UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Sodium Pumps Mediate Activity-Dependent Changes in Mammalian Motor Networks

Picton, LD; Nascimento, F; Broadhead, MJ; Sillar, KT; Miles, GB; (2017) Sodium Pumps Mediate Activity-Dependent Changes in Mammalian Motor Networks. The Journal of Neuroscience , 37 (4) pp. 906-921. 10.1523/JNEUROSCI.2005-16.2017. Green open access

[img] Text
5613103.pdf - ["content_typename_Published version" not defined]

Download (1MB)

Abstract

Ubiquitously expressed sodium pumps are best known for maintaining the ionic gradients and resting membrane potential required for generating action potentials. However, activity- and state-dependent changes in pump activity can also influence neuronal firing and regulate rhythmic network output. Here we demonstrate that changes in sodium pump activity regulate locomotor networks in the spinal cord of neonatal mice. The sodium pump inhibitor, ouabain, increased the frequency and decreased the amplitude of drug-induced locomotor bursting, effects that were dependent on the presence of the neuromodulator dopamine. Conversely, activating the pump with the sodium ionophore monensin decreased burst frequency. When more “natural” locomotor output was evoked using dorsal-root stimulation, ouabain increased burst frequency and extended locomotor episode duration, whereas monensin slowed and shortened episodes. Decreasing the time between dorsal-root stimulation, and therefore interepisode interval, also shortened and slowed activity, suggesting that pump activity encodes information about past network output and contributes to feedforward control of subsequent locomotor bouts. Using whole-cell patch-clamp recordings from spinal motoneurons and interneurons, we describe a long-duration (∼60 s), activity-dependent, TTX- and ouabain-sensitive, hyperpolarization (∼5 mV), which is mediated by spike-dependent increases in pump activity. The duration of this dynamic pump potential is enhanced by dopamine. Our results therefore reveal sodium pumps as dynamic regulators of mammalian spinal motor networks that can also be affected by neuromodulatory systems. Given the involvement of sodium pumps in movement disorders, such as amyotrophic lateral sclerosis and rapid-onset dystonia parkinsonism, knowledge of their contribution to motor network regulation also has considerable clinical importance. SIGNIFICANCE STATEMENT: The sodium pump is ubiquitously expressed and responsible for at least half of total brain energy consumption. The pumps maintain ionic gradients and the resting membrane potential of neurons, but increasing evidence suggests that activity- and state-dependent changes in pump activity also influence neuronal firing. Here we demonstrate that changes in sodium pump activity regulate locomotor output in the spinal cord of neonatal mice. We describe a sodium pump-mediated afterhyperpolarization in spinal neurons, mediated by spike-dependent increases in pump activity, which is affected by dopamine. Understanding how sodium pumps contribute to network regulation and are targeted by neuromodulators, including dopamine, has clinical relevance due to the role of the sodium pump in diseases, including amyotrophic lateral sclerosis, parkinsonism, epilepsy, and hemiplegic migraine.

Type: Article
Title: Sodium Pumps Mediate Activity-Dependent Changes in Mammalian Motor Networks
Open access status: An open access version is available from UCL Discovery
DOI: 10.1523/JNEUROSCI.2005-16.2017
Publisher version: https://doi.org/10.1523/JNEUROSCI.2005-16.2016
Language: English
Additional information: This is an open-access article distributed under the terms of the Creative Commons Attribution License Creative Commons Attribution 4.0 International, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.
Keywords: central pattern generator, locomotion, mouse, Na+/K+-ATPase, sodium pump, spinal cord
UCL classification: UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences > Neuro, Physiology and Pharmacology
URI: http://discovery.ucl.ac.uk/id/eprint/10054999
Downloads since deposit
11Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item