Evaluating the Causality of Novel Sequence Variants in the Prion Protein Gene by Example

Authors
Tze How Mok1,2
Carolin Koriath3
Zane Jaunmuktane4,5
Tracy Campbell1
Susan Joiner1
Jonathan D. F. Wadsworth1
Laszlo L. P. Hosszu1
Sebastian Brandner3,5
Ambereen Parvez6
Thomas Clement Truelsen6
Eva Løbner Lund7
Romi Saha8
John Collinge1,2
Simon Mead1,2

1. MRC Prion Unit, UCL Institute of Prion Diseases, Queen Square, London WC1N 3BG
2. National Prion Clinic, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London WC1N 3BG, UK
3. Department of Neurodegenerative Diseases, UCL Institute of Neurology Queen Square, London WC1N 3BG, UK
4. Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG
5. Division of Neuropathology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London WC1N 3BG, UK
6. Department of Neurology, University of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
7. Department of Pathology, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
8. Hurstwood Park Neurological Centre, Sussex, UK
Abstract

The estimation of pathogenicity and penetrance of novel prion protein gene (PRNP) variants presents significant challenges, particularly in the absence of family history, which precludes the application of Mendelian segregation. Moreover, the ambiguities of prion disease pathophysiology renders conventional in silico predictions inconclusive. Here we describe two patients with rapid cognitive decline progressing to akinetic mutism and death within 10 weeks of symptom onset, both of whom possessed the novel T201S variant in PRNP. Clinically, both satisfied diagnostic criteria for probable sporadic CJD and in one, the diagnosis was confirmed by neuropathology. While computational analyses predicted that T201S was possibly deleterious, molecular strain typing, prion protein structural considerations, and calculations leveraging large-scale population data (gnomAD) indicate that T201S is at best either of low penetrance, or non-pathogenic. Thus we illustrate the utility of harnessing multiple lines of prion disease-specific evidence in the evaluation of the T201S variant, which may be similarly applied to assess other novel variants in PRNP.

1. Introduction

Prion diseases are transmissible, fatal neurodegenerative conditions affecting humans and animals (Collinge, 2001). The infectious agent is composed of assemblies of abnormally folded host-encoded prion protein (PrP), some of which acquire protease resistance, designated as PrPSc (Prusiner, 1998). Human prion diseases most commonly occur sporadically, but can be acquired through dietary exposure or iatrogenically. Inherited prion diseases (IPD) comprise 10-15% of the total annual incidence and are associated with coding mutations in the prion protein gene (PRNP) (Mead, 2006). Clinical phenotypes of IPD are highly heterogeneous and include rapidly progressive forms of dementia and/or ataxia (indistinguishable from sporadic Creutzfeldt-Jakob disease (CJD)), fatal familial insomnia and more slowly progressive syndromes like Gerstmann-Straussler-Scheinker disease and PrP systemic amyloidosis (Mead et al., 2013; Mead and Reilly, 2015).

A great deal is now known about normal variation of PRNP in different populations (Beck et al., 2010; Minikel et al., 2016). Situated on one end of the spectrum are commonly occurring benign polymorphisms, some of which can modify prion disease susceptibility and clinical phenotype, while on the other lies well-defined highly penetrant variants like the P102L, E200K, D178N, and large octapeptide repeat insertions. Then there are partially penetrant variants such as V210I, found both in control and patient populations that are associated with increased risk, but not inevitable disease (Minikel et al., 2016). The advent of low-cost, high-throughput genomic sequencing technologies has led to large-scale population genomic databases which can be used to estimate penetrance. Such an approach employed recently led to reclassifying several PRNP sequence variants, previously reported to be pathogenic in the literature, as likely to be either low-risk or even benign (Minikel et al., 2016).
The most challenging ones to classify are the extremely rare variants found in only a few patients and controls. Causal analyses of these rare PRNP variants seen in CJD, particularly in the absence of family history, have historically been biased towards overcalling of pathogenicity (Minikel et al., 2016). Erroneous assignation of pathogenicity and penetrance to a benign variant may not only lead to unnecessary psychological distress but could also misdirect genetic counselling for the patients’ relatives. At the research level, analysis of sets of variants classified as accurately as possible by pathogenicity may help uncover fundamental mechanisms of prion disease. Here, we illustrate our practice in estimation of the causality of the novel PRNP variant T201S. We used multiple lines of evidence and address the challenges faced with interpretation of rare gene variants that may be applicable to other PRNP variants and those in genes related to other neurodegenerative diseases.

2. Methods

2.1 Neuropathology

Formalin-fixed and formic acid pre-treated paraffin-embedded post mortem brain tissue samples were available from Case 1. Tissue sections from neocortex, hippocampus, deep grey nuclei, brain stem and cerebellum were routinely stained with Haematoxylin and Eosin (H&E) and PrP immunohistochemistry (anti-PrP antibodies ICM35, D-Gen Ltd, London, UK, 1:1000 and KG9, University of Edinburgh, 1:500) with Ventana (Roche) automated staining instruments following the manufacturer’s guidelines, using biotinylated secondary antibodies and a horseradish peroxidase-conjugated streptavidin complex and diaminobenzidine as a chromogen.

2.2 Immunoblotting and molecular strain typing

All procedures were carried out in a microbiological containment level III facility with strict adherence to safety protocols. Frozen brain (grey matter from frontal cortex) of Case 1 was prepared as a 10 % (w/v) homogenate in Dulbecco’s sterile phosphate buffered saline lacking Ca$^{2+}$ and Mg$^{2+}$ ions using a tissue grinder as described previously (Wadsworth et al., 2008). Brain homogenate was analysed with and without proteinase K (PK) digestion (50 µg/ml final protease concentration, 1 h, 37°C) by immunoblotting with anti-PrP monoclonal antibody 3F4 using high sensitivity enhanced chemiluminescence as described previously (Wadsworth et al., 2001, 2008). Molecular strain typing of PrP$^\text{Sc}$ was performed by comparison to reference cases of sporadic CJD and inherited prion disease of known PrP$^\text{Sc}$ type (Hill et al., 2006, 2003). For quantitation and analysis of PrP$^\text{Sc}$ glycoform ratios, blots were developed in chemifluorescent substrate (AttoPhos; Promega) and visualized on a Storm 840 phosphoimager (Molecular Dynamics). Quantitation of PrP$^\text{Sc}$ glycoforms was performed using ImageQuaNT software (Molecular Dynamics) (Hill et al., 2006, 2003; Wadsworth et al., 2008).
3. Results

3.1 Case 1

A 63-year old right-handed Danish Caucasian lady was admitted urgently to her local stroke unit with a five-day history of abrupt onset fluent dysphasia in October 2009. Detailed speech examination revealed preserved fluency and comprehension but markedly impaired repetition, reminiscent of conduction aphasia. Computed tomography (CT) of her brain was unremarkable, and she was subsequently discharged with secondary prevention measures for stroke, after three days. Nine days following hospital discharge, she returned with sudden onset right sided paraesthesia, and thereafter her clinical complex evolved rapidly through a sequence of dysarthria, non-fluent speech, dyslexia, dysgraphia, motor and verbal perseveration, startle, myoclonus, akinetic mutism and finally death over the period of 10 weeks.

The patient has two older sisters, both of whom are alive and well in their 70s at the present time. Her father died of cancer at the age of 80, while her mother lived until the age of 90; neither parent had neurological or cognitive symptoms in life. The patient’s father had a sister who died in ‘old age’ of an unknown cause; her mother had 2 other siblings who died of cancer at 63 and 73 years of age respectively.

Magnetic Resonance Imaging (MRI) of her brain revealed restricted diffusion in her caudate heads, anterior putamina and predominantly left sided cortical ribboning. Her electroencephalogram (EEG) showed left fronto-temporal slowing of 1-2 Hz, with occasional sharp waves over the left hemisphere. Her cerebrospinal fluid had 3 white cells and 308 red cells, but normal protein and glucose levels; protein 14.3.3 was positive, and neuron specific enolase (NSE) was raised 101ng/ml (<35ng/ml); Real-Time Quaking-induced Conversion (RT-QuIC) assay was not performed.

3.2 Case 2

A 76-year old right-handed British Caucasian woman developed abrupt onset bilateral upper limb postural and action myoclonus. In the following week, she exhibited unusual sitting postures (axial apraxia), and her gait assumed a narrow-based shuffling character (gait apraxia). She then developed a rapidly progressive non-fluent dysphasia that rendered her effectively mute within three weeks. In tandem with that, she became socially withdrawn, abulic and completely indifferent to her surroundings. Subsequently, she developed visual hallucinations, exaggerated startle, severe myoclonus, incontinent, and akinetic mutism. She died 8 weeks after symptom onset; a post mortem examination was not carried out.

The patient was the only child. Her father died of bone cancer at the age of 73, while her mother died of lung cancer at the age of 57.

Her MRI Brain showed asymmetrical cortical ribboning with a left-sided emphasis and bilateral anterior basal ganglia diffusion restriction; while her EEG showed generalised periodic complexes. CSF cell count and routine biochemistry were normal but no sample was analysed for protein 14.3.3, S100B, or RT-QuIC assay.
3.3 PRNP Analysis

Sequencing of the open reading frame of the PRNP in both patients demonstrated a threonine to serine missense substitution at codon 201 (T201S); the underlying nucleotide change was c.602C>G (CCDS 13080.1) in both cases. Their codon 129 genotypes were both methionine homozygous (MM).

3.4 Neuropathology

Routine H&E stained sections revealed widespread microvacuolar degeneration in the neocortex, deep grey nuclei and to a lesser extent in the molecular layer of the cerebellar cortex. Immunostaining for abnormal prion protein showed diffuse synaptic (punctate or granular) labelling throughout grey matter regions, but no kuru or multicentric plaques or other plaque-like deposits (Figure 1). In the white matter there were no filamentous deposits, which have been reported in a proportion of IPD cases (Reiniger et al., 2013). The histological appearances were indistinguishable from sporadic CJD (sCJD) patients with PRNP 129MM genotype and type 2 molecular prion strain (London Classification (Hill et al., 2003) corresponding to type 1 of the Parchi classification (Parchi et al., 2009)).

3.5 Molecular Strain Typing

Immunoblot analyses of brain homogenate from T201S Case 1 demonstrated a PrPSc type corresponding to type 2 PrPSc of the London classification seen in patients with sporadic CJD (Hill et al., 2003) (Figure 2A). Type 2 PrPSc shows a predominance of monoglycosylated PrP (Hill et al., 2003) which contrasts markedly with the distinctive glycoform ratio of mutant PrPSc seen in IPD E200K (Figure 2B) (Hill et al., 2006). These findings indicate that the T201S missense coding change does not impart conformational preferences to PrPSc in the same way that E200K does (Hill et al., 2006) (Asante et al., 2009).

3.6 Effect of T201S on Prion Protein Structure

The threonine to serine substitution studied here is also conservative, as both these amino acids are uncharged, polar, and of similar size; serine being slightly smaller due to the substitution of a proton for the methyl group found in the threonine side-chain. Furthermore, X-ray and Nuclear Magnetic Resonance (NMR) studies of recombinant PrPSc (Antonyuk et al., 2009; Biljan et al., 2013) show that T201 is situated at the start of helix 3 of the prion protein, with its side chain predominantly solvent-exposed rather than within the protein core; thus, unlikely to destabilise PrPC (Figure 3).

3.7 Computational (in silico) Predictions

A range of sequence- and structure-based in silico tools is available to assist the interpretation of novel missense variants. It is however recognised that these computational algorithms are inclined to overestimate the damaging effect of missense variants, particularly in the context of variants of milder impact.

Here, Polymorphism Phenotyping version 2 (Polyphen-2) (Adzhubei et al., 2013) and Sorting Intolerant From Tolerant (SIFT) (Kumar et al. 2009), predicted that the T201S mutation to be possibly damaging or deleterious respectively; its Combined Annotation Dependent Depletion (CADD) (Kircher et al., 2014) score of 26 ranks it within 1% of the most deleterious
mutations. While these in silico tools are unanimous in their predictions for highly penetrant mutations such as P102L, D178N and E200K (probably damaging by PolyPhen-2, deleterious by SIFT and score >30 by CADD), predictions for other PRNP missense variants, both benign and pathogenic, are somewhat mixed. For example, the benign V209M is predicted to be benign by PolyPhen-2, deleterious by SIFT and a CADD score of 20.2; the incompletely penetrant V210I is predicted to be benign by PolyPhen-2, tolerated by SIFT and a CADD score of 13.53; the highly penetrant A117V is predicted to be probably damaging by PolyPhen-2 and CADD score 23.3, but tolerated by SIFT. Hence, this illustrates why sequence variants of PRNP should not be evaluated solely by in silico tools.

3.8 Estimating the Penetrance of T201S

T201S was found in a single individual in the Broad Institute's Genome Association Database (gnomAD)(Lek et al., 2016) out of 123,125 individuals (1 in 246,250 alleles). By leveraging this large-scale population database, we then employed methods for calculating the baseline risk of CJD previously described in Minikel et al. 2016, and computed the upper bound of the 95% confidence interval (CI) using the Wilson Interval(Minikel et al., 2016). The total CJD alleles from sequenced PRNP are derived from the sum of alleles in sequenced CJD cases in Minikel et al. 2016 (years 1990 to 2013) and additional alleles (n=844) from sequenced CJD cases at the MRC Prion Unit (years 2014 to present). The estimated penetrance of T201S using this approach is 0.45% (95% CI 0.02%, 9.35%).

4. Discussion

The clinical picture of inherited prion disease caused by highly penetrant PRNP mutations such as E200K, D178N and P102L can be indistinguishable from that of sporadic CJD. Both our cases had acute clinical onsets within the peak age range of onset reported for sCJD, followed by rapid neurological decline and death within 3 months. Together with restricted diffusion affecting the anterior basal ganglia and cortical ribboning on MRI, generalised periodic complexes on EEG (Case 2), CSF protein 14.3.3 positivity (Case 1) and neuropathological findings (Case 1), both these patients fulfilled diagnostic criteria for probable sporadic CJD(Zerr et al., 2009), had PRNP sequencing not been carried out.

Given that neither case is derived from multiplex families with affected individuals, principles of Mendelian segregation cannot be applied to implicate the T201S mutation in causing familial CJD. Additionally, like many rare gene variants, it is not possible to apply practice guidelines such as the American College of Medical Genetics and Genomics (ACMG) for novel gene variants(Richards et al., 2015) in the case of T201S, due to insufficient data to combine criteria for stratification (Table 1). With T201S in particular, there is lack of segregation, functional, de novo, and computational and predictive data to satisfy the stipulated ACMG criteria. Moreover, it should be pointed that highly penetrant PRNP mutations cause disease by unknown mechanisms that result in a conformational structural change, rather than by simple loss- or gain-of-function mechanisms in which functional, and computational data can be more tractable to study in cellular models.

Interrogation of PrP structure and its perturbations by missense mutations have largely focused on stabilisation/destabilisation of the native PrP structure. However, these studies
utilising recombinant PrP show that stabilisation/destabilisation of the native PrPC structure is not consistently observed across all known pathogenic mutations (Liemann & Glockshuber, 1999). Furthermore, observations made from these models may not be applicable to real life, as recombinant PrP is unanchored to the cell membrane and unglycosylated, and certainly could fail to capture all of the folding problems encountered \textit{in vivo}. Alternatively the disease-associated mutations may primarily affect the stability of more relevant on-pathway folding intermediates (Hart et al., 2009). As such, the pathogenicity of T201S cannot be completely ruled out based solely on PrP structural considerations, despite the seemingly minor perturbation of the native PrPC structure by the T201S substitution. Nevertheless, we showed that it is possible to produce both qualitative and quantitative estimates of pathogenicity and penetrance for T201S respectively, by harnessing data from multiple lines of evidence specific for prion disease. Different prion strains can propagate in the same host to produce different disease phenotypes and appear to be encoded by distinct abnormal PrP conformations and assembly states(Collinge, 2016; Collinge and Clarke, 2007; Prusiner, 1998). Different human PrPSc isoforms associated with phenotypically distinct forms of human prion disease (molecular strain types) have considerable diagnostic utility and are classified by both the fragment size and ratio of the three principal PrP bands seen after protease digestion(Hill et al., 2006, 2003). Variations in the primary sequence of human PrP profoundly affects the ability of the expressed protein to propagate particular prion strains through conformational selection(Collinge, 2016, 2001, 1999; Collinge and Clarke, 2007; Wadsworth et al., 2010, 2004; Wadsworth and Collinge, 2011). The codon 129 polymorphism (either methionine or valine) determines the ability of wild-type human PrP to propagate particular prion strains in patients with sporadic or acquired forms of prion disease while highly penetrant missense mutations that cause inherited prion disease (IPD)(Mead, 2006), for example P102L, E200K and D178N, impose additional conformational preferences for PrP assemblies, resulting in PrPSc molecular strain types that are distinct from those propagated in patients with sporadic or acquired aetiologies(Asante et al., 2015, 2009; Hill et al., 2006; Wadsworth et al., 2010, 2006). Immunoblot and glycoform analyses showed that PrPSc from T201S brain tissue resembled that of type 2 sCJD 129MM rather than that seen in highly penetrant PRNP point mutations e.g. E200K. This dissimilarity is further reinforced by the absence of white matter filamentous PrP deposits on neuropathology, although it can be argued that this observation has limited negative predictive value for variants toward the carboxy-terminal of \textit{PRNP}(Reiniger et al., 2013). PrP structural analyses also suggest that the resulting amino acid substitution is not expected to impart a significant change in PrP conformation.

Finally, we argue that the estimated penetrance of 0.45% (95% CI 0.02%, 9.35%)calculated by leveraging the gnomAD(Lek et al., 2016) population data indicate that T201S is at most a low-risk gene variant for CJD. If we arbitrarily consider a central estimate of 10% or higher as the clinically significant threshold at which to refer for predictive testing, an excess of 44 T201S alleles in the CJD-diseased population would need to be observed, provided that the other variables remain constant. It is highly unlikely that new variants discovered in routine disease surveillance will achieve these counts in the foreseeable future.

One important factor that determines the accuracy of penetrance estimation is ascertainment of the true population allele count; not only can this be imprecise for
singletons of extremely low frequency (such as T201S), but also biased towards underestimation. Within the ExAC and gnomAD data set, this is exemplified by the shift in calculated penetrance from 0.22% (95% CI 0.01%, 4.56%) to 0.45% (95% CI 0.02%, 9.35%), when the original ExAC database expanded into the gnomAD in which the allele count doubled from 121384 to 246250 alleles. Even more strikingly, it was pointed out that 69% of very rare singletons for Europeans (6503 exomes) in the Exome Sequencing Project (ESP) were not identified again in the ExAC database, despite a 10-fold expansion (Lek et al., 2016). Hypothetically, if this holds true for gnomAD, the true allele frequency of a rare singleton like T201S could be 1 in 2.5 million or lower, raising the upper limit of the 95% confidence interval to 94% (or higher) and rendering the estimation meaningless. Bearing this in mind, the mere presence of T201S in large gnomAD database does not absolve T201S as a highly penetrant variant. However, the late ages at onset, lack of family history, lack neuropathological features of IPD and molecular strain typing (glycoform ratio) reminiscent of sCJD are all in line with the estimation that T201S is either benign or at most a low risk variant below ‘clinically significant’ threshold.

5. Conclusion

At present, though we cannot conclusively determine whether T201S is a non-pathogenic variant co-occurring with sCJD or a low risk non-Mendelian variant, its estimated penetrance is insufficient to justify routine predictive PRNP testing in individuals at risk of T201S. The results of our analyses were discussed with the family of Case 2, and the above conclusion was conveyed. Nevertheless her offspring requested a referral to a clinical geneticist, who arrived at the same conclusion, and similarly advised against predictive PRNP testing. We recognise that further research, particularly expanding the coverage of molecular strain typing to include other PRNP sequence variants of varying pathogenicity and penetrance is required to refine it as discriminating tool. Additionally, future expansion of large-scale population genomic databases in tandem with assiduous surveillance and sequencing of PRNP in CJD cases will further hone the precision of estimating true penetrance of rare sequence variants.

Acknowledgements

We would like to thank the patients and their families, and the contribution of numerous local physicians to the patients’ care and investigation. This work was funded by the UK Medical Research Council. The clinical research activities of the National Prion Clinic are supported by the National Institute of Health Research’s (NIHR) Biomedical Research Centre at University College London Hospitals NHS Foundation Trust. Tze How Mok was supported by a Fellowship award from Alzheimer’s Society, UK (grant number 341 (AS-CTF-16b-007)). Simon Mead and John Collinge are NIHR Senior Investigators.
Declaration of potential conflict of interests

JC is a Director and shareholder and JDFW is a shareholder of D-Gen Limited, an academic spinout company working in the field of prion disease diagnosis, decontamination, and therapeutics. D-Gen supplied the ICSM 35 antibody that was used in this study.
Prion pathology in T201S patient (A-A2 and B-B2) is similar to that seen in PRNP 129MM sCJD case (C-C2 and D-D2): Haematoxylin and eosin stained sections from the frontal cortex (A and C), putamen (A1 and C1) and cerebellar cortex (A2 and C2) show widespread microvacuolar degeneration in the neuropil. The same regions immunostained for abnormal prion protein with KG9 antibody (B-B2) and ICSM35 antibody (D-D2) show diffuse synaptic (punctate or granular) labelling (B and D, frontal cortex), (B1 and D1, putamen) and (B2 and D2, cerebellar cortex). Scale bar: 100µm
Figure 2 PrP_{Sc} typing in T201S patient brain
(A) Immunoblot of proteinase K (PK)-digested 10% (w/v) brain homogenates (frontal cortex) from T201S Case 1, and reference cases of sCJD or IPD E200K using anti-PrP monoclonal antibody 3F4 and high sensitivity enhanced chemiluminescence. The provenance of the brain sample is designated above each lane and the PrP_{Sc} type (London classification(Hill et al., 2006, 2003)) and PRNP codon 129 genotype of the patient (M, methionine, V, valine) are shown below. (B) Ratios of the three principal protease-resistant PrP glycoforms seen in PrP_{Sc} from T201S Case 1 in comparison to PrP_{Sc} from patients with classical CJD or IPD E200K. Data points for the reference cases represent the mean relative proportions of di-, mono- and unglycosylated PrP as percentage ± SEM. In some cases the error bars were smaller than the symbols used. The number of reference cases analysed were: sCJD 129MM with type 2 PrP_{Sc} (n = 37), sCJD 129MV with type 2 PrP_{Sc} (n = 8), sCJD 129VV with type 2 PrP_{Sc} (n = 9) and IPD E200K (n=6; three 129MM with type 1 PrP_{Sc} fragment size, two 129MV with type 2 PrP_{Sc} fragment size and one 129VV with type 3 PrP_{Sc} fragment size).
Figure 2 Location of the T201S variant in the structure of human PrPC
PrPC is displayed as a “ribbon” representation of its secondary structure, together with sidechain groups. α-helices are coloured red and β-strands coloured cyan (residues 125-225 are displayed). Residue 201 is located at the start of the third α-helix, and is coloured in blue with its threonine sidechain displayed in stick representation. This figure was prepared using PyMOL (PyMOL Molecular Graphics System, Schrödinger, LLC).
Supportive features of variant pathogenicity

<table>
<thead>
<tr>
<th></th>
<th>ACMG Guidelines</th>
<th>Pathogenic PRNP variants</th>
<th>T201S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population data</td>
<td>Absent in population databases (NB partially penetrant variants may be rarely detected in large population samples, see reference 14)</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Prevalence in affected patients statistically increased over controls</td>
<td>Yes</td>
<td>Yes but penetrance is close to zero</td>
</tr>
<tr>
<td>Computational data</td>
<td>Multiple lines of computational evidence support a deleterious effect on the gene/gene product</td>
<td>Not always consistent</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before or protein length changing variant</td>
<td>Yes (truncating mutation Y163X)</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Same amino acid change as an established variant</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Predicted null variant in a gene where LOF is a known mechanism of disease</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Functional data</td>
<td>Missense in gene with low rate of benign missense variants and pathological missenses common</td>
<td>Rare missense variants are common in PRNP</td>
<td>Rare missense variants are common in PRNP</td>
</tr>
<tr>
<td></td>
<td>Mutational hotspot or well-studied functional domain without benign variation</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
</tr>
<tr>
<td></td>
<td>Well established functional studies show a deleterious effect</td>
<td>No simple functional model</td>
<td>No simple functional model</td>
</tr>
<tr>
<td>Segregation data</td>
<td>Co-segregation with disease in multiple affected family members</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>De novo data</td>
<td>De novo with or without paternity & maternity confirmed</td>
<td>Yes in some cases</td>
<td>Unknown</td>
</tr>
<tr>
<td>Allelic data</td>
<td>Detected in trans with a pathogenic variant (recessive only)</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Other data</td>
<td>Patient’s age, phenotype or family history highly specific for gene</td>
<td>Very young onset (<40) makes sCJD less likely. Sometimes specific inherited prion disease phenotypes e.g. fatal insomnia, PrP systemic amyloidosis or Gerstmann-Straussler-Scheinker associated clinical picture</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Filamentous PrP deposition in white matter on autopsy</td>
<td>Often seen</td>
<td>Not seen</td>
</tr>
<tr>
<td></td>
<td>Western blot appearances</td>
<td>Diglycosylated PrP predominates</td>
<td>Monoglycosylated PrP predominates (similar to sCJD)</td>
</tr>
<tr>
<td></td>
<td>Protein structure considerations</td>
<td>Protein structure analysis often predicts destabilisation, but not consistently so.</td>
<td>Protein structure analysis does not predict destabilisation</td>
</tr>
</tbody>
</table>

Table 1 Lines of evidence used to estimate T201S causality in comparison to ACMG Guidelines
<table>
<thead>
<tr>
<th>Variant</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-OPRD</td>
<td>7</td>
</tr>
<tr>
<td>4-OPRI</td>
<td>2</td>
</tr>
<tr>
<td>5-OPRI</td>
<td>2</td>
</tr>
<tr>
<td>6-OPRI</td>
<td>3</td>
</tr>
<tr>
<td>8-OPRI</td>
<td>1</td>
</tr>
<tr>
<td>G54S</td>
<td>2</td>
</tr>
<tr>
<td>P102L</td>
<td>5</td>
</tr>
<tr>
<td>A117A</td>
<td>27</td>
</tr>
<tr>
<td>A117V</td>
<td>2</td>
</tr>
<tr>
<td>N171S</td>
<td>1</td>
</tr>
<tr>
<td>D178N</td>
<td>3</td>
</tr>
<tr>
<td>E196K</td>
<td>1</td>
</tr>
<tr>
<td>E200K</td>
<td>14</td>
</tr>
<tr>
<td>D202D</td>
<td>1</td>
</tr>
<tr>
<td>V210I</td>
<td>1</td>
</tr>
<tr>
<td>E219K</td>
<td>1</td>
</tr>
</tbody>
</table>

Table S1 Allele spectrum of additional sequenced cases (total = 844 alleles) at the MRC Prion Unit from January 2014 to April 2018
References

