UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Relevance of time-dependence for clinically viable diffusion imaging of the spinal cord

Grussu, F; Ianus, A; Tur Gomez, C; Prados Carrasco, F; Schneider, T; Kaden, E; Ourselin, S; ... Wheeler-Kingshott, C; + view all (2018) Relevance of time-dependence for clinically viable diffusion imaging of the spinal cord. Magnetic Resonance in Medicine 10.1002/mrm.27463. Green open access

[thumbnail of Grussu _et_al-2018-Magnetic_Resonance_in_Medicine (1).pdf]
Preview
Text
Grussu _et_al-2018-Magnetic_Resonance_in_Medicine (1).pdf - Published Version

Download (1MB) | Preview

Abstract

Purpose Time‐dependence is a key feature of the diffusion‐weighted (DW) signal, knowledge of which informs biophysical modelling. Here, we study time‐dependence in the human spinal cord, as its axonal structure is specific and different from the brain. Theory and Methods We run Monte Carlo simulations using a synthetic model of spinal cord white matter (WM) (large axons), and of brain WM (smaller axons). Furthermore, we study clinically feasible multi‐shell DW scans of the cervical spinal cord (b = 0; b = 711 s mm−2; b = 2855 s mm−2), obtained using three diffusion times (Δ of 29, 52 and 76 ms) from three volunteers. Results Both intra‐/extra‐axonal perpendicular diffusivities and kurtosis excess show time‐dependence in our synthetic spinal cord model. This time‐dependence is reflected mostly in the intra‐axonal perpendicular DW signal, which also exhibits strong decay, unlike our brain model. Time‐dependence of the total DW signal appears detectable in the presence of noise in our synthetic spinal cord model, but not in the brain. In WM in vivo, we observe time‐dependent macroscopic and microscopic diffusivities and diffusion kurtosis, NODDI and two‐compartment SMT metrics. Accounting for large axon calibers improves fitting of multi‐compartment models to a minor extent. Conclusions Time‐dependence of clinically viable DW MRI metrics can be detected in vivo in spinal cord WM, thus providing new opportunities for the non‐invasive estimation of microstructural properties. The time‐dependence of the perpendicular DW signal may feature strong intra‐axonal contributions due to large spinal axon caliber. Hence, a popular model known as “stick” (zero‐radius cylinder) may be sub‐optimal to describe signals from the largest spinal axons.

Type: Article
Title: Relevance of time-dependence for clinically viable diffusion imaging of the spinal cord
Open access status: An open access version is available from UCL Discovery
DOI: 10.1002/mrm.27463
Publisher version: https://doi.org/10.1002/mrm.27463
Language: English
Additional information: This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Neuroinflammation
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Computer Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Med Phys and Biomedical Eng
URI: https://discovery.ucl.ac.uk/id/eprint/10055060
Downloads since deposit
98Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item