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Figure S1. Biotagging sox10 BirA drivers and Avi-tagged RanGap effectors. Related to Figures 1 and 2.




A-C Differential expression between sox/0 biotagging transgenic and BAC drivers. Wide-field image of
TgBAC(Sox10:BirA-mCherry)®™'% (ncBirA(BAC)) (A). Tg(Sox10:BirA-membCherry)°7%? (ncBirA) and
Tg(Sox10:BirA-membCherry)*’%® (ncBirA(b)) transgenes at 24hpf (B, C). The two alleles (B, C) of sox10
Biotagging transgenic exhibit expression in different neural crest derivatives that are included in the overall sox/0
expression pattern, by sox10 Biotagging BAC (A). Arrow points to lack of expression in the otic vesicle, while
arrowheads point to lack of expression in the midbrain of sox/0 transgenes.

D-L Biotagging Avi-tagged nuclear localized effectors. Schematic of two variant Avi-tagged RanGap constructs
for generating Avi effector transgenes. N-terminal Avi-tag construct (Avi-Cerulean-Rangap) contains the
beta-actin2 (Bactin) promoter upstream of Avi-tag (steelblue), the Tobacco Etch Virus protease cleave site (TeV,
green), Cerulean (turquoise), the C-terminal domain of RanGap (purple), and a polyA signal (D). C-terminal
Avi-tag construct (RanGap-Cerulean-Avi) contains the beta-actin2 (Sactin) promoter upstream of the C-terminal
domain of RanGap (purple), Cerulean (turquoise), the Tobacco Etch Virus protease cleave site (TeV, green),
Avi-tag (steelblue), and a polyA signal (E). Both constructs are flanked by tol2 elements (yellow) for transgenesis
by Tol2 transposition. 3-D projection of confocal Z-stack of Avi-RanGap (F-G) and RanGap-Avi (H-I) of the
developing inner ear (F, H) and somite (G, I), imaged at 32hpf. Both Avi-Cerulean-RanGap and
Rangap-Cerulean-Avi proteins localize similarly to the nucleus of all cells in the embryo. Schematic of
Avi-RanGap effector construct with ubiquitin promoter (ubig) upstream of N-terminal Avi tagged RanGap
elements (J). Confocal image of hindbrain (K) and eye (L) of Tg(ubig:Avi-RanGap) embryo (nucAvi(ubig)). Scale
bars: 20 um, except 50 um in (K, L).
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Figure S2. Biotinylation of Avi-tagged protein is dependent on the level of expression. Related to Figure 3.

A Streptavidin Western blot of nuclear extracts from embryos injected with Avi-RanGap (lane 1), BirA (lane 2),
both mRNA (lane 3) and wildtype un-injected embryos (lane 4). Arrow points to biotinylated Avi-RanGap that is
specifically labelled with Streptavidin conjugate in lysates from embryos co-injected with Avi-RanGap and BirA
(lane 3). Asterisks indicate endogenously biotinylated proteins also present in uninjected wildtype embryos. BirA
expression (lane 2) does not elevate endogenous biotinylation over background level (lane 4). Avi-tag is insensitive
to biotinylation by endogenous biotin ligases (line 1 compared to line 3). B Streptavidin (upper panel), Anti-GFP
(middle panel) and Anti-HA (bottom panel) Western blot of whole cell extract from wildtype (lane 1);
TgBAC(sox10:BirA) (ncBirA(BAQC)) (lane 3); Tg(sox10:BirA) (ncBirA) (lane 4); Tg(ubiq:AviRpli10)
(riboAvi(ubiq)) (lane 2); or double transgenic of Avi-tag and BirA (lanes 5, 6, 7, 8) embryos. Number of plus
marks indicate level of expression described to the right of blots. Avi-Rpl10 is biotinylated only when highly
expressed (lanes 6, 7, 8). Anti-GFP western blot detects a cleaved Avi-Rpl10 that is 30 kDa (red box in upper and
middle panels). Anti-HA Western blot detects BirA that contains HA-tag (red box in bottom panel). C Streptavidin
(upper left panel), Anti-GAPDH (lower left panel) and Anti-GFP (right panel) Western blot of whole cell extract
from wildtype (lane 1); TgBAC(sox10:BirA) (lane 4); or double transgenic of Avi-Rpl10 and BirA (lanes 2 and 3)
embryos in which BirA expression varies while “Avi-Rp10” expression is high. Anti-GFP Western blot detects
both cleaved and uncleaved Avi-Rpl10 that is 30 kDa and 55 kDa, respectively.




500 © 2 2
s 3
= 3 3
40 3o Y So
Ll
Swo . Y g . g
o = 3 3
o S £ £° F
3 3
200 s & 8 f
& s s
L 4 2 F g
100 %o ge ge
35 g S
g g
3 3
o - © ©
1 1 21 31 2 51 i ! !
S 0 5 10 15 5 0 5 10 15 5 0 5 0 15
ZFIN genes expressed in the heart Log2(FPKM Myi7_nuct +0.01) Log2(FPKM Bactin24hpf_nuct + 0.01) Log2(FPKM Myl7_nuc2 + 0.01)
B [ © ©
5 5 5
So So So
P e o
s° S ; 5 S
g So Bo = 4
[ ] a 3
s s s
g E g g #
£ # £ i
Lo o Lo
g E] |
. genes. explessec; inthobeat b 9 ?
-5 ] 5 10 15 -5 0 5 10 15 -5 0 5 10 15
Log2(FPKM Sox10_ribo1 + 0.01) Log2(FPKM Bactin_ribo1 + 0.01) Log2(FPKM Sox10_ribo2 + 0.01)
c o -
16 s ="
— 3 g
14 5 5 3
Se S e
L2 o9 E g~
§ p g
£ d F. é 4
s X0 Lo Eo 2
= £ s =
) §° 4 go £o
: 7 ; g g
o
myl7 vmhc slu7 gapdh b 9 Q
Gene expression from isolated myocardial 5 0 5 0 15 5 0 5 10 15 5 0 5 0 15
biotagged nuclei Log2(FPKM Sox10_nuct +0.01) Log2(FPKM Bactini6ss_nuct + 0.01) Log2(FPKM Sox10_nuc2 + 0.01)
E
Spearman’s rank | Bactin_16ss | Bactin_16ss Bachpj Bss Bacn‘nj Bss |Bactin_24hpf| Bactin_24hpf Myl7_nuct | Myl7_nuc2 Sox10 Sox10 Sox10_ribo ngi 0
corr. coeff. _nucl _nuc2 _ribo1 _ribo2 _nuct _nuc2 _nuci _nuc2 _ribo2
Bactin_16ss_nuc1| 1.00000000| 0.96147120| 0.93190840| 0.93322510| 0.80551520| 0.80939370 0.79682440 0.78933820| 0.89679400| 0.91170390| 0.93297450 0.92500120
Bactin_16ss_nuc2| 0.96147120| 1.00000000 | 0.93032030) 0.93049930| 0.80736190| 0.81140020 0.80014890 0.79242450| 0.89602350| 0.91039530| 0.92886270 0.92418280
Bactin_16ss_ribo1 | 0.93190840] 0.93032030 1.00000000 0.97119760| 0.86360040| 0.86788630 0.86045320| 0.85084510| 0.89221940| 0.91360360| 0.96306270| 0.96682940
Bactin_16ss_ribo2 | 0.93322510] 0.93049930 0.97119760 1.00000000| 0.86375590| 0.86786370 0.85991120| 0.85067090| 0.89257980| 0.91366500] 0.96297660| 0.96695920
Bactin_24hpf_nuc1| 0.80551520] 0.80736190| 0.86360040] 0.86375590| 1.00000000| 0.99346360| 0.97886880| 0.97458280| 0.78656150| 0.80408370| 0.85803000| 0.86759210
Bactin_24hpf_nuc2| 0.80939370] 0.81140020| 0.86788630| 0.86786370] 0.99346360| 1.00000000 | 0.98355480| 0.97969530| 0.79191630] 0.81029110] 0.86078510| 0.87168880
Myl7_nuct 0.79682440| 0.80014890 0.86045320| 0.85991120| 0.97886880| 0.98355480| 1.00000000] 0.99144250| 0.79052730) 0.81392520| 0.84911590| 0.86340010
Myl7_nuc2 0.78933820| 0.79242450| 0.85084510| 0.85067090] 0.97458280| 0.97969530| 0.99144250| 1.00000000| 0.78336630] 0.80933780| 0.83950670| 0.85311390
Sox10_nuci 0.89679400| 0.89602350 0.89221940| 0.89257980] 0.78656150] 0.79191630| 0.79052730| 0.78336630| 1.00000000] 0.93860340| 0.88907410| 0.89310070
Sox10_nuc2 0.91170390| 0.91039530 0.91360360| 0.91366500] 0.80408370] 0.81029110| 0.81392520| 0.80933780| 0.93860340] 1.00000000| 0.91182660| 0.91200810
Sox10_ribo1 0.93297450| 0.92886270| 0.96306270| 0.96297660| 0.85803000] 0.86078510| 0.84911590| 0.83950670| 0.88907410] 0.91182660] 1.00000000 | 0.96434400
Sox10_ribo2 0.92500120| 0.92418280| 0.96682940| 0.96695920| 0.86759210| 0.87168880| 0.86340010| 0.85311390| 0.89310070f 0.91200810f 0.96434400| 1.00000000

Figure S3. Enrichment of cell-type specific gene expression in developing cardiomyocytes and pairwise
comparison of biological duplicates. Related to Figure 4.

A, B Barplot of FPKM values from myl7 nuclear datasets for genes annotated in ZFIN expression database as
detected in myocardium from 0-24hpf. C Quantification of relative enrichment of myocardial transcripts as
determined by RT-qPCR using cDNA isolated from nuclei purified from embryos double transgenic for
Tg(myl7:BirA-membCherry)*"*%; Tg(bactin:Avi-Cerulean-RanGap)*"* (myoBirA;nucAvi(bact)) compared to
cDNA extracted from whole embryos. Relative levels of transcripts for myosin light polypeptide 7 (myl7),
ventricular myosin heavy chain (vinhc) and SLU7 splicing factor homolog (slu7) were normalized to
glyceraldehyde 3-phosphate dehydrogenase (gapdh) transcripts from isolated nuclei or whole embryos. Myl7 and
vmhc are expressed exclusively in the myocardium, while slu7 is expressed ubiquitously. Error bars represent
standard deviations from triplicate RT-qPCR experiments.

D Scatterplots of log2 fold differences between biotagged biological duplicates for whole embryo (bactin nuclear
and bactin ribo), cardiomyocyte (myl7 nuclear) and neural crest (sox/0 nuclear and sox10 ribo) samples. E Table
presenting correlation coefficients to all possible pairwise comparisons of replicates/samples.
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Figure S4. Neural crest identity of sox10 Biotagged nuclei. Related to Figures 5 and 6.




A Volcano plot of differential expression analysis of ncBirA;nucAvi samples compared to whole embryo
transcriptome, demonstrating the relationship between the p-value and log-fold change (red=enriched, blue=
decreased in ncBirA;nucAvi samples) for the 9544 genes differentially expressed. B Heatmap of enriched genes. C
Heatmap of depleted genes. Brackets highlight cluster of genes with variation between sox10 biotagged samples.
Heatmaps reveal differences in the sox/0 nuclear transcriptome compared to the whole embryo replicates. D Gene
set enrichment analysis for the 3767 genes enriched (red) and the 5414 genes decreased (blue) in sox/0 nuclear
transcriptome compared to whole embryo transcriptome. The maximum node contains 294 genes enriched for the
Wnt signaling pathway, while the minimal node contains 6 genes decreased for general mRNA splicing machinery
in the sox10 nuclear samples. Size of node corresponds to number of genes in each gene set. The p-values are
presented by color saturation; the numbers and their corresponding pathway for each node are listed below. E
Barplot representation of average FPKM expression values across replicates of sox/0 nuclear polyA enriched
transcriptome for all 236 neural crest genes as defined by in situ hybridization analysis from 0-24hpf in Zfin
expression database. F List of 236 genes expressed in neural crest cells by 24hpf as defined by in situ
hybridization as obtained from Zfin zebrafish gene expression database. Enriched genes (red text), decreased genes
(blue text) and not differentially expressed (black text).
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Figure S5: K-mean analysis identifies distinct clusters with bidirectional transcription at sites of open

promoters. Related to Figure 5.




A Heatmap of k-mean clustering identifying 10 distinct clusters with varying levels of short bidirectional
transcripts at open promoters. B-C Gene ontology (GO) terms for biological processes enriched for subclusters of
genes with bidirectionally transcribed TSS in sox/0 nuclear dataset (B) and subclusters of genes with transcription
at TSS only in sense direction (C). Bidirectionally transcribed loci associate with GO terms reflecting various
developmental processes including eye and sensory morphogenesis, neurogenesis and cellular differentiation with
high statistical significance (p<0.01), while loci not exhibiting bidirectional transcription at TSS associate with
various metabolic processes and have no developmental feature (p<0.01). D-E Donut charts comparing functional
classification according to protein class (D) and biological function (E) between genes with unidirectionally (inner
donut chart) and bidirectionally transcribed TSSs (outer donut charts). Most significant difference between the two
gene clusters is much larger number of transcription factors amongst bidirectionally transcribed loci (D) as well as
increase in number of loci associated with developmental processes (E).
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Figure S6. Identification of cis-regulatory modules (CRMs) through bidirectional transcription at sites of
open chromatin (ATAC-peaks). Related to Figure 6.




A Heatmap showing all k-mean clusters from linear enrichment of mapped reads from sox/0 and bactin nuclear
and ribosomal datasets associated across regions of open chromatin defined by ATAC-seq (£1.5kb per region).
Ten clusters, totaling 65,458 distal open chromatin regions, were identified with approximately half of the
ATAC-regions not associated with active transcription (cluster 4; 30,669 peaks). Three clusters show bidirectional
transcription in sox/0 nuclear dataset (red box, also presented in Figure 6B of main text). Two groups of 2
reciprocal clusters each (clusters 5-6 and 7-8; total 12,230 CRMs) show associated bidirectional transcription in
sox10 and bactin nuclear dataset. These clusters most likely reveal ubiquitous enhancers. Two clusters contained
elements with associated transcripts in both nuclear and ribosomal compartment (clusters 9-10; total 2,927
elements). B Violin plot visualising the distribution of ATAC-seq signal for NC-specific bidirectionally transcribed
CRMs (Clusters 1, 2 and 3) and for non-transcribed accessible regions (Cluster 4). Although there’s a greater
variation in signal level distribution for the non-transcribed cluster 4, the median value of ATAC signal on
transcribed and non-transcribed regions is similar. C Annotated genes ranked by the number of associated CRMs.
D Cumulative frequency plot quantifying number of associated enhancers (identified from cluster 1 and 2, total of
6332 genes) per expressed gene (based on ATAC_TSS dataset). ~47% of open annotated loci were associated with
at least 2 CRMs, ~25% with 3 or more elements and 15% with 4 or more elements.
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Figure S7. Comparative genome-wide profiles of nuclear and ribosomal transcripts in sox10, myl7
subpopulation and whole embryo reveal subcellular compartment and cell-type differences. Related to
Figure 7.




A Visualizations of the bactin and sox10 nuclear transcriptomes on a global scale using deepTools heatmapper and
profiler demonstrate a unique architecture characteristic of pervasive transcription that is enriched (with bactin
ubiquitous control shown in replicates) evenly across untranslated and translated regions of annotated gene bodies
demarcated by transcription start sites (T'SS) and transcription end sites (TES). This enrichment is lost in the sox10
ribosomal transcriptome signature (again, with bactin ubiquitous control shown in replicates), where higher levels
of transcription in the central, translated regions of gene bodies define the transcriptional structure. As expected,
the ribosomal transcriptional signature is highly similar to the profile of whole sox/0-expressing cells that were
obtained via FACS, where majority of transcripts (~90%) recovered in this manner are cytosolic. B Venn diagram
showing RNA species distribution between nuclear and ribosomal dataset from whole embryo and C the
corresponding RNA species found in the respective subcellular compartments with color-code referring to the
different RNA species in lower panel. D Venn diagram comparing transcript differences between myl7, sox10 and
whole embryo nuclear datasets. E Heatmap of 51 differentially expressed IncRNAs (p<0.05) in the myl7 versus
bactin nuclear datasets (26-30hpf). 14 non-coding transcripts common between NC and myocardial differentially
expressed IncRNAs are labelled in red (depleted) and blue (enriched) in the myl7- versus bactin-expressing nuclei.
F Venn diagram comparing NC and my!7 differentially expressed IncRNAs.




Table S1. Biotagging driver and effector lines. Related to Figures 1 and 2.

Biotagging BirA driver Allele | Abbreviatior] Expression Note
Tg(bactin:BirA-membCherry) ct709a ubBirA ubiquitous
Tg(bactin:NLS-BirA-membCherry) ct710a | ubBirA(NLS) ubiquitous
Tg(ubiq:NLS-BirA-Cherry) ox114 UbB;\ré(f)blq_ ubiquitous
Tg(ubiq:BirA-Cherry) ox115 | ubBirA(ubiq) ubiquitous
. . . - female-exhibit ubiquitous
Tg(sox10:BirA-membCherry) ct706a ncBirA cranial neural crest derivatives

maternal expression

Tg(sox10:BirA-membCherry) ct706b ncBirA(b) cranial and trunk neural crest derivatived

presumptive telencephalon and

Tg(zic2a:NLS-BirA-membCherry) ct708a hbBirA diencephalon, hindbrain primary neuron

expression gone by 2dpf

Tg(myl7:BirA-membCherry) ct704a myoBirA myocardium
Tg(myl7:NLS-BirA-membCherry) ct705a |myoBirA(NLS) myocardium
Tg(kdrl:BirA-membCherry) ct703a endoBirA vascular endothelium
TgBAC(sox10:BirA-Cherry) | ox104a | ncBirA(BAC) neural crest and derivatives femar':art"earﬁ;xeh)izi:eiz:gﬁ"ous
Biotagging Avi effector Allele Expression Note
Tg(bactin:Avi-Cerulean-RanGap| ct700a | nucAvi(bact) ubiquitous

nucAvi(bact-

Tg(bactin:RanGap-Cerulean-Avif ct701a Cterm) ubiquitous
Tg(ubiq:Avi-Cerulean-RanGap)| ox113a/b| nucAvi(ubiq) ubiquitous
Tg(bactin:Avi-Cerulean-Rpl10) | ox111 | riboAvi(bact) ubiquitous

Tg(ubiq:Avi-Cerulean-Rpl10) ox112 | riboAvi(ubiq) ubiquitous




Table S2. Genes overrepresented in myl7 vs bactin nuclei. Related to Figure 4.
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Supplemental Experimental Procedures

Zebrafish maintenance and strains.

This study was carried out in accordance to procedures authorized by the UK Home Office in accordance with UK
law (i.e. Animals (Scientific Procedures) Act 1986) and the recommendations in the Guide for the Care and Use of
Laboratory Animals (US). Adult fish were maintained as described (Westerfield, |2000). Wild-type embryos for
transgenesis were obtained from AB or AB/TL mix strains.

BirA cassette design.

The tripartite biotinylation driver expression cassette consists of open reading frame (ORF) of bacterial biotin
ligase, BirA, preceded by 3xHA sequence for protein detection and separated from the membrane-tethered
mCherry fluorescent reporter (membCherry) by a short sequence encoding the ribosome-skipping peptide of
Thosea asigna virus (2A, Fig.1B-D). The membrane localization signal for membCherry was derived from the last
20 amino acids of human Ras (Apolloni et al., | 2000). The biotinylation driver construct was generated by fusion
PCR with 3XHA-BirA and membCherry templates, using intervening overlap sequence between the two to encode
2A sequence. The 20 bp overlap was built into the primers used for amplification of the templates. We have
generated BirA drivers with both cytoplasmic and nuclear cellular localization (NLS) to enable biotinylation of
both cellular component-associated Avi-tagged proteins (nuclear envelope and cell membrane) and Avi-tagged
intra-nuclear factors, respectively. The full list of generated biotinylation drivers is shown in Table S1. Full
sequences of the plasmids are available through NCBI and Addgene
(https://www.addgene.org/Tatjana_Sauka-Spengler/).

Generation of Biotagging transgenic drivers.

Tol2-mediated transgenesis for driver lines: Biotagging transgenic drivers were created using conventional
Tol2-mediated zebrafish transgenesis (Kawakami, 2004) . BirA expression cassette was placed under the control of
previously published proximal enhancers and tissue- or cell-specific promoters (Table S1) to create defined
expression patterns with the entire expression module flanked by Tol2 transposable elements. The presence of the
2A peptide allowed for simultaneous expression of BirA and the fluorescent membrane-Cherry (membCherry)
reporter for screening and imaging purposes (Fig.1B-D, B’-D’). The transgenes were generated by co-injecting
80 pg DNA expression constructs and 40 pg of t0l2 mRNA into single cell embryos. The injected embryos (mosaic
Fy generation) were raised to reproductive age, out-crossed to wildtype adults and the F; offspring screened for
proper expression of fluorescent reporter. F; carriers were raised for future experiments. Subsequent generations
of transgenes are maintained as out-crosses to wildtype adults to ensure single copy transgenic propagation.

Tol2-mediated Biotagging transgenic drivers for expression of BirA produced in this study include four
tissue-specific lines: Tg(sox10:BirA-2A-membCherry )70 (ncBirA) expressing BirA in delaminating and
migrating neural crest under control of the sox/0 promoter (Carney et al., 2006) (Fig.1B,B’; Fig.2G);
Tg(zic2a:BirA-2A-membCherry)7% (hbBirA) in the neural plate border cells under the control of the zic2a/zic5
enhancer (Nyholm et al., 2007) (Fig.1D,D’); Tg(myl7:BirA-2A-membCherry)*’%% (myoBirA) in the myocardium
of the developing heart (Huang et al., 2003) (Fig.1C,C’) and Tg(kdrl:BirA-2A-membCherry)°7%% (endoBirA) in
endothelium of the circulatory system (Jin et al., |2005) (not shown). In addition, ubiquitous BirA driver lines
included Tg( bactin:BirA-2A-membCherry)*’®* (ubBirA) and Tg( ubiq.‘BirA-ZA-mCherry)""l15 (ubBirA(ubiq))
(Higashijima et al.l [1997; [Mosimann et al.,[2011)) (Fig.1E). Test experiments, using homozygote
Tg(bactin:BirA-2A-membCherry)*"*(ubBirA)embryos (Fig.1E), which express BirA at very high levels, show no
developmental defects and can reproduce, indicating that expression of BirA is not toxic in zebrafish.

BAC recombineering for driver lines: The availability of well characterized cis-regulatory modules (CRMs)
for BirA drivers can limit the application of the Tol2-mediated transgenes driver approach. Recombineered BACs,
containing gene-associated regulatory elements, can serve as an alternative to transgenic BirA drivers using known
CRMs. To generate Biotagging BAC drivers we replaced the first coding exon of the gene of interest with a BirA
cassette (Fig.1G) and used Tol2-mediated transgenesis to integrate recombineered BACs into zebrafish genome




(Bussmann and Schulte-Merker, 2011} [Suster et al.,|2009). To achieve this, we generated the donor cassette
containing HA-tagged BirA OREF, separated from mCherry reporter by ribosomal-skipping peptide (2A) and
terminating with polyA, followed by FRT site-flanked Kanamycin selection gene and recombined it into the
selected BAC backbone using lambda prophage homologous recombination system available in the SW105
bacterial background (http://ncifrederick.cancer.gov/research/brb/
productDataSheets/recombineering/bacterialStrains.aspx), according to the previously published protocol (Yu

et al.| 2000). To increase the efficiency of transgenesis and enable single-copy integration into zebrafish genome,
the BACs were also modified to include the long terminal repeats (LTRs) of the Tol2 transposon. The iTol2-Amp
cassette, containing the Ampicillin expression construct flanked by inverted Tol2 recombination arms was
amplified according to published protocols (Abe et al.,2011)), using iTol2-Amp plasmid and previously described
primers:

pIndigobac_itol2 _fw:
TTCTCTGTTTTTGTCCGTGGAATGAACAATGGAAGTCCGAGCTCATCGCTCCCTGCTCGAGCCG
GGCCCAAGTG

pIndigobac_itol2 _rev:
CCCGCCAACACCCGCTGACGCGAACCCCTTGCGGCCGCATATTATGATCCTCTAGATCAGATCT

and recombined into the sox10 locus-containing BAC DKEY-201F15, with pIndigo backbone. We have also
created an extended iTol2-Amp cassette for integration of Tol2 arms into BAC clones with the pTARBAC backbone.
The new iTol2-Amp cassette containing long homologous recombination arms (5’arm-224 bp and 3’arm-221 bp)
that flank loxP sites on the pTARBAC backbone can be amplified using pTARBAC_loxP_5":
GCTGTCGGAATGGACGATA and pTARBAC_loxP_3’: GCAAGTATTGACATGTCGTCGT primers and
recombined using procedures described above. 100-200 pg of recombinant BAC DNA was co-injected with
50-100 pg of tol2 mRNA into one cell-stage embryos to generate Fy generation. Potential Fy founders were raised,
outcrossed and the F; clutches screened for mCherry expression. Selected positive F; embryos were raised for
future experiments.

Using a BAC containing the sox/0 locus we successfully overcame variation in expression patterns obtained
from the conventional sox/0 transgenics (Fig.S1A-C). We detected strong neural crest expression of mCherry in
the F; offspring from 3 out of 9 screened TgBAC(sox10:BirA-Cherry )ox1042 (ncBirA(BAC)) Fy adults (Fig.1G-H,
Fig.S1A). All the F; embryos from the three independent founders showed consistent neural crest-specific mCherry
expression (Fig.1G-H, Fig.2I). This is in contrast to sox/0 BirA (ncBirA) drivers, obtained using conventional
proximal promoter transgenesis, which often exhibited variability in expression patterns between different founders
due to integration position effects (Fig.S1B,C). However, we exploited this variability to generate a number of
biotagging drivers that enable profiling of specific subpopulations of sox10-expressing cells (Fig.S1B,C).

Differences between Biotagging with Transgenic and with BAC drivers: Biotagging transgenic drivers
generated via routine transgenesis approaches in zebrafish express BirA-membCherry cassette under the control of
the minimal promoter and proximal enhancers (Fig.1B-D). Using this approach, it is typical to observe a large
variability in expression patterns in different founders produced with the same expression construct (Fig.S1B,C),
suggesting that such expression cassettes are very sensitive to position effects, and that their activity is strongly
influenced by their genomic integration sites. Exploiting this variability, we generated a number of Biotagging
drivers that enable profiling of specific subpopulations of sox/0-expressing cells (Fig.S1B,C). However, many of
the sox10 drivers do not recapitulate the full sox/0 gene expression pattern characterized using in situ
hybridization.

Biotagging BAC drivers are much more consistent with all founders always showing reproducible expression
patterns (Fig.S1A). Moreover, they are virtually insensitive to position effects and identified genomic integrations
were never found to be silent. In majority of cases, the expression of BirA transgene from the BAC backbone
results in robust and strong endogenous-like level of expression.




Generation of Avi effector lines.

To generate zebrafish transgenic effector lines, we used the ubiquitous zebrafish beta-actin2 (Sactin) and ubiquitin
(ubiq) promoters to drive expression of Avi-tagged fusions that associate with different cellular compartments: (i)
Avi-tagged protein containing Cerulean protein fused to the carboxy-terminal domain of avian Ran
GTPase-activating protein 1 (RanGapl), targeted to the outer nuclear envelope, for use in INTACT procedure and
(ii) Avi-tagged Rpl10a to biotinylate the polyribosomes, for use in TRAP approach.

Generating Avi-RanGap lines: To generate Avi-RanGap (nucAvi) lines, in which the nuclear envelope is
specifically Avi-tagged we used C-terminal domain of the avian RanGap protein because fusions with the
equivalent region from the zebrafish RanGap resulted in recombinant protein that inconsistently associated with
nuclear envelope, displaying much broader cellular distribution, and affecting normal development (construct
resulted in embryonic lethality when injected at high concentrations of 100 pg of mRNA per embryo, data not
shown). Protein domain analysis of chicken and zebrafish RanGap domains using SMART tools
(http://smart.embl-heidelberg.de) indicated that the chicken but not the zebrafish RanGap C-terminal region
contains a Ran Binding Domain, which associates with nuclear pore complexes (Mahajan et al.l 1997} Rose and
Meier, [2001)), to directly bind Avi-Cerulean-RanGap fusion and localize it to the outer nuclear envelope (Fig.3A,
B). We generated transgenic lines expressing the both N and C-terminal Avi fusion of avian RanGap
(Tg(bactin:Avi-Cerulean-RanGap )et7002 (hucAvi(bact) and Tg(bactin:RanGap-Cerulean-Avi )et70la
(nucAvi(bact-Cterm)). They show similar localization to the outer nuclear envelope (Fig.S1F-I).

All N-terminal effector constructs employed a modified Avi tag (14 aa), followed by a 7 aa-peptide specifically
recognized and cleaved by Tobacco Etch Virus protease, generated by Strouboulis lab (Driegen et al., 2005)
(Fig.S1D, TeV in green). Inclusion of a protease cleavage sequence adjacent to biotin acceptor peptide helps
reduce the non-specific background resulting from streptavidin bead pull-down of endogenously biotinylated
proteins. This is particularly useful in analysis of protein complexes by Mass Spectrometry, where the
biotin-tagged target protein and its interacting partners can be specifically released from the streptavidin beads by
TeV cleavage. C-terminal Avi-tag is preceded by TeV sequence (Fig.S1E).

To assess the possible steric effects of the Avi-tag on the localization of the RanGap fusion protein and its
availability for biotinylation, we have created two versions of Avi-tagged RanGap effector lines,
Avi-Cerulean-RanGap and RanGap-Cerulean-Avi (Fig.S1D,E). Both versions localized to the outer nuclear
envelope (Fig.S1F-I) and are interchangeable; however, we preferentially use the
Tg(bactin:Avi-Cerulean-RanGap )% (nucAvi(bact)) line, where the RanGAP domain in the protein fusion is
located at the C-terminus, similar to the full-length RanGap protein. To select for the most ubiquitously, even
expressing Avi-tagged RanGap effectors, the offspring of multiple founders was screened by confocal microscopy.

Generating Avi-Rpl10 lines: To enable isolation of the polyribosomes, we established lines that label a
component of polyribosomes, Rpl10a (Tryon et al., 2013), with the Avi-tag Tg(bactin:Avi-Cerulean-Rpl10)°*'!!
(riboAvi(bact)) and Tg(ubiq:Avi-Cerulean-Rpll 0)°x112 (riboAvi(ubiq)). While lines established with the ubiquitin
promoter resulted in higher expression of Avi-Cerulean-Rpl10, we also found that high expression of Rpl10
resulted in embryonic lethality (data not shown). Only founders that resulted in Avi-Rpl10 lines showing no
developmental defects that could reproduce were maintained and used for subsequent profiling.

Preparation of Streptavidin beads for RNA procedures.

As Streptavidin Dynabeads (Invitrogen, cat. no.11205D) are not supplied in RNase-free solutions, 250 ug of
M-280 or MyOne T1 Streptavidin-coated beads was transferred to a microcentrifuge tube, separated from
supernatant using magnetic stand (DynaMag™-2 magnet from Invitrogen, cat. no.12321D) and washed twice with
1 mL of Solution A (DEPC-treated 0.1 M NaOH, DEPC-treated 0.05 M NaCl), with 2-3 minutes on a nutator,
followed by at least 3 minutes on the magnetic stand. The beads were subsequently washed once in Solution B
(DEPC-treated 0.01 M NaCl), re-suspended in NPB and moved to a new RNase-free low-binding tube, until the
nuclei suspension was ready. Prior to incubation with cell nuclei/polysomes, the beads were captured using the
magnetic stand, the supernatant removed, and replaced with the nuclei/polysomes suspension.




Nuclei Isolation.

We optimized the nuclei purification protocol for the highest yield by testing a number of lysis buffers and found
the following to give the highest consistent yield of nuclei per embryo. Zebrafish embryos (~100-350 embryos per
pulldown experiment) expressing both biotinylation driver and Avi-RanGap effector alleles (nucAvi) in specific
cell types were dechorionated and washed in hypotonic Buffer H (20 mM HEPES (pH 7.4), 1.5 mM MgCl,,
10mM KCI, 1 mM DTT and 1X cOmplete™ protease inhibitor), supplemented with 0.01% Tricaine. Embryos
then were re-suspended in 1 mL/50 embryos Buffer H and transferred to a Dounce homogenizer (2 or 7 mL Kontes
Glass Co, Vineland, NJ). Embryos were dissociated with a sequence of 20 strokes using loose fitting pestle A,
incubated on ice for 15 minutes, followed by 60 strokes of tight fitting pestle B (3 x 20 strokes, pausing 5 minutes
on ice after each set of 20 strokes) to allow for lysis of cell membranes. Cells were checked for lysis by visualizing
cells with 1:1 dilution of Trypan blue on microscope. Nuclei were collected by centrifugation for 10 minutes at
2,000g and re-suspended in 1 mL of nuclei purification buffer (NPB: 10 mM HEPES (pH 7.4), 40 mM NaCl,

90 mM KCl, 0.5 mM EDTA, 0.5 mM spermidine, 0.15 mM spermine, 1 mM DTT and 1X cOmplete™ protease
inhibitor (Roche, cat. n0.05892791001)). To purify nuclei, the suspension was incubated with 250 ug (1.5 x 107
beads) of M-280 Streptavidin-coated Dynabeads prepared for RNA procedures (see preparation of beads) with
rotation at 4 °C for 30 minutes. The nucleus-bead suspension was further diluted with NPB containing 0.1% Triton
X-100 (NPBY) to a final volume of 20 mL. A flow-based setup was devised as previously published (Deal and
Henikoff, [2011) using 10 mL plastic serological pipette (VWR, cat. n0.89130-898 or BD Falcon, cat. n0.357551)
attached to a 1 mL micropipette tip (Gentaur Reach Pipet Tip, cat. no.24-165R or Rainin, cat. no.RT-L1000S),
both pre-treated with NPB + 1% BSA for 10 minutes to avoid material loss. To capture the specifically biotinylated
nuclei, the 1 mL pre-coated pipette tip was attached to the MiniMACS separator magnet (OctoMACS Separator,
Miltenyl Biotec, cat. no.130-042-109) and the diluted suspension of nuclei-beads was allowed to flow through the
setup. The flow rate was set to ~0.75 mL min ! using a two-way stopcock (Bio-Rad, cat. n0.732-8102) or a
T-valve (from Bio-Rad Low-pressure fittings kit, cat. no.731-8220), connected at the end of the tip via a short piece
of Tygon tubing (Fisher Scientific, cat. no.14-169-1C). For flow rates faster than 0.75 mL min~!, the flow-through
was drawn up with the same serological pipette, without removing the pipet tip from the magnetic separator and the
suspension was allowed to drip through the tip one more time to maximize recovery efficiency. Subsequently, pipet
tip was removed from the stand, attached to p1000 pipetman and beads and nuclei were released from the wall of
the tip by repeated drawing of fresh 20 mL NPBt into and out of the tip and the magnetic purification was repeated
as described above. At the end, beads and nuclei were eluted in 1 mL of NPBt, placed into the 1.7 mL microfuge
tube and onto the magnetic stand (DynaMag™-2 magnet from Invitrogen, cat. no.12321D) to remove the
supernatant. Purified nuclei-beads were re-suspended in 20 pL. NPB, stained with DAPI and imaged or frozen for
future use. Nuclei yield after purification were determined by staining 1:20 of the total nucleus prep with DAPI and
subsequent counting of the number of bead-bound nuclei. When used for RNA extraction, the 250 pg bead-nuclei
pellets were immediately dissolved in 100 uL. of RNA lysis buffer, incubated at room temperature for 10 minutes
and replaced onto the magnetic stand. The RNA lysis buffer containing total nuclear RNA is then removed into a
fresh tube and snap-frozen for future use or for immediate extraction (see RNA extraction and library preparation).

Polysomal Isolation.

We adapted the polysomal isolation protocol from TRAP, Translating Ribosome Affinity Purification (Heiman
et al.,2014)) with modifications optimised for the Biotagging system. Zebrafish embryos (350 embryos) expressing
both biotinylation driver and Avi-Rpl10a effector alleles (riboAvi) in specific cell types were dechorionated and
washed in Cell Lysis Buffer (20 mM HEPES (pH 7.4), 150 mM KCI, 10 mM MgCl,, 0.5 mM DTT, rRNasin,
RNaseOUT, SUPERaseIN and cOmplete™-EDTA-free protease inhibitor). Embryos were lysed in 7 mL of Cell
Lysis Buffer without cycloheximide in a Dounce homogeniser as described in the Nuclei Isolation protocol above.
The key difference is that cycloheximide was added to the cell suspension after pestle A to a final concentration of
100 ug mL~! and incubated at RT for 15 minutes before proceeding with pestle B strokes. Homogenised embryos
were cleared by centrifugation at 2000g for 10 minutes at 4 °C and the post-nuclear supernatant removed into clean
RNase-free 1.7 mL microfuge tubes (1 mL supernatant per tube). IGEPAL CA-630 and 07:0 DHPC were added to
the supernatant to a final concentration of 1% each and mixed by inverting tubes gently 10 times. Following
incubation on ice for 5 minutes, the supernatant was cleared by centrifugation at 20,000g for 10 minutes at 4 °C.




To purify polysomes, the post-mitochondrial supernatant was removed and added to 250 pg (2.5 x 103 beads) of
MyOne T1 Streptavidin-coated Dynabeads (1 mL supernatant per 250 pug beads) prepared for RNA procedures (see
preparation of beads) with rotation at 4 °C for 1 hour. The tubes containing polysomes-beads suspension were
placed onto a magnetic stand (DynaMag™-2 magnet from Invitrogen, cat. no.12321D) to remove the unbound
lysate. The pelleted polysomes-beads were washed four times (changing tubes in between washes to minimise
background) in the cold room with High Salt Buffer (20 mM HEPES (pH 7.4), 350 mM KCI, 10 mM MgCl,,
0.5 mM DTT, rRNasin, RNaseOUT, SUPERaseIN, 100 ug mL~! cycloheximide and 1% IGEPAL CA-630) by
pooling 500 pg beads per 1 mL High Salt Buffer. After the final wash, the tubes with polysomes-beads were placed
onto a magnetic stand to remove the High Salt Buffer. When used for RNA extraction, the 500 pg polysomes-beads
pellets were immediately dissolved in 200 uL of RNA lysis buffer, incubated at RT for 10 minutes and replaced
onto the magnetic stand. The RNA lysis buffer containing polysomal-bound RNA is then removed into a fresh tube
and snap-frozen for future use or for immediate extraction (see RNA extraction and library preparation).

FACS and ATAC.

The soxI0-expressing cells were isolated from TgBAC(sox10:BirA-mCherry)®*'%4 (ncBirA(BAC)) embryos at 16ss
using Fluorescence Activated Cell Sorting (FACS). Prior to FACS embryos were dissociated using 20 mg mL~*
collagenase in 0.05% Trypsin/0.53 mM EDTA/1xHBSS buffer to obtain single cell suspensions. Reaction was
stopped in 10 mM HEPES/0.25% BSA/1xHBSS buffer and mCherry-positive neural crest cells were sorted using
BD FACSARIA Fusion System. Sorted cells were spun down and washed in PBS and immediately used in ATAC
procedure. Tagmentation was performed as previously described (Buenrostro et al.,2015)). Fragment size was
verified using Tapestation (Agilent) and libraries were quantified using KAPA Library Quant Kit for Illumina
Sequencing Platforms (KAPABiosystems).

Western blot analysis.

Protein extract was obtained from zebrafish embryos at specified time-points. Embryos were de-yolked, lysed with
a Dounce homogenizer (Pestle A) in hypotonic buffer (20 mM HEPES (pH 7.9), 1.5 mM MgCl,, 10 mM KCl, and
1 mM DTT) with protease inhibitors, and centrifuged at maximum speed to obtain cytoplasmic fraction. Nuclear
fraction was obtained by lysis of remaining nuclei pellet in nuclear lysis buffer (20 mM HEPES (pH 7.9), 1.5 mM
MgCl,, 0.2mM EDTA, 20% glycerol, 420 mM KCl, 0.4 mM PMSF) with protease inhibitors using Pestle B
followed by centrifugation at maximum speed. Detection was performed with anti-HA antibody (Roche (cat.
no.12CAS), 1:1000), rabbit anti-GFP antibody (1:1000, Torrey Pines Biolabs, Houston/TX, www. chemokine.com,
used for detection of Cerulean) and Streptavidin-HRP Conjugate (used for detection of biotin). GFP and HA-tag
were detected using standard Western blot procedure, while biotinylated proteins were detected using a modified
procedure. After the transfer, the blots were blocked for 1 hr in 5% BSA/1X TBST (20 mM Tris, 137 mM NaCl,
0.2% TWEEN-20) and incubated for 1 hr at room temperature with Streptavidin—-HRP conjugate (NEL750, Perkin
Elmer,1:10,000). Filters were then washed 6 times for 20 minutes in 1X TBS (20 mM Tris, 137 mM NaCl) + 0.3%
Triton X-100 and signal was detected using ECL Plus Western Blot Detection Reagent (GE Healthcare Life
Sciences, cat. no. RPN2132).

Quantitative Real-Time PCR analysis.

Two-step qRT-PCR was performed using ABI’s Sybr-Green RT-PCR system (Applied Biosystems). Briefly, RNA
was extracted from nuclei isolated from 48hpf embryos double transgenic for the Biotagging myocardial driver
allele, Tg(myl7:BirA-2a-membCherry)’%* (myoBirA) and the Avi effector allele,
Tg(bactin:Avi-Cerulean-RanGap )™ (nucAvi(bact)) using RNAqueous Micro kit (see RNA extraction and
library preparation). cDNA was synthesized with reverse transcriptase (SuperScript II RT, Invitrogen) using
random hexamers for priming. Reverse transcription reactions were diluted in series (1-10,000-fold) and 1 L. was
amplified in triplicates on a 7000 Sequence Detection System (Applied Biosystems). Quantification was
performed using the delta-delta Ct (AACt) method (Livak and Schmittgen| [2001)). Primers used for qRT-PCR are
as follows: myl7 (myl7_fw: AGGGGGAAAACTGCTCAAAG and myl7_rev: TGATAACTCCATCCCGGTTC),
vimhe (vimhe_fw: TCGTCAGTCGTGAAGGTGAC and vmhe_rev: GGCTCATGAAGGAAGGTGAA), slu7




(slu7_fw: AGAAAAGGAGCATGCGAAAA and slu7_rev: atgcctgtgccagaaaactt) and gapdh (gapdh_fw:
GATACACGGAGCACCAGGTT and gapdh_rev: CGTTGAGAGCAATACCAGCA).

Quality control for Nuclei and Polysomal Isolation, RNA extraction, and library preparation.

Maximal efficiency of nuclei and polysomal isolation is highly dependent on complete lysis of cells with Buffer H
(nuclei isolation) and Cell Lysis Buffer (polysomal isolation). Hence, it is essential that embryos are lysed at a
ratio of 50 embryos (26hpf or younger) per 1 mL of buffer with 20 strokes of pestle A and 60 strokes of pestle B.
Care must be undertaken that pestle B is not faulty and has the appropriate small clearance for efficient cell lysis.
Quality of cell lysis for each experiment was determined by RNA extraction of the unbound fraction. For nuclei
isolation, the flow-through containing unbound nuclei (the ‘lysate’ ) was pelleted by centrifugation at 2000g for 10
minutes at 4 °C and dissolved in 400 uL. RNA lysis buffer. The sample was placed onto a magnetic stand to remove
residual Dynabeads; RNA lysis buffer containing total RNA from the lysate was processed in the same manner.
Similarly, for polysomal isolation, the supernatants containing unbound polysomes were cleared by centrifugation
at 7000g for 10 minutes at 4 °C, the supernatant removed until about 200 uL is left, followed by addition of 800 uL
RNA lysis buffer.

Both purified and unbound nuclei and polysomes were lysed and RNA pools extracted using RNAqueous
Micro Scale Total RNA Isolation Kit (Ambion cat. no.AM1931), genomic DNA was removed by 20 minutes of
rDNasel (provided with Ambion cat.no.AM1931) treatment. Before library production, quality of the RNA was
assayed using Agilent RNA 6000 Pico kit (Agilent Technologies, cat. n0.5067-1513) on the Agilent 2100
Bioanalyzer, as specified by manufacturer. We ensured that in both nuclei and polysomal isolation experiments, the
Bioanalyzer profiles for experimental and lysate samples were highly similar and displayed the expected quantity
ratios (i.e. much higher amount of RNA in the lysate sample compared to experimental sample). Non-directional
sequencing libraries after polyA-selection of RNA transcripts (NEBNext® Poly(A) mRNA Magnetic Isolation
Module, NEB) were built using NEBNext Ultra RNA library kit for Illumina (NEB). For directional
RNA-sequencing, 30-50 ng of total nuclear RNA and 40-50 ng of total polysomal RNA were first enriched by
ribodepletion using Ribo-Zero™ Magnetic Kit (Epicentre). Subsequently sequencing libraries were prepared using
Stranded RNA-Seq Library Preparation Kit (KAPABiosystems), according to manufacturer’s instructions. Deep
sequencing was performed on HiSeq2500 or Nextseq500 Illumina platforms. Biological duplicates were generated
for each experimental condition and pairwise comparison performed on biological duplicates to ensure high quality
of sequence data for analysis (Fig.S3D). cDNA libraries for RT-PCR validation were generated using Superscript II
RT and random hexamer priming (Life Technology, cat. no.18064-014). To directly compare different total RNA
isolation protocols - biotagged nuclei, biotagged ribosomes and FACS total RNA yield was quantified per batches
of 100 embryos. Number of positive cells/organelles per embryos recovered was deduced and calculated using
previously defined standards of 1 pg RNA/cell for Avi-RanGap, 0.05 pg RNA/cell for Avi-Rpl10 and cell counts
from FACS experiment.

Bioinformatics Processing.

ATAC-Seq: ATAC-seq data was sequenced using paired-end 40 bp run on the NextSeq500 platform. Reads were
trimmed for quality using sickle (v 1.33) (Joshi and Fass,,|2011) and mapped using bowtie (v.1.0.0). Bigwig files
were generated using an enhanced Perl script courtesy of Jim Hughes. Only paired reads with insert sizes larger
than 100 bp were selected and reads were displaced by +4 bp and -5 bp as described previously (Buenrostro et al.,
2013)) and extended to a read length of 100bp. Peak calling was performed using MACS2 with -nomodel and
—slocal 1000 parameters (Zhang et al.,|2008)). Zebrafish Ensembl gene models were extended by 100 bp in 5” of the
TSS to account for gene mis-annotation. ATAC-seq peaks overlapping with extended TSSs were used to define
open promoter set (ATAC_TSS). Putative cis-regulatory element set (ATAC _enhancer), was identified as ATAC
peaks not overlapping with Ensembl-annotated promoter regions or exons.

RNA-seq analysis: RNA-Seq data was sequenced using 50 bp paired-end reads on HiSeq2000 and HiSeq2500
platforms. Whole embryo polyadenylated transcriptome at 24hpf generated by Armant and colleagues (Armant




et al.| 2013) was downloaded from SRA (Accession SRP014596). Reads were mapped to the zebrafish genome
(Jul.2010 Zv9/danRer7 assembly) with STAR (v.2.4.2a) using default parameters (Dobin et al., 2013). Sets of
BAM files incorporating reads belonging to either DNA strand were generated using custom scripts available at
https://github.com/tsslab/biotagging/. Count tables were produced for Ensembl gene models using subread
featureCount v1.4.5 (Liao et al., 2014)) or htseq-count for strand-specific quantification. Differential expression
analysis for different gene models (ENSEMBL gene models, custom gene models for intron quantification and
published IncRNA models) was performed using DESeq2 (Anders et al., 2012} [Love et al.}[2014). Enriched genes
were selected at a p-value of 0.05 after a Benjamini-Hochberg adjustment for multiple testing. Gene set enrichment
analysis was performed using the Piano package (Varemo et al., 2013) and the Panther pathway classification
downloaded for zv9 version of the genome (ftp:/ftp.pantherdb.org/). Transcript levels were quantified in RPKM
and FPKM, as previously described (Mortazavi et al.,[2008). Genes expressed at FPKM>1 were deemed
expressed. Data generated in this study submitted to GEO (GSE89670) and are also available via Daniocode
consortium (http://danio-code.zfin.org/daniocode/).

Genome-wide analysis of polyA-enriched neural crest nuclear transcripts validates the Biotagging
approach: Previous studies using the INTACT system employed polyA-based enrichment of RNA, thus
harvesting the spliced portion of the nuclear transcriptome. To cross-validate our approach, we applied similar
analyses to the nuclear RNA pool isolated from 24hpf neural crest cells, biotagged by crossing the Tg(sox10:
BirA-2A-membCherry)*7%% line (ncBirA) with the Avi-RanGAP effector line (nucAvi(bact)). RNA-seq libraries
were prepared from polyA-selected nuclear transcripts, sequenced and analyzed. Differential expression analysis
comparing polyA-selected nuclear neural crest to the whole embryo transcriptomes at 24hpf (Armant et al., 2013)),
identified 6580 differentially expressed genes (p<<0.05), with 2918 genes significantly enriched and 3662
decreased in the sox/0 nuclear samples (Fig.S4A). Biological replicates of sox/0 biotagged nuclei samples were
strikingly similar to each other for both enriched (Fig.S4B) and decreased genes (Fig.S4C) as shown by heat map
representations of their gene expression levels and by scatter plot comparison of complete datasets indicating our
purification and library production approach are highly reproducible (Fig.S3D). We found that 209 genes out of the
236, reported in Zfin as expressed in neural crest cells by 24hpf (Bradford et al., 201 1)), were expressed in the
nuclear samples at 2 FPKMs or higher (Fig.S4E,F). Gene set enrichment (GSE) analysis revealed the presence of
neural crest-relevant pathways implicated in the formation of neural crest derivatives, such as Wnt, PDGF, TGF/
and Notch (Fig.S4D, red nodes). In particular, the largest node from the GSE analysis consisted of 294 Wnt
pathway genes, in line with previous evidence for its major involvement in migratory crest (Dorsky et al.,[1998)
and its primary role in differentiation of pigment and sensory neuron lineages (Pavan and Raible} 2012)). The
reduced, but not absent, representation of general metabolic pathways such as the TCA cycle, de novo purine
biosynthesis and glycolysis (Fig.S4D) confirmed the value of profiling of small, specifically defined cell
populations. Notably, we found a significantly decreased representation of genes involved in neuronal
differentiation (axon guidance, opioid prodynorphin and GABA-B receptor II signalling) (Fig.S4D, blue nodes).As
neural cell-types are intimately mingled with migratory neural crest cells, this reduction indicates that we can
cleanly dissociate targeted and non-targeted cell-types by our purification protocol.

Intron quantifications: Starting from Ensembl gene models, we incorporated intron positions in a custom GTF
file and quantified total read count for all introns and exons of a gene model, respectively. We reduced intron
positions by 10% of total intron length from 5’ and 3’ ends to account for mis-annotated splice sites. Only introns
located within genes whose exonic sequence wasexpressed at >1 FPKM in nuclear samples were selected for
analysis. Moreover, genes whose introns contain another gene or transcript were excluded. After differential
expression, analysis comparing nuclear and polysomal beta-actin samples at 16ss, genome wide additive expression
profile of all differentially enriched introns larger than 30 kb were obtained using ngsplot (Shen et al.|[2014).

Global transcriptional patterns in multiple datasets: Global distribution profiles and genebody plots were
obtained using deepTools package profiler and heatmapper tools (Ramirez et al.,[2014).

Clustering of transcriptional patterns using k-means algorithm: To characterise bidirectional transcription
at active gene promoters in nuclear sox/0 datasets, we employed k-means clustering using seqMINER (Ye et al.,




2011). The clustering was performed using linear normalization, k=10 clusters and a window of 1.5 kb from the
active TSS set (ATAC_TSS). This procedure was applied to read associated with each strand of the sox/0 nuclear,
bactin nuclear and sox10 polysomal RNA-seq datasets. Corresponding heat maps were generated using
seqMINER. K-means clustering was applied in a similar strand-specific fashion, using linear enrichment
parameter, to identify and classify enhancers active specifically in neural crest cell nuclei, but using the active
enhancer set (ATAC_enhancer). For cis-regulatory signature analysis, clusters 1 and 2 enriched in bidirectionally
transcribed elements were selected and used to quantify specific bidirectional cis-regulatory modules transcription
in neural crest (sox/0 samples).

Scatterplot quantification of transcribed elements: Count tables for each k-cluster identified from
ATAC_TSS and ATAC_enhancer datasets were generated using subread featureCount (Liao et al.,[2014) for every
two samples being compared (e.g. sample A and B). To generate dot plots in R, counts were normalized to reflect
difference in sequencing depth between the two samples by dividing each count value of the sample with a greater
number of reads (e.g. sample A) to a “downsampling factor” (no. of sample A reads/no. of sample B reads). To
plot and obtain Pearson correlation coefficient values of ATAC_enhancer k-clusters whose transcription is more
enriched in sox/0 nuclear datasets, non-strand specific count tables for all clusters were generated and normalized
for sox10 nuclear and bactin nuclear samples. Cluster 4 containing non-transcribed elements was excluded. For
ATAC_TSS k-clusters, strand-specific count tables were generated and normalized to highlight k-clusters whose
transcription is more enriched in sox/0 nuclear datasets, according to negative or positive strand. To quantify the
proportion of TSSs that are bidirectionally transcribed in sox/0 nuclear compared to bactin nuclear, the number of
elements that have a normalized count value of >0 on both strands were determined. R package dplyr “anti_join”
function was used to identify bidirectional elements within a given cluster that are found only in sox/0 nuclear or
bactin nuclear.

Ranking neural crest (NC)-specific cis-regulatory modules (CRMs): To rank specific NC cis-regulatory
modules from cluster 1 and 2, sox10 nuclear replicates and bactin replicate BAM files were merged and read
counts for 11,655 elements ATAC_enhancer features were obtained using subread featureCount (Liao et al.,[2014))
and features expressed at FPKM>1 in bactin and sox10 samples were considered. The ratio of FPKM values
between sox10 nuclear and bactin nuclear is termed fold-change (FC) for 11,655 non-null elements from Clusters 1
and 2. These CRMs were ranked according to FC value. CRMs were assigned to the proximal genes targets based
on distance in whose regulation they are putatively involved. Using bedtools, a total of 11,655 CRMs were
assigned to 4,767 genes. To quantify the additive effect of multiple enhancers on a single locus, we computed the
Additive Fold Change (AFC), as a sum of FCs of all active CRMs assigned to a given locus. We ranked all loci
according to their AFC values to identify a critical set of highly regulated loci, defined as genes whose relative
specific enhancer transcription (measured by AFC) falls beyond this inflexion point. We assumed that these genes
constitute neural crest transcriptional signature at 16-18ss.

GREAT Analysis: To annotate and assign biological significance to the identified CRMs with intermediate to
high FC value (1<FC<S5), bidirectionally transcribed specifically in the neural crest nuclei, we applied the GREAT
tool (Genomic Regions Enrichment of Annotations Tool) (Hiller et al.} 2013;McLean et al., 2010), which allows
prediction of functional cis-regulatory regions by analysing the annotations of the genes lying proximal to them.
The analysis was performed using GREAT default parameters: basal regulatory region extending 5 kb upstream
and 1 kb downstream from TSS, with maximal 1 Mb extension and using the whole genome as a reference. We
retained results obtained with a with a p<0.001 according to both binomial and hypergeometric tests.

Repeated elements quantification: Repeat analysis was carried out as previously described (Goke et al.| 2015)).
Briefly, coordinates for repeats were downloaded from UCSC Genome Browser (v. Jan 19 2011) for danRer7
(Zv9). Read count for repeat positions were obtained using featureCount and FPKM values calculated accordingly
(Liao et al., 2014). Differential expression was carried out using the rank product non-parametric method
(Breitling et al.,|2004) using the R package RankProd, with pfp<0.05 (Hong et al., 2006).
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