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Abstract

An ab initio potential energy surface (PES) for gas-phase ammonia NH3 has been computed

using the methodology pioneered for water (Polyansky et al. J. Phys. Chem. A, 117, 9633 (2013)).

Multireference configuration interaction calculations are perfomed at about 50 000 points using the

aug-cc-pCVQZ and aug-cc-pCV5Z basis sets and basis set extrapolation. Relativistic and adiabatic

surfaces are also computed. The points are fitted to a suitable analytical form, producing the

most accurate ab initio PES for this molecule available. The rotation-vibration energy levels are

computed using nuclear motion program TROVE in both linearized and curvilinear coordinates.

Better convergence is obtained using curvilinear coordinates. Our results are used to assign the

visible spectrum of 14NH3 recorded by Coy and Lehmann (J. Chem. Phys., 84, 5239 (1988)).

Rotation-vibration energy levels for the isotopologues NH2D, NHD2, ND3 and 15NH3 are also

given. An ab initio value for the dissociation energy of 14NH3 is presented.

∗Electronic address: o.polyansky@ucl.ac.uk
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I. INTRODUCTION

Ammonia is hazardous chemical, highly toxic for acquatic life, and its ever-increasing

release into Earth’s atmosphere has undesirable consequences [1]; monitoring its presence

in the atmosphere is therefore a particularly important scientific objective. Remote sensing

of spatially resolved atmospheric concentrations of ammonia requires reliable and extensive

spectroscopic datasets and their deficiencies remain a significant source of error [2]. Another

important area which requires spectroscopic data is astronomy; ammonia is thought to be

the key spectroscopic signature of the coldest failed stars, so-called brown dwarfs [3, 4],

and is probably also prominent in the atmospheres of exoplanetary gas giants [5]. All these

applications require accurate spectroscopic data over extended frequency and temperatures

ranges. This information is also required for the analysis and assignment of hot laboratory

spectra [6–9].

A review of experimental spectroscopic studies on 14NH3 is given as part of a recent anal-

ysis [10], which provided the most extensive set of experimentally deduced energy levels for

this system available to date. Unfortunately the available experimental data could only de-

termine 30 vibrational band origins and only about 5 000 rotation-vibrational (rovibrational)

energy levels, so that any dataset which aims at completeness must rely on calculations; there

is therefore a strong need for improved theoretical models of ammonia.

Very accurate ab initio calculations for the low-lying energy levels of NH3 were performed

by Rajamäki et al [11, 12] using coupled-clusted (CC) methods. It is well known, though

, that CC methods experience difficulties for calculations of highly excited rovibrational

energy levels. That is why the ability to calculate very accurately ab initio surfaces using

multireference configuration interaction (MRCI) methods is important, as this can provide

an accurate global surface which can give good results for both low-lying and highly excited

vibrational energy levels. Recently two high-accuracy ab initio studies of the rotation-

vibration energy levels of ammonia have been performed by Huang et al. [13–15] and by

Yurchenko et al. [16–18] using high-quality, semi-empirical potential energy surfaces. In

particular, Yurchenko et al. computed a linelist called BYTe including energy levels up to

18 000cm−1, containing over a billion transitions [17] and providing the most comprehensive

coverage of spectra for 14NH3. The energy levels of BYTe, more accurate below 5000 cm−1,

already at 6000–7000 cm−1 differ from experiment by up to 5 cm−1, so that this database is
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not always able to provide so-called spectroscopic accuracy (i.e., line positions accurate to

better than 1 cm−1) and consequently cannot address important unresolved issues such as

the unassigned visible wavelength spectrum of 14NH3 recorded by Coy and Lehmann three

decades ago [19, 20]. BYTe is also not appropriate for calculations of high-temperature

spectra (T > 1200 K) as such studies require energy levels up to at least up to 20 000 cm−1

[21]. All these considerations provide key motivations for constructing a new, more accurate

and more extensive ammonia PES.

This paper is organized as follows. In the section II the ab initio method used is de-

scribed, the choice of the grid points is given and the fitting procedure of these points to

obtain analytical PES is presented. In section III we present a new theoretical value for

the dissociation energy D0 of ammonia with an estimated uncertainty bar of ±35 cm−1,

which is much smaller than in all previous calculations; for example, in a recent study Mar-

quardt et al. [22] report computed values for the dissociation energy with a scatter of about

1 000 cm−1. Out theoretical value for D0 is in disagreement with the corresponding experi-

mental value, and some hypotheses on the origin of the observed discrepance are discussed.

In the section IV we describe our nuclear motion calculations using the program TROVE

[23, 24] in both linearised and curvilinear coordinates. In the section V the results of the

rotation-vibrational energy levels of ammonia NH3 and its isotopologues are described and

a comparison of these calculations with experimental data are presented; because of the

much increased effort required for ammonia we could not afford for ammonia quite the same

level of ab initio theory as used for water [25] but nevertheless we were still able to compute

accurate energy levels up to 18 000 cm−1, covering all experimentally known levels. Section

VI concludes this paper.

II. CALCULATION OF THE AB INITIO PES

A. Electronic structure calculations

In the present study we apply the ab initio calculation scheme developed by us which was

able to reproduce rovibrational energy levels of water with an accuracy of about 0.1 cm−1

[25]. The approach has recently been applied, with very good results, to the molecular ion

H2F
+. [26]. This calculation scheme comprises 11 components and is expected to lead to very
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accurate PESs and to be applicable to small molecules made up by the atoms from the first

and second periods of the periodic table (H to Ne). The various components are described

in detail in ref. [26] and we present them here only summarily: 1) a main component based

on MRCI [27] in the full-valence complete active space and the aug-cc-pCV6Z basis set [28–

30]; 2) a basis set correction based on extrapolation [31–33] using the aug-cc-pCV5Z basis

sets; 3) a dense grid of geometries [26, 34–37]; 4) an electron correlation correction based

on larger active spaces; 5) an adiabatic Born-Oppenheimer diagonal correction (BODC);

6) a scalar-relativistic correction [38, 39]; 7) a higher-level relativistic correction based on

the Dirac-Coulomb-Breit equation [40–42]; 8) a quantum electrodynamic correction (QED)

[43–45]; 9) a non-adiabatic vibrational correction [25, 46–48]; 10) a non-adiabatic rotational

correction [47, 49, 50]; 11) an off-diagonal spin-orbit correction [51–53].

In the following we will use the abbreviations acnz to indicate the aug-cc-pCVnZ basis

sets and awcnz to indicate aug-cc-pwCVnZ ones [28–30].

As MRCI energies of points 1) and 4) should include size-extensivity corrections [27]

(Davidson correction, +Q, or Pople correction) or size-extensivity-corrected MRCI-type

schemes such as the Averaged Coupled Pair Functional (ACPF) [54] or the averaged

quadratic coupled-cluster (AQCC) [55] methods might be used instead; however, our re-

comendation is to use MRCI+Q, as other methods did not lead to better results in our tests

with small molecules with up to five atoms. Internal-contraction approximation schemes

[56, 57] may be used for MRCI.

At the moment it seems that, at least for the purposes of high-resolution spectroscopy

of small molecules, MRCI-type methods provide the best accuracy; more advanced multi-

reference coupled cluster approaches [58] have not yet been shown to produce superior results

(see, e.g., table I of ref. [59]).

Ammonia, like water and H2F
+, is a ten-electron system but the presence of one more

hydrogen atom renders it a substantially harder system from the point of view of ab initio cal-

culations; the main reasons why this is so are: i) the PES depends on 6 internal coordinates

instead of only 3, so many more single-point calculations are needed to sample it. ii) Each

electronic-structure calculation is more expensive for ammonia than for water; in any given

basis set the supplementary hydrogen atom increases the number of basis functions by about

30%, and as electronic-structure methods scale with the number of basis functions N at least

as N4 this modest increase in basis functions brings about a slowdown by a factor about 3
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with respect to water; furthermore, in multi-reference methods such as CASSCF (complete

active space self-consistent field) and MRCI (multi-reference configuration interaction) [27]

the size of the active space is also larger, resulting in a further significant slowdown for these

methods. Finally, iii) because of the larger dimensionality the nuclear-motion problem is

much more complicated and more difficult to treat; this complexity manifests itself with

a number of novel properties not present in triatomic molecules, such as the splitting of

its energy levels due to the umbrella motion. This makes the spectra of ammonia hard to

analyse [19, 20, 60, 61].

We could not use all 11 components of our method in the present work for a variety of

reasons. First of all tetratomic molecules requires about 50 000 points, instead of about 2000

necessary for a triatomic calculation. Our computer resources did not allow us to calculate

50 000 points using an aug-cc-pV6Z basis set, so we had to limit ourselves to using an aug-

cc-pV5Z basis. In addition, we only used first-order relativistic corrections, without Breit

or Gaunt terms. The QED correction, which is needed to achieve 0.1 cm−1 accuracy, was

not deemed necessary for the present aim of about 1 cm−1 accuracy and was not included

either. Non-adiabatic corrections were allowed for by the primitive change of nuclear masses

to atomic masses. Certainly, future work aimed at achieving 0.1 cm−1 accuracy will have to

consider all these corrections.

In conclusion we computed a main surface using the aug-cc-pwCV5Z basis set and MRCI

in the full-valence reference space, comprising 8 electrons in 7 orbitals. The MRCI calcula-

tions used the Celani-Werner internal contraction scheme [57, 62] and took about 50 GB of

disk space, 3 GB of RAM and 7 hours of real time per geometry running on a single pro-

cessor. A second surface computed with the same method but the smaller aug-cc-pwCQZ

basis set was computed in order to perform basis-set extrapolation of the energies; each

of these took about 10 GB of disk space and 45 minutes of run time on the same system.

An electronic correlation correction surface was computed with the aug-cc-pwCQZ basis set

and an extended reference space including two more orbitals; these calculations took about

1.5 hours per geometry. For the relativistic correction we used the expectation value of the

MVD1 operator for the CASSCF wave functions in the aug-cc-pwCV5Z basis set. Overall

our calculation required about 270 000 CPU-hours (≈ 31 CPU-years).
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B. Fit to an analytic form

In this study we used the grid of 51 816 geometries from ref. [63], which was designed

to include all important geometries covering the energy region below 20000 cm−1. However,

as discussed below, only 22 494 points were actually used in the final fit. To represent

the ab initio data sets analytically we use a form which has already been used in a series

publications to represent the PES not only of NH3 [64] but also of other molecules and

molecular ions PH3, SbH3, BeH3, NH+
3 , CH+

3 , H3O
+ [64–69].

V (ξ1, ξ2, ξ3, ξ4a, ξ4b; sin ρ̄) =Ve + V0(sin ρ̄) +
∑
j

Fj(sin ρ̄) ξj

+
∑
j≤k

Fjk(sin ρ̄) ξj ξk

+
∑
j≤k≤l

Fjkl(sin ρ̄) ξj ξk ξl

+
∑

j≤k≤l≤m

Fjklm(sin ρ̄) ξj ξk ξl ξm

+
∑

j≤k≤l≤m≤n

Fjklmn(sin ρ̄) ξj ξk ξl ξm ξn

+
∑

j≤k≤l≤m≤n≤o

Fjklmno(sin ρ̄) ξj ξk ξl ξm ξn ξo

(1)

where

ξk = 1− exp(−a(rk − re)), k = 1, 2, 3, (2)

ξ4a =
1√
6

(2α1 − α2 − α3) , (3)

ξ4b =
1√
2

(α2 − α3) , (4)

re denotes the equilibrium value of rk, and

sin ρ̄ =
2√
3

sin[(α1 + α2 + α3)/6]. (5)

The pure inversion potential energy function in Eq. (1) is given by

V0(sin ρ̄) =
8∑
s=1

f
(s)
0 (sin ρe − sin ρ̄)s, (6)
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and the functions Fjk...(sin ρ̄) are defined as

Fjk...(sin ρ̄) =
N∑
s=0

f
(s)
jk... (sin ρe − sin ρ̄)s (7)

where sin ρe is the equilibrium value of sin ρ̄, a is a molecular parameter, and the quantities

f
(s)
0 and f

(s)
jk... in Eqs. (6) and (7) are expansion coefficients. The summation limits in

Eq. (7) are N = 6 for Fj(sin ρ̄), N = 4 for Fjk(sin ρ̄), N = 3 for Fjkl(sin ρ̄), N = 2 for

Fjklm(sin ρ̄), Fjklmn(sin ρ̄), and Fjklmno(sin ρ̄). In total there are 301 symmetrically unique

potential parameters f
(s)
jk.... The symmetry relations between the parameters can be found

in, for example, ref. [63].

The potential parameters f
(s)
0 and f

(s)
jk... were obtained by fitting to 22 494 ab initio ener-

gies; 301 parameters were used to reproduce all these energies with a fitting error of 3.2 cm−1.

The potential parameters together with a Fortran 90 program are given as supplementary

material to this paper.

During fitting we assigned to each point an energy-dependent weight given by

w =
2

1 + e2·10−4·E (8)

where E is the energy in cm−1. The lowest point has a zero energy and hence a weight

equal to unity. Some of ab initio points showed unsatisfactory accuracy, for example due

to issues with convergence in our ab initio calculations. Such points could be detected in

the fitting procedure by a simple test: the fitted analytic PES lies far away from inaccurate

points. The accuracy of the final PES is systematically increased by excluding inaccurate

points from the fitting procedure.

In this work we fitted directly the sum of basis-set extrapolated energies, relativistic

corrections and higher-order correlation corrections; it was found beneficial to operate in

this way as fitting the components separately resulted in larger fitting errors. We used

initial 51 816 unique geometries to produce ab initio points. But only 23 725 points were

calculated successfully (all QZ, 5Z energies; CAS and relativistic corrections have converged

numerical values). However, the adiabatic correction was fitted separately as this made

calculations for multiple isotopologues more convenient.
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III. CALCULATION OF THE DISSOCIATION ENERGY

In our previous theoretical calculations [70] we were able to produce a theoretical value

for the dissociation energy of water, D0, with an estimated error of 8 cm−1 and in perfect

agreement with the very accurate experimental value; in this section we compute an accurate

value of the dissociation energy D0 of ammonia, an important quantity in thermochemistry.

The lowest dissociation pathway for ammonia consists in stretching to infinity one of the

hydrogen atoms, and we define the dissociation energy D0 as

D0 = Ervb(NH2) + Ervb(H)− Ervb(NH3) (9)

where the Ervb are the total (rovibronic) lowest energies of NH3 and of the dissociation

fragments in their ground states. In the Born-Oppenheimer approximation the rovibronic

energy are written as the sum of an electronic energy Eel evaluated at the equilibrium

geometry and a ro-vibrational energy Evib. As is custormary we define the potential well

depth De by an expression analogous to eq. (9) but involving the electronic energies of the

various fragments evaluated at their equilibrium geometries:

De = Eel(NH2, eq) + Eel(H, eq)− Eel(NH3, eq) (10)

and we also define the ro-vibrational zero-point energy (ZPE) of a system as the difference

between the energy of the ro-vibrational ground state and the electronic energy evaluated

at the equilibrium geometry. With these definitions we have that

D0 = De + ZPE(NH2) + ZPE(H)− ZPE(NH3) (11)

Experimentally one of the first accurate values for D0 was reported by Bohme et al. [71]

as D0 = 106.0± 1.1 kcal/mol (37 074 ± 350 cm−1); this value is in agreement with the later

value by Gibson et al. [72] D0 = 106.7± 0.3 kcal/mol (37 300 ± 100 cm−1), which is widely

reported in the literature. Qi et al. [73] reported in 1995 a value D0 = 4.97±0.05 eV (40 100

± 400 cm−1), considerably higher than previous values and in substantial disagreement with

them. In 1996 Mordaunt et al. [74] reported much more accurate values for the dissociation

energies of five ammonia isotopologues, reporting for the parent isotopologue 14NH3 D0 =

37 115 ± 20 cm−1, in agreement with the value of Bohme et al. and in mild disagreement

(by 2σ) with the one of Gibson et al..
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TABLE I: Ab initio contributions to the dissociation energies of NH3. All values are in cm−1. Un-

certainties, where available, are given in parenthesis. Signed contributions are additive corrections.

Quantities A to F are nuclear-mass independent, all others are nuclear-mass dependent. See text

for a full description of the contributions.

label Description value unc.

A CCSD(T)/ac[56]z, all electron 40 344(21)

B CCSDTQP/wc2z, all electron +8( 4)

C Geometry adjustment -135( 8)

D Best non-relativistic De [=A+B+C] 40 218(23)

E Relativistic correction -32( 3)

F Best mass-independent De [=D+E] 40 188(23)

G Adiabatic correction (BODC), NH3 +60(10)

H Best mass-dependent De [=F+G] 40 248(25)

I Zero point energy NH3 7 433(1)

J Zero point energy NH2 [74] 4 005(25)

K Overall zero point energy contribution [=J–I] -3 428(25)

L Best theoretical D0 [=H+K] 36 820(35)

M Experimental D0 [74] 37 115(20)

N Experiment – theory [=M–L] 295(40)

We computed an ab initio value for De for ammonia by using high-order coupled cluster

theory and eq. (10); because only calculation at equilibrium geometries are required the

coupled cluster hierarchy is expected to converge very quickly and therefore we expect to

produce a highly accurate reference value. We also compare the coupled cluster results with

the MRCI ones. Because only one NH3 calculation is required, we could use basis sets which

would be too expensive to use in a computation of the full surface. We present in table I a

summary of the result and describe the details of the calculation in the following.

Contribution A was computed using both for NH3 and for NH2 geometries with r(N–

H) = 1.01 Å, 6 HNH = 108◦. Calculation of the NH2 X̃
2B1 ground state used a restricted

open-shell reference and the RHF-UCCSD(T) method [75–77]. The aug-cc-pCV5Z and aug-
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cc-pCV6Z energies were extrapolated using the formula En = E∞+A/(n+1/2)4; the stated

uncertainty is one half of the shift of the aug-cc-pCV6Z De value to the basis-set extrapo-

lated one.

Contribution B. A high-order coupled cluster correction (up to pentuple excitations [78, 79])

was computed using the geometries used for contribution A above; the correction is com-

puted as De(CCSDTQP) –De(CCSD(T)) using the cc-pwCVDZ basis set. The reported

uncertainty is the absolute value of the difference between the shifts computed in the cc-

pwCVDZ and the cc-pVDZ basis sets. Correlation effects beyond CCSDTQP were esti-

mated computing full configuration interaction (FCI) values of De in the 6-31G and the

cc-pVDZ basis set (frozen core calculations); the CCSDTQP→FCI correction amounts to

only +0.1 cm−1 using these basis sets and was neglected.

Contribution C. The geometries used in the main calculations (contributions A and B) are

not exactly the equilibrium geometries neither for NH2 nor, to a smaller extent, for NH3,

so we correct for this fact in this step. Using for NH3 the experimental equilibrium ge-

ometry r(N–H) = 1.012 Å, 6 HNH = 106.7◦ we get using CCSD(T)/aug-cc-pCVQZ-DK

(relativistic calculation using the Douglas-Kroll-Hess Hamiltonian to fourth order [80]) a

contribution to De of +22 cm−1. Using for NH2 the experimental equilibrium geometry

r(N–H) = 1.0254 Å, 6 HNH = 102.85◦ we get using CCSD(T)/aug-cc-pCV5Z-DK a contri-

bution to De of -157 cm−1. The total contribution is therefore +22-157=-135 cm−1. The

error bar was established on the basis of comparison with calculations in smaller basis sets.

Contribution E. Scalar relativistic correction were computed by expectation of the mass-

velocity one-electron Darwin operator (MVD1) and the MRCI wave function (full valence

reference space) in the aug-cc-pCV5Z basis set; the geometries described in contribution A

above were used. The correction due to quantum electrodynamics was estimated by scaling

on the one-electron Darwin term [45], amounts to +2 cm−1 and was neglected. The error

bar was established on the basis of comparisons with calculations in smaller basis sets and

using the Douglas-Kroll-Hess Hamiltonian. The correction due to spin-orbit to De is zero

to first order of perturbation theory and is therefore negligible (� 1 cm−1).

Contribution G. The adiabatic correction (also known as the Born-Oppenheimer diagonal

correction) was computed using CCSD in the cc-pwCTZ basis set (all electron calculations)

and the program CFOUR [81, 82]. The geometries used are the ones described in contribu-

tion A; the error bar was set on the basis of comparison with the Hartree-Fock value (which
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is +52 cm−1) and of the CCSD/cc-pVDZ (frozen core) CCSD value (which is +78 cm−1).

Contribution I. The zero point energy of NH3 was obtained from the new PES produced

in this work and was set to 7 433(1) cm−1; this value is in fair agreement with the one

computed by Mordaunt et al. of 7 415 cm−1 from experimental vibrational frequences and

anharmonicity constants.

Contribution J. It is difficult to identify an accurate and reliable value for the zero point

energy of the NH2 radical from the existing literature. Mordaunt et al. [74] use the value

4 005cm−1, which is in fair agreement with the one quoted by Demaison et al. [83] of

48.20 kJ/mol (4029 cm−1). We decided to use the value by Mordaunt et al. and assigned to

it an error bar of 25 cm−1. This rather large error bar should also compensate from the fact

that the ground state of NH2 has J = 1/2 and not J = 0 and because of this computing

the zero point energy as 1/2 of the sum of the harmonic frequences plus anharmonicity

corrections (formula 4 of ref. [74]) is not a fully correct procedure.

As one can see from the values in table I there is a strong discrepancy (by more than 7σ)

between our calculated value for D0 and the experimentally-derived value from ref. [74];

We also computed values of De using MRCI. For this method we can compute De either

by performing separate equilibrium calculations for NH3 and for NH2 and H as in the coupled

cluster case or, alternatively, by performing a two calculation for NH3, one at equilibrium

and one where one of the N–H bonds is highly stretched. As MRCI is not a size consistent

method we expect in principle different results for the two strategies; however, tests in the

cc-pVDZ with the full valence reference space showed that the size extensivity error (i.e.,

the difference in De between the two way of computing it) is only about 0.01 cm−1 both

for MRCI and MRCI+Q energies and therefore completely negligible. We also tested the

difference between energies computed using the Werner-Knowles internal contraction scheme

[56] or the newer and faster Celani-Werner one [57, 62]; once again tests in the cc-pVDZ and

the full reference space showed that the two variations produce energy curves in differing by

less than 0.01 cm−1 along the whole stretching curve, so that we can assume both contraction

scheme are equivalent in practice. With respect to the best non-relativistic coupled-cluster

value (quantity D in table I) the MRCI value in the full valence reference space is 314 cm−1

lower while the Davidson-corrected MRCI+Q (fixed reference) is 23 cm−1 lower. Using a

larger reference space with two extra orbitals the MRCI value is 295 cm−1 lower than the

best coupled cluster based one and MRCI+Q is 53 cm−1 lower. Overall we consider the
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agreement of the MRCI+Q energies very good, especially in the full valence reference space.

This observation implies than MRCI+Q is capable of providing very high accuracy all the

way up to dissociation.

IV. NUCLEAR MOTION CALCULATIONS

Rotation-vibrational energy levels were calculated using the general, variational program

TROVE [23, 24]. In TROVE the ro-vibrational Hamiltonian is expressed in terms of internal

valence coordinates as a Taylor series expansion around a non-rigid reference configuration

and is represented explicitly on a grid. The expansion coefficients for kinetic energy operator

(KEO) and the PES are obtained in a numerically exact fashion using automatic differenti-

ation techniques. [24] In the present work, the kinetic and potential energy operators were

expanded up to 8-th order in terms of the N–Hi (i = 1, 2, 3) stretching coordinates and of

the symmetry-adapted bending coordinates

s4 =
1√
6

(2β23 − β13 − β12) ,

s5 =
1√
2

(β13 − β12) ,

where βij is the 6 (Hi–N–Hj) bending angle projected on the plane perpendicular to the tri-

sector vector. We choose to work with s4 and s5 given in terms of βij rather than 6 (Hi–N–Hj)

considering their relatively simple relations to the Cartesian coordinates of the atoms, which

is highly desirable for the automatic procedure of constructing the KEO in TROVE. For

expansion of the potential energy we employed Morse-type variables for the three stretching

coordinates. The non-rigid reference configuration was defined by the umbrella-motion vi-

brational coordinate τ on a grid of 1000 points with displacements covering potential energies

up to 40 000 cm−1 above the minimum.

The general variational solution in TROVE involves several steps (basis set optimization,

contraction, symmetrization) described in general elsewhere [23, 24] and in ref. [16] for NH3

in particular. The size of the total vibrational basis set is controlled by the polyad number P

P = 2(nNH1 + nNH2 + nNH3) + ns4 + ns5 +
nτ
2
,

with ni denoting the quantum numbers of the corresponding primitive basis functions, which

restricts the products of the primitive functions to those for which P ≤ Pmax. In the present

calculation we employed Pmax = 40.

13



The original implementation of TROVE performed calculations using rectilinear coordi-

nates. However, during the course of this work a new version based on the use of curvilinear

coordinates became available [84]. In particular, rectilinear coordinates, as illustrated by the

first column of Table II, when used up to polyad number 28, which resulted in convergence

of the highest experimentally known energy levels at about 18 000 cm−1 to a discrepancy

with experiment of about 100 cm−1. The use of curvilinear TROVE permitted the use of

polyad numbers up to 40 and therefore allowed for much better convergence. The values of

the parameters req and αeq were determined during the fitting of ab initio points as 1.0106 Å

and 106.696◦. However, we find better agreement with experiment if we change these values

slightly to 1.0116 Å and 106.719◦. The calculated energy levels in Table II were obtained

with these changed values.

To assess the accuracy of the variational setup employed in this study we performed

calculations with basis sets of different sizes. Figure 1 plots the mean absolute differences

between energies calculated with polyad number Pmax and (Pmax − 4) in energy intervals

of 2000 cm−1. All states with the energies below 20 000 cm−1 and an absolute value of the

leading coefficient in the wave function larger than 0.5 were selected for the plot, resulting

in about 1200 in number. Gradual increase of the basis set improves the accuracy by about

one order of magnitude for energies below 14 000 cm−1, while for higher energies the curves

on Fig. 1 show almost the same convergence rates for all states up to 20 000 cm−1. This is

due to the heavy mixing of states at higher energies, so that only few of them passed the

threshold for the leading coefficient and were considered in the plot, fictitiously lowering the

average errors. By extrapolating the convergence pattern between 6000 and 14 000 cm−1

to higher energies it can be seen that to obtain an accuracy of 1 cm−1 for all energy levels

below 20 000 cm−1 the basis set must be extended to at least Pmax = 48.

V. ROVIBRATIONAL ENERGY LEVELS OF NH3 AND ISOTOPOLOGUES

In the table II experimental energy levels of ammonia molecule, as well as the detuning

calculated from the experimental energies at different values of the parameter Pmax are

presented. Comparing detuning of the same energy at different values of Pmax it is possible

to assess convergence properties with basis extention. Calculations Pmax = 28 was carried

out with the linearized coordinates, while calculations with Pmax > 28 was performed with
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FIG. 1: Basis set convergence of NH3 vibrational energy levels. The mean absolute energy differ-

ences |E(Pmax)−E(Pmax − 4)| are drawn in each energy interval (2000 cm−1 wide) for three basis

sets truncated at polyad numbers Pmax = 32, 36, and 40 in blue circles, orange squares, and red

diamonds, respectively. For KEO series truncation errors, the respective differences for NKEO = 8

and 6 are drawn as a black dashed line.

curvilinear coordinates.

Table III compares the results of J = 0 calculations on 14NH3 with the J = 0 energy

levels, obtained in Ref. [10] using the MARVEL procedure [85, 86]. The table substantiates

our claim that we can reproduce the energy levels of NH3 to within 1 cm−1.

Table IV presents a comparison of our calculations with the measured energy levels of

highly-excited stretching (v2=0) levels up to 18 000 cm−1. These energies were obtained

by Coy and Lehmann quite some time ago [19, 20], but there are previous no attempts to

reproduce these levels from the first principles. Comparing these results with the ones for

water computed at the same level of theory, see Table V, one finds that the results are very

similar. To obtain calculated water levels we like in the case with ammonia slightly changed

the equilibrium parameters.

The correctness of the calculated levels of table IV (and of the labelling of the exper-

imental energy levels in table II) was also confirmed by calculations of vibrational band

intensities, shown in table VI. In experiment usually the strongest bands are visible. There-

fore, quantum numbers of the strongest lines from table VI were taken, corresponding to
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TABLE II: Convergence of the highly excited levels of NH3 for different polyad number Pmax and

rectilinear (‘rect’) or curvilinear (‘curv’) coordinates. The column labelled ‘obs’ are experimental

energy levels from ref.[20], the other columns are differences to calculated values. All energies are

in cm−1.

Pmax = 28 28 32 36 40

coordinates= rect curv curv curv curv

Label

A′1 6798.47 6798.44 6798.33 6798.30 6798.30

A′′2 6796.86 6796.74 6796.68 6796.67 6796.67

E′′ 6611.54 6610.79 6611.08 6610.67 6610.67

E′ 6610.16 6609.85 6609.99 6610.67 6609.73

E′ 6666.60 6666.45 6666.44 6666.38 6666.37

E′′ 6679.58 6679.24 6679.04 6679.16 6679.16

E′ 6678.66 6678.55 6678.27 6678.47 6678.47

E′′ 6852.22 6851.99 6851.97 6851.94 6851.94

E′ 6851.69 6851.56 6851.52 6851.51 6851.51

E′′ 9749.77 9742.15 9744.66 9741.41 9741.40

E′ E(s) 9744.54 9740.32 9742.14 9739.86 9739.86

E′′ 9702.32 9693.64 9697.24 9692.63 9692.62

E′ E(s) 9695.72 9692.37 9690.40 9691.72 9691.71

E′′ 9656.15 9645.99 9649.91 9644.91 9644.90

E′ E(a) 9648.85 9642.40 9645.10 9641.72 9641.72

E′′ 12664.59 12651.93 12652.12 12627.62 12627.56

E′ E(av) 12718.80 12683.14 12697.96 12676.55 12676.39

A′′2 15507.56 15527.04 15467.51 15453.04 15446.91

A′1 15487.20 15497.11 15466.35 15459.60 15458.98

E′′ 15507.72 15527.15 15467.76 15456.63 15455.64

E′ 15487.51 15499.76 15466.82 15458.79 15458.11

A′′2 18292.10 18404.01 18184.72 18127.73 18123.49

A′1 18262.25 18351.99 18145.72 18115.67 18115.57

E′′ 18294.78 18410.40 18184.07 18131.45 18122.74

E′ 18265.52 18349.18 18145.34 18118.70 18119.42
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transitions from the ground vibrational state to the energy levels with strong stretch exci-

tation. These calculated levels (and quantum number) were substituted into tables II and

IV.

Further comparison of the accuracy of the present calculations with the highly excited

energy levels of NH3 became possible while during the course of this work thanks to new

assignments of highly excited ammonia states close to 8000 cm−1 [87]. In particular, the

band origins of 5 highly excited vibrational states of ammonia have been determined from

the new analysis of experimental data [87], see Table XI. As could be seen from the table, 4

out of five presented highly excited band origins are reproduced by our ab initio calculations

within 2 cm−1 which is more accurate even , than the results of the semiempirical predictions

taken from the linelist BYTe [17]. It confirms once more the accuracy of our PES and its

ability to caluclate highly excited vibrational states of ammonia molecule.

Predicted energy levels for isotopically substituted NH3 were also computed. Results

for NH2D, NHD2 and ND3 are presented in tables VII, VIII and IX respectively. All

isotopologues calculations were made with Pmax=28 and linearized TROVE coordinates.

TABLE III: Comparison of calculated (Pmax = 40) and ex-

perimental energy levels of ammonia [10] in cm−1.

v1 v2 v3 v4 L3 L4 L i sym obs. obs.-calc.a obs.-calc.b obs.-calc. [88] c

0 0 0 0 0 0 0 - A′′2 0.79 0.03 0.01 0.00

0 1 0 0 0 0 0 - A′′2 968.12 -3.69 -0.38 -0.01

0 0 0 1 0 1 1 + E′ 1626.27 -1.36 0.09 0.06

0 0 0 1 0 1 1 - E′′ 1627.37 -1.31 0.11 0.07

0 2 0 0 0 0 0 - A′′2 1882.18 -5.67 -0.44 -0.37

0 1 0 1 0 1 1 + E′ 2540.52 -7.14 -1.13 0.22

0 1 0 1 0 1 1 - E′′ 2586.13 -5.38 -0.62 0.05

0 3 0 0 0 0 0 - A′′2 2895.52 -5.64 -0.21 -0.07

0 0 0 2 0 0 0 - A′′2 3217.59 -2.81 -0.06 -0.69

0 0 0 2 0 2 2 + E′ 3240.16 -3.06 -0.19 -0.45

0 0 0 2 0 2 2 - E′′ 3241.60 -3.10 -0.17 -0.43

1 0 0 0 0 0 0 - A′′2 3337.10 -1.64 -1.50 -1.77
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0 0 1 0 1 0 1 + E′ 3443.63 0.03 -0.50 0.27

0 0 1 0 1 0 1 - E′′ 3443.99 0.02 -0.50 0.28

1 1 0 0 0 0 0 - A′′2 4320.03 -5.36 -1.99 -0.19

0 1 1 0 1 0 1 + E′ 4416.92 -4.31 -0.92 -2.27

0 1 1 0 1 0 1 - E′′ 4435.45 -3.63 -0.82 -2.36

1 0 0 1 0 1 1 + E′ 4955.76 -3.01 -1.45 -3.79

1 0 0 2 0 2 2 + E′ 6556.42 -4.71 -1.94 -6.52

1 0 0 2 0 2 2 - E′′ 6557.93 -4.97 -1.88 -6.75

1 0 1 0 1 0 1 + E′ 6608.82 -2.44 -1.02 -6.05

1 0 1 0 1 0 1 - E′′ 6609.75 -2.81 -1.02 -6.18

0 0 1 2 1 2 1 + E′ 6677.43 -1.85 -1.11

0 0 1 2 1 2 1 - E′′ 6678.31 -1.89 -0.92

0 2 0 3 0 1 1 - E′′ 6678.93 -15.53 -2.48

0 0 2 0 2 0 2 E′ 6850.24 -0.45 -1.32 2.52

0 0 2 0 2 0 2 E′′ 6850.65 -0.47 -1.33 2.53

0 1 0 0 0 0 0 + A′1 932.40 -5.01 -0.64 2.52

0 2 0 0 0 0 0 + A′1 1597.50 -9.60 -1.12 2.53

0 3 0 0 0 0 0 + A′1 2384.20 -6.46 -0.41

0 0 0 2 0 0 0 + A′1 3216.00 -2.69 -0.04 0.17

1 0 0 0 0 0 0 + A′1 3336.10 -1.67 -1.52 -0.41

0 4 0 0 0 0 0 + A′1 3462.50 -5.54 -0.02 -1.22

0 2 0 1 0 1 1 - E′′ 3502.10 -7.93 -1.39 -0.61

0 1 0 2 0 0 0 + A′1 4115.60 -10.10 -1.92 -4.00

0 1 0 2 0 2 2 + E′ 4135.90 -9.95 -1.95 1.65

0 1 0 2 0 0 0 - A′′2 4173.30 -7.33 -0.79

0 1 0 2 0 2 2 - E′′ 4193.10 -7.51 -1.08 -0.39

1 1 0 0 0 0 0 + A′1 4294.50 -6.20 -2.16 -0.43

0 2 0 2 0 0 0 + A′1 4754.30 -17.61 -5.83 -0.30

0 0 0 3 0 1 1 + E′′ 4802.40 -4.14 0.88 -0.44
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1 0 0 1 0 1 1 - E′′ 4956.90 -3.02 -1.44 3.08

1 2 0 0 0 0 0 + A′1 5002.90 -8.52 0.32

0 0 1 1 1 1 0 + A′2 5051.40 -1.57 -0.58

0 0 1 1 1 1 0 - A′′1 5052.10 -1.49 -0.48 -4.00

0 2 0 2 0 0 0 A′′2 5092.60 -11.21 -2.61

0 2 0 2 0 2 2 - E′′ 5112.80 -10.87 -2.45 -0.71

0 2 1 0 1 0 1 + E′ 5146.34 -8.38 0.18 -0.57

0 2 1 0 1 0 1 - E′′ 5352.80 -6.39 -1.10

0 2 0 3 0 1 1 + E′ 6310.30 -22.00 -5.43

2 0 0 0 0 0 0 + A′1 6514.10 -9.25 -7.20

1 0 0 2 0 0 0 + A′1 6648.20 -5.86 -3.68

1 0 0 2 0 0 0 - A′′2 6649.80 -5.79 -3.21

0 0 1 2 1 0 0 + A′2 6651.40 -2.82 -0.26

0 0 1 2 1 0 0 - A′′1 6652.60 -2.92 0.09

0 0 2 0 0 0 0 A′′2 6792.00 -3.98 -4.73

0 0 2 0 0 0 0 A′1 6793.10 -7.71 -5.27

a This work based on the ab initio equilibrium geometry.

b This work using shifted equilbrium geometry.

c Computed by Marquardt et al [22] using an empirically adjusted potential [89].

TABLE IV: Comparison of the observed v2=0 high energy

levels of ammonia (in cm−1) calculated in this work and due

to Lehmann and Coy [20]; the second, non-standard symme-

try labels are due to Lehmann and Coy.

Sym. obs. obs.-calc. (this work) obs.-calc. [88]

E′ 1626.10 -0.08

A′1 3336.10 -1.50

E′ E(s) 5052.60 -0.40

E′′ E(a) 5052.97 -0.63
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E′ E(s) 6012.90 -1.02 -2.01

E′′ E(a) 6037.12 -0.21 -1.53

A′1 6520 -1.21 -9.40

A′1 6606.00 -0.14 -11.15

A′1 A(s) 6796.733 -1.57 -15.63

A′′2 A(a) 6795.305 -1.36 -15.36

E′′ E(a) 6609.66 -1.01

E′ E(s) 6608.833 -0.90

E′ E 6666 -0.37

E′′ E(a) 6677.95 -1.21

E′ E(s) 6677.229 -1.24

E′′ E(a) 6850.702 -1.24 2.58

E′ E(s) 6850.195 -1.32 2.47

E′′ E(a) 9738.839 -2.56

E′ E(s) 9738.15 -1.70

E′′ E(a) 9689.722 -2.89

E′ E(s) 9689.84 -1.87

E′′ E(a) 9642.323 -2.58 -6.96

E′ E(a) 9639.652 -2.06 -7.49

E′′ E(av) 12628.20 0.64

E′ E(av) 12675.50 -0.89

A′′2 A(a) 15447.38 0.47

A′1 A(s) 15450.82 -8.16

E′′ E(a) 15448.70 -6.94

E′ E(s) 15451.19 -6.92

A′′2 A(a) 18109.18 -14.31

A′1 A(s) 18109.47 -6.10

E′′ E(a) 18107.56 -15.18

E′ E(s) 18109.47 -9.95
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TABLE V: Vibrational term values of H2
16O computed ab

initio using the same model employed for NH3. Observed

from the IUPAC [90].

v1 v2 v3 obs. calc. 1 obs.-calc. calc. 2 obs.-calc.

0 1 0 1594.75 1595.56 -0.81 1595.18 -0.44

0 2 0 3151.63 3152.98 -1.35 3152.19 -0.56

1 0 0 3657.05 3658.65 -1.59 3658.60 -1.54

0 0 1 3755.93 3757.54 -1.61 3756.60 -0.67

1 1 0 5234.98 5237.36 -2.38 5236.93 -1.96

0 1 1 5331.27 5333.59 -2.32 5332.30 -1.03

1 2 0 6775.09 6777.95 -2.85 6777.11 -2.02

0 2 1 6871.52 6874.30 -2.78 6872.62 -1.10

2 0 0 7201.54 7204.30 -2.76 7204.23 -2.69

1 0 1 7249.82 7252.57 -2.76 7251.59 -1.77

0 0 2 7445.06 7448.13 -3.08 7448.24 -3.18

2 1 0 8761.58 8765.12 -3.54 8764.68 -3.10

1 1 1 8807.00 8810.50 -3.50 8809.17 -2.17

0 1 2 9000.14 9003.91 -3.77 9003.67 -3.53

2 2 0 10284.36 110288.40 -4.03 10287.56 -3.20

1 2 1 10328.73 110332.71 -3.98 10330.99 -2.26

0 2 2 10521.76 110525.97 -4.21 10525.36 -3.60

3 0 0 10599.69 110603.54 -3.85 10603.49 -3.80

2 0 1 10613.36 110617.07 -3.72 10616.07 -2.71

1 0 2 10868.87 110873.12 -4.24 10873.10 -4.23

0 0 3 11032.40 111036.44 -4.03 11035.59 -3.19

3 1 0 12139.32 112144.21 -4.89 12143.80 -4.48

2 1 1 12151.25 112156.03 -4.78 12154.67 -3.42

1 1 2 12407.66 112412.62 -4.96 12412.23 -4.57
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0 1 3 12565.01 112569.73 -4.73 12568.57 -3.56

3 2 0 13640.72 113646.23 -5.51 13645.21 -4.50

2 2 1 13652.65 113658.18 -5.53 13656.47 -3.81

4 0 0 13828.27 113834.32 -6.04 13834.28 -6.01

3 0 1 13830.94 113836.85 -5.92 13833.95 -3.01

1 2 2 13910.89 113916.41 -5.52 13915.66 -4.76

0 2 3 14066.19 114071.42 -5.23 14069.92 -3.73

2 0 2 14221.16 114226.98 -5.82 14226.89 -5.73

1 0 3 14318.81 114323.88 -5.07 14322.95 -4.14

0 0 4 14537.50 114542.12 -4.61 14542.31 -4.81

4 1 0 15344.50 115352.35 -7.85 15351.93 -7.42

TABLE VI: Calculated vibrational transition moments of am-

monia molecule. All the transitions are from ground state, so

freq.=Eup ; vstr = v1 + v3 is the total stretching excitation;

Sym. is the irreducible representation in the D3h(M) group;

int. is the vibrational band intensity in cm/molecule.

freq. int. vstr v2 v4 Sym.

12619.65 1.47E-28 3 1 1 E′

12627.15 1.31E-28 3 3 0 A′′2

12628.69 1.71E-28 4 0 0 A′′2

12628.85 1.98E-38 3 0 1 A′′1

12629.26 8.29E-28 4 0 0 E′

12633.02 1.50E-29 1 6 2 E′

12642.14 8.34E-29 3 1 1 A′′2

12651.06 6.26E-29 3 3 0 E′

12661.57 1.02E-28 1 3 4 A′′2

12655.96 1.83E-28 0 0 8 E′
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12677.15 7.12E-28 4 0 0 E′

12678.37 2.04E-28 2 6 0 E′

12679.10 2.74E-28 4 0 0 A′′2

12698.93 3.45E-28 1 2 5 E′

15400.22 7.64E-30 0 0 3 A′′2

15402.91 2.61E-31 0 0 1 E′

15407.52 4.27E-32 0 0 0 A′′2

15412.47 2.52E-30 0 2 2 A′′2

15417.96 5.99E-30 0 0 2 A′′2

15422.55 1.25E-29 0 0 2 E′

15431.20 7.54E-32 0 0 2 E′

15440.54 4.92E-30 1 1 0 A′′2

15443.00 1.03E-29 0 0 2 E′

15446.12 1.31E-29 0 0 1 E′

15448.62 7.52E-29 0 0 0 A′′2

15452.93 3.69E-29 1 1 0 E′

15457.13 1.86E-29 0 0 1 A′′2

15458.46 2.62E-29 0 0 2 E′

15460.30 2.01E-28 0 5 0 E′

15461.13 2.06E-28 5 0 0 A′′2

15462.61 5.03E-28 0 5 0 E′

15464.40 1.64E-28 0 0 2 E′

15465.75 7.62E-29 0 0 2 E′

15471.34 2.08E-30 0 0 3 A′′2

15472.54 8.27E-29 2 1 1 E′

15479.57 6.59E-30 0 0 2 E′

15483.25 2.16E-29 0 0 1 E′

15484.95 1.57E-29 0 0 1 E′

18100.82 3.74E-29 3 1 0 E′

18102.36 2.77E-32 1 1 0 A′′2
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18104.85 4.05E-29 3 0 1 E′

18105.09 9.47E-31 1 1 0 A′′2

18107.96 7.94E-31 1 0 2 A′′2

18112.67 2.16E-30 2 0 2 E′

18118.74 3.20E-30 1 0 2 E′

18121.44 1.08E-29 1 1 0 E′

18124.62 1.17E-28 6 0 0 E′

18126.44 9.96E-29 6 0 0 E′

18128.48 6.89E-30 0 0 3 A′′2

18130.57 1.05E-28 6 0 0 E′

18131.58 1.06E-28 6 0 0 A′′2

18132.40 1.00E-28 6 0 0 E′

18133.07 1.36E-30 0 2 2 A′′2

18136.10 4.82E-29 3 1 1 E′

18137.51 3.37E-31 0 0 3 A′′2

18137.77 3.57E-29 3 1 1 E′

18141.69 7.32E-30 0 0 1 A′′2

18147.69 3.77E-30 1 0 2 E′

18150.55 7.69E-30 1 0 2 E′

TABLE VII: Vibrational energy levels of the NH2D molecule

Sym. obs. obs-calc (this work) obs-calc [88]

A- 0.41 0.00 0.01

A+ 876.37 -0.52 0.00

A- 896.56 -0.38 0.00

B+ 1389.91 0.05 0.13

B- 1390.50 0.05 0.14

A- 1591 0.02 0.28
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A+ 1605.64 -0.06 0.02

A- 2505.9 -1.24 1.26

A+ 2506.51 -1.23 1.01

A+ 3365.24 -1.32 5.56

A- 3367.59 -1.27 4.29

B+ 3438.86 -0.90 -0.27

B- 3439.03 -0.94 -0.27

TABLE VIII: Vibrational energy levels of the NHD2 molecule

Sym. obs. obs-calc (this work) obs-calc [88]

A- 0.171 0.00 0.00

A+ 810.23 -0.39 0.01

A- 819.56 -0.34 -0.02

A+ 1233.37 -0.02 0.26

A- 1235.89 0.01 0.24

B+ 1461.79 0.06 0.22

B- 1461.99 0.03 0.21

A+ 2430.80 -0.94 0.69

A- 2434.62 -1.00 0.55

B+ 2559.81 -1.52 1.82

B- 2559.96 -1.54 1.82

A- 3404.24 -1.68 -2.86

A+ 3404.32 -1.45 -3.03
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TABLE IX: Vibrational energy levels of the ND3 molecule

Sym. obs. obs-calc (this work) obs-calc [88]

A2- 0.053 0.00 0.00

A1+ 745.6 -0.34 -0.12

A2- 749.14 -0.33 -0.13

E+ 1191.49 1.00 1.23

E- 1191.56 1.00 1.23

A1+ 1359 -0.96 0.38

A2- 1429 -1.63 -0.60

A1+ 1830 2.56 3.22

A2- 2106.6 -0.89 0.04

A1+ 2359 4.01

A2- 2359 3.63

A1+ 2420.11 -1.21 1.53

A2- 2420.65 -1.21 1.53

A1+ 2482 0.54 1.42

E- 2563.91 -1.79 1.95

E+ 2563.93 -1.74 1.95

A2- 2876 4.08 6.04

A1+ 3093.01 -1.23 0.97

A2- 3099.46 -0.50 1.62

A1+ 3171.89 -1.80 4.28

A2- 3175.87 -1.73 3.91

E+ 3327.94 -2.07 0.14

E- 3329.56 -2.10 0.12

E+ 4887.29 -2.64 -0.28

E- 4887.67 -2.83 -0.34

E- 4938.44 -2.88 -0.77

E+ 4938.44 -2.62 -0.95

E+ 5100.66 -3.39 4.42

E- 5100.66 -3.40 4.40
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TABLE X: Vibrational energy levels of the 15NH3 molecule

Sym. obs. [91] calc obs − calc

A′′2 0.761 0.76 0.01

A′1 928.509 929.05 -0.54

A′′2 962.912 963.27 -0.36

A′1 1591.236 1592.34 -1.10

E′ 1623.13 1623.07 0.06

E′′ 1624.19 1624.12 0.07

A′′2 1870.823 1871.30 -0.47

A′1 2369.274 2369.77 -0.49

E′ 2533.382 2534.58 -1.19

E′′ 2577.571 2578.32 -0.75

A′′2 2876.144 2876.32 -0.18

A′1 3210.614 3210.79 -0.18

A′′2 3212.335 3212.49 -0.15

E′ 3234.107 3234.23 -0.12

E′′ 3235.504 3235.71 -0.21

A′1 3333.306 3334.75 -1.44

A′′2 3334.252 3335.74 -1.49

E′ 3435.167 3435.62 -0.45

E′′ 3435.54 3435.98 -0.44

A′1 4288.186 4290.16 -1.98

A′′2 4312.345 4314.30 -1.95

E′ 6546.951 6548.99 -2.03

E′′ 6548.56 6550.75 -2.19

E′ 6596.569 6597.99 -1.42

E′′ 6597.607 6599.33 -1.72

E′ 6664.486 6665.52 -1.03

E′′ 6665.48 6666.01 -0.53
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TABLE XI: Comparison of the newly analysed band origins around 8000 cm−1 taken from [87]

with our calculations

sym exp observed [87] obs.-calc. obs.-calc. (our)

v1+v2+2v2
4 s 7573.282 2.6 3.88

v1+v2+2v3
3 s 7658.485 2.2 -0.47

v1+v2+2v3
3 a 7675.113 2.3 -0.37

v2+2v2
3 s 7854.539 3.0 -1.58

v2+2v2
3 a 7864.078 2.4 -1.69

VI. CONCLUSION

In this paper we have achieved the accuracy about 1 cm−1 for the levels up to 7000 cm−1

given in the comprehensive compilation of experimental levels [10] and an accuracy between

2 to 10 cm−1 for levels up to 18 000 cm−1 measured by Lehmann and Coy [20]. This ab

initio PES should serve as an excellent starting point for a semi-empirical fit to provide

much closer line positions with an accuracy much closer to experimental in both infrared

and visible regions.

We also estimate the dissociation energy of NH3 by two independent theoretical proce-

dures and with significantly improved accuracy compared to previous theoretical determina-

tions; however, there is a discrepancy with experiment which requires futher investigation.

The paper provides a step towards a global, high-accuracy ab initio PES of ammonia. Our

work should also help to pave the way towards the to observation and analysis of the pre-

dissociation spectra of NH3 analogous to what could have been achieved for water, only, up

until now [92–95].

For the present study the availability of ab initio results for water at various level of theory

(i.e., including only some of the components discussed in section II A or using smaller basis

sets) including the very accurate one from refs. [25, 92, 96] proved very useful; in particular,

we confirmed that use of analoguous levels of theory for water and ammonia leads to similar

errors in rovibrational energy levels; we are therefore confident that very accurate results –
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similar in quality to the ones for water of ref. [25] – can be obtained for ammonia as well

as for other 10 electron molecules, such as methane. The computationally more onerous

step for future calculations is extension to the larger aug-cc-pV6Z basis set, although the

use of explicitly-correlated methods and the cc-pV5Z-F12 basis set may provide a valid,

cheaper alternative. It will also be necessary to consider relativistic corrections based on

the Breit-Coulomb Hamiltonian, quantum electrodynamics corrections as well as a more

extensive treatment of nonadiabatic correction such as the one used by Huang et al. [14]. It

is expected that ones these corrections are implemented accuracies of the order of 0.1 cm−1

should be achievable ab initio for excited rotation-vibration levels.
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