned with harmonising 7T MRI methods for neuro-
degenerative disease research and clinical trials (http://www.
neurodegenerationresearch.eu/wp-content/uploads/2016,/06/JPND_
Project-Fact-Sheet EUFIND-2.pdf), hence in the remaining sections
this acquisition will be referred to as “ 7T EUFIND Aniso”. In contrast,
both the 0.33 x 0.33 x 1.25mm® and 0.5-mm isotropic scans used a
modified 3D GRE sequence with prospective motion correction (PMC)
functionality. Briefly, an in-bore camera (Metria Innovation, Milwau-
kee, Wisconsin, USA) was used to track a Moiré phase marker attached
to the subject's upper jaw (with a custom-made mouthpiece), which
enabled short-latency updates to the imaging volume's position and
orientation for coherence with prospectively tracked head motion.
More details on the PMC system (Maclaren et al., 2012; Stucht et al.,
2015) and high-resolution examples can be found elsewhere (Luse-
brink et al., 2017a; b; Mattern et al., 2018). These two scans will
subsequently be referred to as “7T PMC Aniso” and “7T PMC 0.5Is0”,
respectively. Additional scan details for “7T PMC Aniso” were a =10°,
TE/TR =9.1/20 ms, BW =120 Hz/pixel, 608 x 504 x 88 matrix (full
k-space acquisition, no angulation), TA = 17:30 min; and for “7T PMC
0.5Is0” were a=10°, TE/TR=9.2/20ms, BW =100 Hz/pixel,
416 x 336 x 288 matrix (no angulation) and 2 x 1 parallel accelera-
tion giving a TA of 17:34 min.

Each high-resolution 7T scan was acquired once for the same 35y.
o. male volunteer during different imaging sessions. Uncombined data
were exported offline and reconstructed using the same processing
routine used for the “3T Single-Echo” data. In order to ease compa-
rability, susceptibility maps were spatially standardised using an
ANTs-based procedure (Acosta-Cabronero et al., 2016) with interpo-
lation to the smallest overall voxel volume, i.e. 0.5-mm isotropic res-
olution giving 0.125 mm? voxels. Finally, a global mask was applied to
restrict error calculations to the ROI-mask intersection common to all
three scan-types. The prediction for this experiment was that robust 7T
MSDI should lead to relatively small deviations from the global mean
across scan types.

2.7. Pilot investigation of MSDI-related contrasts

Focusing on a high-resolution dataset (“7T PMC Aniso™), which due to
its highly anisotropic voxel resolution previous modelling work predicts
should be highly consistent with vascular dipole fields (Deistung et al.,
2008), we explored whether the MSDI approach could produce
susceptibility-based MRI contrasts with greater tissue specificity. In other
words, we explored whether the multi-scale nature of the present QSM
approach could be utilised to isolate tissue types with specific
dipole-extent characteristics:

2.7.1. High-pass susceptibility mapping (HPSM) and MSDI-based
venography (VenoMSDI)

Close inspection of MSDI-optimisation stages revealed two clear be-
haviours. First, (i) combined dipole/SMV deconvolution (Eq. (3)) using
small spherical-kernel radii (rmax up to about 4 mm) results in high-pass
filtered QSM solutions with excellent anatomical detail. The concept of
short-range, high-pass QSM will be referred to hereafter as HPSM. Sec-
ond, (ii) strong regularisation is very effective at isolating susceptibilities
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from deoxygenated blood products due to the well-known sparsity pro-
moting properties of Eq. (3). We subsequently hypothesised that (i) with
Fmax = 2mm, in combination with (ii), should essentially capture the
continuous, highly intense and spatially restricted field-offset charac-
teristics driven by venous blood vessels. With 1.y =2 mm, A = 10'% and
binarising positive-negative susceptibilities, we obtained highly
confluent masks of the vasculature that enables extracting full-scale MSDI
values for venography (VenoMSDI).

2.7.2. Macro-vessel suppressed susceptibility mapping (MVSSM)

With a map of the vasculature, we also derived a complementary
MSDI-based contrast for the study of nonheme iron and extravascular
blood deposits with greater specificity, i.e. MVSSM. The simplest form of
MVSSM is the element-wise product of a fully inverted MSDI map and the
complement of the binary mask derived for VenoMSDI. This operation, in
contrast to that for VenoMSDI, resets all macro-vessel related QSM
hypointensities to zero, which we hypothesise is desirable both for
greater tissue specificity in regional extractions, and for more robust
behaviour in whole-brain statistical analyses requiring spatial
smoothing.

2.7.3. HPSM-based Susceptibility-Weighted Imaging (HPSM-SWI)

Furthermore, we explored the possibility of combining HPSM with
magnitude information as an alternative to conventional SWI. To this
end, we normalised HPSM (ry.x = 2 mm) as described in Eq. (6) below,
raised it to the power of four inherited from SWI (Haacke et al., 2009),
and used this to weight the RF-bias corrected (Tustison et al., 2010)
GRE-magnitude image. HPSM-based weights, I'jx, were inferred as
follows:

0, V(0,7 k) s, > c

c—x,
Iy = Xy
c

V(i j k) 10 <y, < e (6)

1, otherwise

where c—set in this study to 0.2 ppm—is a critical value below which
(down to zero-susceptibility) high-pass filtered susceptibilities are re-
scaled between 0 and 1, and above which I'jx are set to zero for
maximal susceptibility weighting. A highly regularised (1 = 10'®) HPSM
solution was chosen for creation of this weighting mask. A high degree of
smoothness was preferred to prevent noise amplification on magnitude
multiplication, whilst the magnitude-based prior (used in combination
with the smallest kernel radius) ensured at least some degree of data fi-
delity for a distribution of spatially concordant rapid field/magnitude
variations (i.e. those excluded by M from the regularising term in Eq.
(3)), which almost exclusively captures the venous vasculature. In this
study, a qualitative comparison was performed between HPSM-SWI and
conventional SWI from the same dataset (“7T PMC Aniso”). Finally, in
order to enhance vessel continuity and improve overall visualisation of
blood products we also qualitatively explored the potential use of
maximum intensity projections from optimally regularised HPSM (MIP-
HPSM) as a viable alternative to intensity projections derived from
magnitude-weighted contrasts (as in standard SWI).

3. Results
3.1. QSM Reconstruction Challenge

Using data provided for the 2016 Challenge and y33 as the ground
truth, we found some degree of variability in “optimal A” values for
the different performance metrics (Table 1, Fig. 2A). Scores using
COSMOS (except ROI Error) indicated better matching than when
using the ys3 reference (Table 1, Fig. 2B). Overall, MSDI returned
lower scores than nMEDI for RMSE and HFEN metrics. Using the ys3
reference specifically, MSDI also outperformed nMEDI for ROI Error,
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Table 1

Challenge results. Optimal MSDI and nMEDI regularisation parameter values
minimising different performance metrics with respect to y33 and COSMOS
ground truths. Lower metric scores indicate better performance.

33 ground truth COSMOS ground truth

MSDI nMEDI MSDI nMEDI

RMSE 78 (A=10%%) 90 (A=10"9) 66 (1=10%?) 77 (A=10"%
(%)

HFEN 71 (A=10%%) 80 (1=10'?) 61 (1=10%% 67 (A1=10%%)
(%)

1-SSIM 0.13 0.01 (A=1) 0.10 0.02 (A=1)

(=10%*% (1=10%%

ROI 0.016 0.019 0.019 0.016

Error (2=10%2) (A=10'%) (A=10%% (2=10'%)

Abbreviations: Root-mean-square error (RMSE, as a percentage of the absolute
ground-truth reference), high-frequency error norm (HFEN), structure “dissimi-
larity” index (1-SSIM), mean absolute error across several grey and white matter
regions of interest (ROI Error).

whereas nMEDI reconstructions were preferred according to the 1-
SSIM metric. In contrast, using COSMOS, although the 1-SSIM
behaviour remained unchanged, nMEDI returned ROI Error levels
equivalent to those observed for MSDI with y33 while MSDI values
were increased. Qualitatively we noted that MSDI yielded more
structured reconstructions than nMEDI, which overall returned more
severely over-regularised maps.

In contrast to all other methods previously evaluated within the QSM
Challenge framework, MSDI ranked in the top-10 for all performance
metrics (Fig. 3A). Unexpectedly, however, in this study we found the
SSIM-based measure to favourably rank nMEDI reconstructions with
little texture (at odds with subjective visual appeal). For example, the
best score was achieved with an excessively regularised 1=1 setting.
MSDI optimisations, conversely, returned largely consistent behaviours
throughout, while still ranking within the Challenge top-10 level for this
measure.

Subsequent L-curve analysis (Fig. 3B) returned an optimally cost-
balanced 4 for MSDI that was in close agreement with the metric-
optimised As (using the ys33 ground truth). However, except for “ROI
Error”, we found no evidence to suggest L-curvature co-varied with
metric scores (Fig. 3C). In contrast, using the COSMOS ground truth we
found L-curvature to be a more robust predictor of MSDI's relative per-
formance (Fig. 3D). Interestingly, we also observed that performance
metrics overall favoured over-regularised solutions (relative to L-curve
estimates), i.e. slightly lower-than-optimal As returned systematically
lower metric scores than higher-than-optimal s (Fig. 3C-D). Note that 4
is a multiplicative factor operating on the consistency term in Eq. (3),
thus smaller 1s lead to greater spatial smoothness, i.e. greater sparsity on
the 3D gradient of the QSM solution.

3.2. Scan-rescan stability

Overall, the MSDI and nMEDI methods (both L-curve optimised)
yielded visually appealing susceptibility maps from “3T Multi-Echo” data
(see Inline Supplementary Fig. S5). On close inspection, however, we
noted that MSDI reconstructions yielded greater anatomical detail, with
more uniform and more reproducible appearance than nMEDI. The latter
was confirmed by direct scan-rescan QSM variability measurements (¢
across the five repetitions for each method), which showed a 24% in-
crease (on average across the whole brain) for nMEDI relative to MSDI
(Fig. 4). This increase in data dispersion was driven by nMEDI in-
stabilities in the corpus striatum, prefrontal white matter, cerebellar grey
matter, and across cerebral cortex in orbitofrontal, superior prefrontal,
temporal and occipital regions. In contrast, QSM measurements in pari-
etal cortex, primary somatosensory/motor fields and central white mat-
ter were the most consistent across methods.
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Fig. 2. Challenge results. Optimal MSDI (middle row) and nMEDI solutions (bottom row) minimising different performance metrics with respect to (A) y33 and (B)
COSMOS ground truths (both shown on the top row). The QSM range was clipped to [-0.1, 0.25] ppm for consistency with the Challenge report (Langkammer

et al., 2018).
3.3. Acquisition dependencies

L-curve analyses for the five “3T Multi-Echo” and the five “3T Single-
Echo” scan repeats were highly consistent (see Inline Supplementary
Figs. S6A-B). The most frequent, optimally cost-balanced 4 for “3T Multi-
Echo” was 10%° (four times, 102 only once), whereas for “3T Single-
Echo” the predominant outcome was 1 =10%* (four times, 10%° only
once). In study space, RMSE, HFEN and 1-SSIM scores were calculated
between the mean (across repeats) “3T Multi-Echo” QSM, using the L-
curve optimised 1 of 102'6, and the mean (across repeats) “3T Single-
Echo” QSM calculated with variable 1. The RMSE results are shown in
Inline Supplementary Fig. S6C (analogous behaviours were obtained for
HFEN and 1-SSIM scores, not shown). The 4 value for which error scores
were minimal (i.e. the “3T Single-Echo” reconstruction most consistent
with the independently optimised “3T Multi-Echo” QSM reference),

matched the global (median) estimate from the L-curve analysis, ie.
1=10%* of the “3T Single-Echo” data.

L-curve analyses for high-resolution 7T data were also consistent
throughout, converging on an optimal 4 of 1027 (see Inline Supplemen-
tary Fig. S7). Subsequent qualitative comparisons across 7T scan sub-
types (Fig. 6) revealed MSDI is generally stable with high-field data.
Although direct comparisons with the overall mean map (Fig. 6D)
highlighted a number of differences (see Inline Supplementary Fig. S8):
the dispersion was increased for the isotropic data, which, generally,
showed slightly greater inconsistencies, particularly in deep brain re-
gions. Nonetheless, departures from the mean were overall small relative
to absolute QSM values. Global RMSE scores were similar (RMSE<62%
with respect to the global mean across scan types) for 7T data (using
different native image resolutions) to those reported for the fully con-
sistent—but signal-starved—Challenge dataset (RMSE>66% with
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Fig. 3. Challenge results. (A) MSDI's relative performance using the y33 ground truth. Lower values indicate better performance. “Challenge best” denotes the best
method for each metric (i.e. metric-specific best). Top-10 algorithms in the Challenge scored 79.1% (RMSE), 74.2% (HFEN), 0.17 (1-SSIM) and 0.018 (ROI Error) or
below. GRAZ TGV denotes performance for a Total Generalised Variation (TGV) single-step method (Langkammer et al., 2015) that entered the QSM Workshop
Challenge. (B) MSDI's L-curve analysis results (“optimal 17, i.e. point of maximum curvature, denoted by an open circle). Algorithm performance as a function of

maximum L-curvature using (C) y33 and (D) COSMOS ground-truth references.
respect to a COSMOS ground truth).

3.4. MSDI-related contrasts

3.4.1. High-pass susceptibility mapping (HPSM)

Interestingly, although the same 1 (A =10%7) returned maximum L-
curvature across all “7T PMC Aniso” MSDI sub-scales, we also obtained
highly appealing shorter-range inversions when imposing greater data
fidelity to the solution, e.g. linearly increasing logio(4) with decreasing
Tmax = 8, 4 and 2 mm, respectively (Fig. 7A-C). Fig. 8 shows an extended
view of the data in Fig. 7A (high fidelity inversion from high-pass SMV-
filtered field inductions) with a tighter clipping range to enhance struc-
tural detail.

3.4.2. MSDI-based venography (VenoMSDI)

Consistent with our prior hypothesis, we also found that the spatial
distribution of highly regularised (A = 10'"°, ryax = 2 mm) positive HPSM
values was highly co-localised with the macroscopic vasculature
(Fig. 7E).

3.4.3. Macro-vessel suppressed susceptibility mapping (MVSSM)

The above meant we could readily suppress large blood vessels from
QSM using a direct masking procedure (see Fig. 7H versus Figs. 7D, and
Fig. 9 for MVSSM's extended view). Formally characterising the effi-
ciency of vessel masking in MVSSM, we contrasted maximum-MVSSM to
maximum-MSDI projections over 7.5mm, which confirmed the high
specificity of the proposed method to exclude vascular contributions (see

Supplementary Fig. S9).

3.4.4. HPSM-based Susceptibility-Weighted Imaging (HPSM-SWI)

Additionally, we explored the use of HPSM as an alternative to high-
pass filtered phase maps conventionally used in SWI. This resulted in a
qualitatively sharp susceptibility contrast (Fig. 7J-K), which compared
positively with conventional SWI on a visual assessment of minimum-
intensity projections using the same multiplicative weighting factor of
4 (Fig. 10).

Furthermore, for enhanced visualisation, we confirmed the potential
of maximum-intensity projections from optimally regularised HPSM as
an alternative to conventional magnitude-based intensity projections
(Figs. 7L and 11).

4. Discussion

Recent developments proposed the integration of background-
removal principles within single-step formulations both for algorithmic
efficiency and to improve reconstruction stability (Chatnuntawech et al.,
2017; Kee et al., 2017; Langkammer et al., 2015; Liu et al., 2017).
However, in their current form vulnerability to artefactual streaking
propagation, due to insufficient phase-noise/error considerations, re-
mains. We hereby formulated a Multi-Scale Dipole Inversion (MSDI)
approach based on a previously proposed nonlinear dipole inversion
solver (Liu et al., 2013), which has been extended through a pyramidal
implementation of Laplace's equation to better model background-field
remnants, and enable tighter error control via scalewise consistency
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Fig. 4. (A) MSDI and (B) nMEDI summary statistics for a reproducibility experiment in which the same “3T Multi-Echo” sequence was used to scan the same 38y. o.
healthy male subject on five consecutive days. (Top row) Representative sagittal, coronal and axial slices for mean QSM over five time-points. (Middle row) Standard
deviation (¢) over the same five time points, with <¢> inset representing the average ¢ across the whole brain. (Bottom row) Coefficient of QSM variation across
repetitions (CV = 6/mean). Arrows indicate regions of greater unexplained variation for nMEDI than for MSDI. Though for simplicity arrows are shown unilaterally,
regions of high variance are typically bilateral. The opposite behaviour (greater variation for MSDI) was not observed.

rejection and more adaptive regularisation through selective edge
masking, in turn driving robust convergence pathways that led to accu-
rate and highly reproducible reconstructions for a broad range of
different data types.

In the first instance we assessed MSDI's performance in the context of
the 2016 QSM Reconstruction Challenge (Langkammer et al., 2018),
where unlike any other algorithm proposed to date, it ranked in the
top-10 for all performance metrics evaluated. The Challenge consisted of
reconstructing a single-orientation dataset from a highly accelerated (i.e.
relatively signal-starved) acquisition. Interestingly, slightly different
regularisation parameters minimised different error metrics using the
susceptibility tensor component, y33, as the ground truth. The optimal
regularisation parameter was more convergent (and consistent with
L-curve analysis) when using a COSMOS ground-truth reference instead.
Such results provide evidence not only in support of COSMOS as a more
suitable target reconstruction for algorithm performance evaluations, but
also of L-curvature maximisation as a valid regularisation parameter se-
lection method for MSDI.

Another interesting observation from this experiment was that
compared with nMEDI, ie. the backbone of the present multi-scale
implementation, MSDI yielded susceptibility maps with greater
anatomical detail and improved ground-truth consistency. The latter was
true for all performance metrics except for the so-called structure
dissimilarity index or 1-SSIM, which was greatly reduced for physically
implausible over-regularised nMEDI reconstructions (4 = 1). Such unex-
pected (and undesirable) behaviour is worth highlighting because,
although for the MSDI evaluation 1-SSIM was largely concordant with all
other metrics, nMEDI's abnormal behaviour speaks against the reliability
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of 1-SSIM scores and indicates that this metric should be interpreted with
caution in this context.

Furthermore, maximum L-curvature versus Challenge-performance
plots (see Fig. 3) revealed further interesting behaviour arguing against
the commonly held view that slight under-regularisation should be
preferred to slightly over-regularised QSM. According to the present
Challenge results, error/artefact propagation via under-regularised over-
fitting might signify a greater penalty to global QSM accuracy than slight
over-compensation. In other words, it might be that QSM regularisation
is only sufficient once streaking artefacts and other large-scale features,
e.g spurious background remnants, have been tightly constrained, which
for algorithms with limited error control or cases with poor (e.g. signal-
starved or motion-corrupted) input data might result in optimal solu-
tions that are unphysically smooth in appearance.

Despite the immense promise that QSM has shown in the broad array
of research and clinical applications listed in the introduction, propor-
tionally less has been reported to date regarding e.g its scan-rescan
reproducibility (Deh et al.,, 2015; Feng et al., 2017; Hinoda et al.,
2015; Lauzon et al., 2017; Lin et al., 2015; Santin et al., 2017). Systematic
evaluations of this type are particularly pressing given the current need to
define a normative baseline over and above which clinicians can seek to
identify disease-specific signatures in the spatial distribution of QSM
alterations, and the emerging evidence that QSM may be differentially
sensitive to pathology, e.g. across many neurodegenerative disease states.
In addition to the specifics of the data acquisition—e.g. number of echoes
acquired, field strength used and image resolution—the choice of QSM
reconstruction routine (each of which have differential sensitivity to
factors such as data inconsistencies or imperfect background field
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Mean macroscopic susceptibility across scan types.

removal) can also influence the scan-rescan reproducibility.

In the present study we demonstrated improved measurement sta-
bility with the MSDI approach with respect to nMEDI. It is well known
that error/artefact propagation emanating from large and abrupt field
offsets, e.g. in anterior temporal and orbitofrontal regions or in the vi-
cinity of large blood vessels, pose the most significant challenge for
robust QSM (see Inline Supplementary Fig. S1). Focusing on such regions
specifically, it is clear from Fig. 4 that MSDI can effectively constrain
undesirable streaking and shadowing artefacts, thus leading to re-
constructions with more uniform appearance and more reproducible
values than nMEDI.

This study has also confirmed that MSDI's regularisation parameter
could be robustly optimised on repeat measurements using the L-curve
method. In particular, all optimal is for MSDI in this study (i.e. across
multi-echo and single-echo acquisitions at 3T and 7T) were between
1=10%>*(for 1 x1x2 mm3, 3T single-GRE) and 1 = 10%7 (for all high-
resolution scans at 7T) — a relatively narrow range, which to some
extent was aided by the TE-Bp=60msT normalisation step prior to
inversion (introduced in this study to harmonise the great dispersion of
effective ATEs moving from broadband multi-echo to long-TE single-GRE
acquisitions). It is important to note that curvature estimates from the L-
curve method are notoriously volatile, ie. they depend strongly on
parameter-sweeping rate and solver-stopping criteria. In this study, we
converged on a recipe that was stable across acquisitions, although we
cannot rule out unexpected instabilities in future studies. For untested
data types or other MSDI settings, the regularisation parameter should
again be optimised as the mean (in the log scale, or the median) “L-
corner” from several measurements, preferably on multiple subjects.

To date, several spoiled-GRE acquisitions have been proposed for
QSM. Therefore, in this study, we assessed the stability of MSDI for a
representative range of widely used scan types. We specifically measured
scan-rescan QSM variability for a 3T multi-echo GRE sequence, which,
except for flip angle, was identical to that used in a previously validated
multi-parameter mapping protocol (Callaghan et al., 2015). We con-
trasted this to the reproducibility of a lower resolution—but fully
flow-compensated—3T single-echo scan, which was originally proposed
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for SWI (Mittal et al., 2009) but has also been used in previous QSM
cohort studies (Acosta-Cabronero et al., 2013, 2016, 2017). MSDI
returned high quality susceptibility maps for both acquisitions, which
were qualitatively similar (see Fig. 5) suggesting that the impact of
transmit-related and direct-current offsets on single-echo QSM repro-
ducibility is somewhat small, at least with the present methodology.
Interestingly, the reproducibility assessment (contrasting the variability
of both scan types) also suggested that QSM from the single-echo
acquisition (average o across the whole brain for five scan repeats on
five consecutive days, <o> = 0.0046, see Fig. 5) might be overall more
reproducible than from “3T Multi-Echo” data (<o> = 0.0074). Eluci-
dating the root cause for this behaviour is beyond the scope of this study,
but may be attributable to one or more of the key differences between the
two acquisitions, namely (i) single (low bandwidth) echo centred at
20 ms versus eight (broadband) echoes starting at 2.34 ms (the latter thus
putatively more sensitive to myelin's short-To* component), (ii) full
flow-compensation versus no gradient-moment nulling (i.e. multi-echo
QSM in this study possibly more vulnerable to flow effects), (iii)
two-fold accelerated, 1 x1x2mm?® versus four-fold accelerated,
0.8-mm isotropic voxel resolution (leading to differential scan time,
signal-to-noise properties, spatial specificity and bandpass interpolation
effects between acquisition types), (iv) true-axial versus 30° field-of-view
angulation (i.e. multi-echo QSM in this study requiring dipole kernel
rotation making it potentially more vulnerable to discretisation errors),
and (v) separate-channel GRAPPA reconstruction followed by
phase-filtering based coil-combination for single-GRE data versus
SENSE-based reconstruction for multi-echo data. The latter might be
relevant in that, besides known GRAPPA-SENSE efficiency differences,
the coil-combination routine for single-echo data included a discrete
Laplacian phase unwrapping step that could have altered the perfor-
mance of the background-field removal algorithm, and may potentially
have resulted in a non-negligible downstream effect on the invertibility
of some dipole fields.

Although the greater variance observed for multi-echo QSM clearly
warrants a further systematic investigation, additional clues can be
inferred from the present dataset. For example, multi-echo QSM was
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Fig. 7. Sample illustration of MSDI-related contrasts from “7T PMC Aniso” data. High fidelity (HF) HPSM: (A) rmax =2 mm, 1= 10%3, (B) HF-HPSM, F'yax = 4 mm,
2=10%1. (C) HF-MSDI, Fipax =8 mm, A=10%°. (D) Full-scale MSDI, ryay = 16 mm, 2=10%7. (E) Positive-only mask from highly regularised HPSM, 7oy = 2 mm,
2=10"° (ie. binary mask of the macro-vasculature). (F) Negative-only distribution for MVSSM. (G) Positive-only MVSSM distribution. (H) Full-range MVSSM. (I) RF-
bias corrected magnitude image normalised to the whole-brain mean. (J) Highly regularised HPSM based SWI, Fipax = 2 mm, 2=10"°. (K) Minimum-intensity pro-
jection map (mIP over 7.5 mm) for HPSM-SWI. (L) Maximum-intensity projection (MIP over 15 mm) for optimally regularised HPSM, ryax =2mm, A = 1027 (note
reversed colour scale for consistency with conventional mIPsy; contrast). Abbreviations: MSDI (Multi-Scale Dipole Inversion), r; (kernel radius defining S; and its
complement in Egs. (1)-(3)), 1 (regularisation parameter in Eq. (3)), HPSM (High-Pass Susceptibility Mapping), MVSSM (Macro-Vessel Suppressed Susceptibility

Mapping), HPSM-SWI (HPSM-based Susceptibility Weighted Imaging).

more sensitive (than single, long echo-time QSM) to field offsets origi-
nating from the mid-sagittal corpus callosum. Assuming such an effect is
putatively driven by myelin's diamagnetism, we could explain both the
overall increase in QSM variability and the susceptibility attenuation
observed for multi-echo QSM in the corpus striatum (most notably the
globus pallidus), in turn traversed by large numbers of myelinated
nigrostriatal axons (Morris et al., 1992), as direct consequences of the
influence of a short-lived myelin component on short echo-time phase
information. This is in agreement with two recent investigations of
echo-time dependence that also found absolute susceptibility reductions
in the corpus callosum, i.e. highly negative susceptibilities for short TE
were rapidly attenuated with increasing echo time (Cronin et al., 2017;
Sood et al., 2017). Sood et al., however, also predicted QSM attenuation
in the globus pallidus for long echo times, which is in conflict with Cronin
et al. and these results (Fig. 5). Taken together, these results suggest that
the potential QSM dependence on TE is incompletely understood.
Meanwhile, therefore, care must be taken when combining GRE data
with different effective echo times for group studies.
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The high-resolution QSM experiment at high field was also consistent
with 3T results in that 7T MSDI reconstructions were overall concordant
across scan types (see Fig. 7). To recap, we probed the following aspects:
(i) under-sampled versus full k-space data with approximately matched
image resolution (~0.34 x 0.34 x 1.25mm®) — the latter prospectively
motion corrected, and (ii) isotropic versus anisotropic image resolutions
both using PMC technology and matched for voxel volume (~0.13 mm®)
as well as scan time (~17:30 min). The experiment aimed at: (i) probing
whether signal-to-noise ratio differences could drive major QSM offsets
when imaging at high spatial resolution, and (ii) shedding new light on
the idea that GRE acquisitions with anisotropic voxels might be more
suitable for accruing coherent phase from the vasculature than scans with
isotropic resolution (Deistung et al., 2008). Although we found relatively
strong concordance between 3T and 7T QSM variance distributions, both
of which indicated phase measurements from inferior prefrontal, tem-
poral and, generally, deep brain regions are the least robust overall, we
did not find any substantive evidence supporting “(i)” in that the
observed variability was relatively small, i.e. no major systematic offset
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Fig. 8. Extended view of high fidelity (1 = 10>®), high-pass (rmax = 2 mm) susceptibility mapping (HF-HPSM) using “7T PMC Aniso” data.

was observed. However, the present results were in agreement with “(ii)”
in that—although differences were small—0.5-mm isotropic resolution
QSM returned the greatest overall deviation from the global mean. This is
the first such indication with QSM, and also warrants further investiga-
tion with more power.

Ultra-high field, high-resolution data yielded MSDI maps with superb
anatomical detail. This was driven by several factors including substan-
tial phase-sensitivity and signal-to-noise ratio gains at 7T, and QSM's
composite nature — a highly desirable feature in that it makes the tech-
nique sensitive to a wide range of tissue properties, hence with potential
to detect many neurobiological processes, though conversely it also
makes isolating individual susceptibility sources a non-trivial problem.
Clearly, new approaches that can decouple different source types from
the QSM contrast would be highly desirable. In this study, we did explore
the possibility that the spatial filtering properties of Eq. (3) could be used
to isolate the vasculature from the present data for VenoMSDI. We
explored this conceptually using a combination of morphological and
mathematical priors that promoted strong spatial concordance between
the distribution of high-pass susceptibilities (HPSM) and MEDI's edge-
mask (derived from the signal magnitude). The rationale was that such
priors should lead to a source distribution: (i) with highly attenuated
susceptibilities where magnitude variations are relatively small (i.e.
predominantly soft tissue), and (ii) high data-fidelity in regions co-
localised with the strongest magnitude gradients (i.e. the vasculature),
with the regulariser further enforcing 3D continuity for those two com-
partments. Isolating venous-blood contributions is highly relevant — it
would not only enable greater specificity in QSM analyses (by exclusion
of vascular contributions), but it could also enable inferences to be made
from directly-visualised veins, e.g. through oxygen extraction fraction
(OEF) measurements. We qualitatively confirmed this hypothesis (see
Fig. 7E) and illustrated a direct application to Macro-Vessel Suppressed
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Susceptibility Mapping (MVSSM, see Figs. 7H and 9 for extended view,
and Supplementary Fig. S9 for efficiency-test results), which visually
improved QSM's tissue specificity and, potentially, statistical condition-
ing for whole-brain analyses. Reassuringly, the midline vasculature, for
example, was selectively removed whilst the contiguous nonheme—but
iron-rich—habenula (small sub-nucleus along the thalamus dorsal sur-
face) was preserved. Further work is warranted to investigate the full
potential of VenoMSDI at ultra-high field.

Further focusing on the diencephalon, with the thalamus specifically
being a highly relevant use-case for QSM (Deistung et al., 2013), it was
also observed that—in addition to habenula—iron-rich pulvinar and an
adjacent sub-nucleus from the lateral group (consistent with the location
of the ventrocaudal nucleus) contrast highly (paramagnetically) with the
surrounding tissue (see Fig. 7G). Notably, these are not the only cases
where QSM can help resolve structures where conventional MRI con-
trasts fall short — for example, anterior, mediodorsal and lateral thalamic
subregions, arteries perforating the striatum, the nigral nigrosome-1, and
cortical/subcortical iron content variations across the brain are also
readily identifiable from high-resolution QSM - all with their expected
susceptibility polarity. For a detailed view of high-fidelity HPSM struc-
tural capabilities see Fig. 8.

It is worth noting that the QSM contrast is closely related to SWI — a
successful MRI technique in current use for a wide range of clinical ap-
plications including micro-bleed detection, identification of abnormally
calcified tissue, tumour characterisation, and more (Haacke et al., 2009).
In the context of the present multi-scale approach, and given that QSM
has already been proposed for magnitude-based susceptibility weighting
(Gho et al., 2014), we explored specifically whether HPSM could inte-
grate with SWI to further enhance venous contrast by incorporating
high-pass susceptibility mapping as an alternative to homodyne-filtered
phase distributions. In conventional SWI, a relatively long echo-time
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Fig. 9. Extended view of optimally regularised (2 =10%7), full-scale (r,.4 = 2, 4, 8, 16 mm), macro-vessel suppressed susceptibility mapping (MVSSM) from “7T PMC

Aniso” data.

Fig. 10. Representative axial slices of (A) highly regularised HPSM-based SWI (HPSM-SWI, ryp.x = 2 mm, 4 = 10%%), and (B) minimum-intensity projections (mIP) over
7.5 mm. Same view for (C) conventional SWI (using a 300 x 300 2D Hanning kernel - the smallest window size for which wrapping errors were not introduced in the
weighting mask), and (D) mIP-SWI over 7.5 mm. All maps were inferred from the same dataset (“7T PMC Aniso™), and were normalised by the global mean magnitude

across the whole brain prior to post-hoc susceptibility weighting.

(typically 20 ms at 3T) GRE magnitude image is weighted by a linearised,
high-pass filtered phase map that is somewhat nonlocal. The potential
advantage of using a linearised version of HPSM instead is that it could
weight the magnitude image with greater specificity by true-local tissue
susceptibilities, which we hypothesised would result in increased SWI
sharpness (see Fig. 7J-K and Fig. 10). In SWI, one freely selectable
parameter is the kernel window size applied in the Fourier domain to
tune the bandpass level of phase filtering used for susceptibility
weighting. In MSDI-based SWI, we suggest using short-range HPSM (i.e.
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Tmax = 2 mm), which can be modulated by an equivalent parameter (Eq.
(3)'s 4 in this case) to enable varying levels of susceptibility weighting to
also adapt to different applications. In addition, analogous to
minimum-intensity projections from conventional (i.e. magnitude-based)
SWI (Fig. 10), we showed that maximum-intensity projection maps from
optimally regularised HPSM could further enhance the visualisation of
small-scale features in contrast to the continuous (healthy) vasculature
(Fig. 7L and 11 for extended view).

Finally, a few technical aspects warrant discussion. First, although in
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Fig. 11. Extended view of the maximum-intensity projection over 15 mm from optimally regularised HPSM (rypax = 2 mm, 4 = 10%7) using “7T PMC Aniso” data. Note
reversed colour scale, i.e. high susceptibility values are hypointense, for consistency with mIP-SWI.

this study we demonstrated that MSDI signifies an improvement in terms
of accuracy and robustness with respect to nMEDI (the algorithm MSDI is
based on), it is also notably slower. This is because the sub-problem
defined in Eq. (3) must be solved for several scales with increasing
kernel radii, whereas nMEDI solves a similar problem (to that in Eq. (3))
only once. The proposed formulation, however, is not bound to any
specific method. It is conceivable that other solvers could result in faster
convergence rates or could further improve performance (Milovic et al.,
2018). In fact, MSDI's constrained multi-scale problem could be refor-
mulated for efficiency as a single step e.g. extending a previously pro-
posed framework (Chatnuntawech et al., 2017).

An interesting difference, however, between Chatnuntawech et al.’s
single-step settings and the proposed MSDI implementation is the SMV-
kernel radius sampling strategy utilised. Optimised with the Challenge
dataset and tested on the remaining in vivo experiments (by comparing
with nMEDI), this study found that a power-of-two increase in radius up
to 16 mm (4 scales) was preferred. Other sampling patterns that were
considered were: (i) constant 2-mm steps (8 scales up to 16-mm radius),
and (ii) power-of-two sampling up to 8 mm (3 scales) and (iii) up to
32mm (5 scales). This is an empirical optimisation with relatively low
power and no a priori hypothesis that, thus, requires future confirmation.

An additionally important consideration for future work is the
assumption of zero QSM mean across the imaging volume, i.e. unre-
ferenced QSM. This is a reasonable assumption in reproducibility ex-
periments and reconstructions challenges where different views of the
same object can be expected to have a constant global mean. In
addition, past work also found that this global DC uncertainty is only a
small adjustment with respect to local aging-related QSM changes
(Acosta-Cabronero et al., 2016; Betts et al., 2016). However, there
might be scenarios, e.g. in the presence of large haemorrhages or acute
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iron deposition, where this assumption may break down leading to
non-negligible inconsistencies. Recent investigations studied the sta-
bility of several referencing methods (Feng et al., 2017; Straub et al.,
2017), though in practice, these may not be generalisable i.e. reference
tissues that are spared in one disease might be unsuitable in other
contexts. Referencing to cerebrospinal fluid (CSF) might be a potential
solution to this. In fact, a new regulariser for MEDI has been proposed
to promote solutions that minimise QSM values in CSF (Liu et al.,
2018). This method, however, requires reliable CSF segmentation and
exclusion of spurious contributions from the choroid plexus. This
extension is called MEDI40, which is fully compatible with MSDI,
though further work is needed to ascertain whether disease-related
changes in CSF composition do not confound this strategy.

From a technical standpoint, it is also worth noting the pipeline
consisting of BET2 (fractional threshold, 0.1), LBV (approximately two-
voxel erosion) and vSMV (one voxel erosion) resulted in highly concor-
dant brain-ROI estimates for all data types in this study, providing ac-
curate and (relatively) artefact-free QSM of the cortex with little tissue
loss (see e.g. Suppl. Fig. S3 or Fig. 8). It should be emphasised this is
crucial to ensure robust QSM, thus future studies should ensure this, or
any other pipeline, are similarly effective with their data type.

A final aspect worth discussing is that this work, as previous nMEDI
work did (Liu et al., 2013), found merit in dynamically down-weighting
consistency costs for error/artefact propagation control. MSDI extends
this concept by selectively rejecting an empirically optimised
scale-dependent rule based on the phase second-difference distribution.
The present results confirmed that such an adaptive rule is both desirable
and effective for a wide range of data types but, notably, other alternative
(untested) options exist that need further exploration from a theoretical
standpoint.
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5. Conclusions

Although the future of QSM as a clinical tool is still somewhat un-
certain, algorithm calibration studies such as this might help promote its
role as a reliable MRI contrast mechanism. In this study, specifically, we
presented a new multi-scale approach (MSDI), for which we demon-
strated high performance and reproducibility, and illustrated (through
examples of HPSM, MVSSM and HPSM-SWI) how selective use of multi-
scale information might result in more specific susceptibility-based
contrasts, which, in turn, might lead to greater QSM utility, demand
and subsequent adoption.

An MSDI implementation is publicly available from the QSMbox
software package: https://gitlab.com/acostaj/QSMbox.
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