

1 Nitrous oxide speeds the reduction of distressing 2 intrusive memories in an experimental model of 3 psychological trauma

4 R. K. Das^{1*}, A. Tamman¹, V. Nikolova¹, T. P. Freeman¹, J. A. Bisby⁴, A. I. Lazzarino^{2,3} and
5 S. K. Kamboj^{1*}

6 ¹Clinical Psychopharmacology Unit, UCL, London, UK

7 ²London School of Hygiene & Tropical Medicine, London, UK

8 ³Department of Epidemiology and Public Health, UCL, London, UK

9 ⁴Institute of Cognitive Neuroscience, UCL, London, UK

10 **Background.** Post-traumatic stress disorder (PTSD) involves maladaptive long-term memory formation which underlies
11 involuntary intrusive thoughts about the trauma. Preventing the development of such maladaptive memory is a key aim
12 in preventing the development of PTSD. We examined whether the *N*-methyl D-aspartate receptor (NMDAR) antagonist
13 gas nitrous oxide (N₂O) could reduce the frequency of intrusive memories by inhibiting NMDAR-dependent memory
14 consolidation in a laboratory analogue of psychological trauma.

15 **Method.** Participants were randomized to inhale N₂O ($N=25$) or medical air ($N=25$) after viewing a negatively valenced
16 emotional film clip ('trauma film'). Participants subsequently completed a daily diary assessing frequency of intrusive
17 thoughts relating to the film clip. A week later, participants completed an explicit memory recall task related to the film.

18 **Results.** Post-encoding N₂O sped the reduction in intrusive memory frequency, with a significant reduction by the next
19 day in the N₂O group compared to 4 days later in the air group. N₂O also interacted with post-film dissociation, produc-
20 ing increased intrusion frequency in those who were highly dissociated at baseline. Sleep length and quality the night
21 after viewing the film did not differ between the groups.

22 **Conclusion.** N₂O speeds the reduction of intrusive analogue trauma memory in a time-dependent manner, consistent
23 with sleep-dependent long-term consolidation disruption. Further research with this drug is warranted to determine
24 its potential to inoculate against enduring effects of psychological trauma; however, caution is also urged in dissociated
25 individuals where N₂O may aggravate PTSD-like symptomatology.

26 Received 13 October 2015; Revised 6 January 2016; Accepted 20 January 2016

27 **Key words:** Intrusions, memory consolidation, nitrous oxide, PTSD.

28 Introduction

29 Post-traumatic stress disorder (PTSD) is a chronic psychi-
30 atric condition following the experience of traumatic
31 events. Around 5% of men and 10–12% of women are
32 estimated to experience PTSD at some point in their
33 lives, with far higher rates (60–80%) among rape victims
34 (Solomon & Davidson, 1997). The primary psychological
35 symptoms of PTSD according to DSM-5 criteria are
36 intrusions, avoidance, negative alterations in cognitions
37 and mood, and alterations in arousal and reactivity
38 (APA, 2013). Intrusions, the first of these and the hall-
39 mark of PTSD, are persistent, spontaneous, involuntary
40 thoughts pertaining to traumatic events (Brewin, 2001b;

Hellawell & Brewin, 2004). Intrusions tend to be primar- 41
ily visuospatial and somatic in nature, involving decon- 42
textualized (Michael *et al.* 2005), fragmentary, visual 43
re-living of aspects of the trauma (Hackmann *et al.* 2004). 44

Intrusions are thought to be a product of maladap- 45
tive memory (Van der Kolk *et al.* 1996). Elevated peri- 46
traumatic glucocorticoid (Roozendaal, 2000, 2002) and 47
noradrenaline (Roozendaal *et al.* 2002) levels produce 48
incomplete encoding of traumatic events which creates 49
traces lacking contextual, verbal and temporal infor- 50
mation, with strongly encoded visuospatial and auto- 51
nomic content (Brewin *et al.* 1996; Brewin, 2001a, b; 52
Hellawell & Brewin, 2004). This content is subse- 53
quently consolidated into long-term traces that are re- 54
sistant to top-down voluntary recall and susceptible 55
to spontaneous, involuntary recall of decontextualized 56
visuospatial aspects of the trauma (Brewin, 2013), pro- 57
ducing the 'here and now' reliving that characterizes 58
intrusions (Ehlers *et al.* 2004). 59

* Address for correspondence: Dr R. K. Das, Clinical Psychopharmacology Unit, UCL, 1–19 Torrington Place, London WC1E 7HB, UK.
(Email: ravi.das@ucl.ac.uk)

60 Preventing the development of such maladaptive
 61 trauma memories is therefore highly desirable in pre-
 62 venting the later development of PTSD symptoms in
 63 trauma victims. Previous research has examined this
 64 possibility using cognitive-behavioural procedures fol-
 65 lowing analogue trauma. The performance of a visuos-
 66 spatially demanding task (Tetris) following the viewing
 67 of aversive video footage has been shown to reduce
 68 the reported number of intrusive memories of the foot-
 69 age subsequently reported by participants (Holmes *et al.*
 70 2009, 2010). While such an approach is very promising
 71 as a preventative strategy in PTSD, its practical utility
 72 is limited if victims have suffered physical injuries or
 73 are otherwise unable to engage with the task.

74 An alternative approach is to attempt to prevent the
 75 development of maladaptive memory traces by interfer-
 76 ing with their consolidation. Since long-term potenti-
 77 ation (LTP) is thought to be the molecular basis of
 78 memory consolidation (Bliss & Collingridge, 1993;
 79 Jones *et al.* 2001), interventions that inhibit LTP may
 80 prevent consolidation of traumatic memory. The
 81 'tag-and-capture' model of LTP (Frey & Morris, 1997)
 82 posits that two temporally dissociable forms of LTP
 83 underlie long-term consolidation of memory traces.
 84 Early LTP involves a transient (several hours) increase
 85 in co-excitability of neurons activated by learning, but
 86 does not lead to persistent (>24 h) memory trace reten-
 87 tion in the absence of late-phase LTP, where synaptic
 88 connections encoding the memory trace are selectively
 89 strengthened. This late-phase LTP is critically sleep-
 90 dependent, with long-term memory stabilization de-
 91 pending upon replay of events during sleep
 92 (Stickgold, 2005; Ji & Wilson, 2007; Rasch *et al.* 2007).
 93 Indeed, sleep deprivation following analogue trauma
 94 events reduces their psychological impact (Cohen *et al.*
 95 2012; Porcheret *et al.* 2015), but may be difficult to im-
 96 plement clinically. As N-methyl D-aspartate receptor
 97 (NMDAR) is critical in both phases of LTP (Sajikumar
 98 & Frey, 2004) and memory consolidation generally
 99 (Shimizu *et al.* 2000), post-trauma NMDAR antagonism
 100 may prevent the consolidation of long-term maladap-
 101 tive memory traces, reducing PTSD symptomatology.

102 Nitrous oxide (N₂O) is promising in this respect, as
 103 alongside its opioid and GABAergic activity
 104 (Emmanouil & Quock, 2007) it is antagonistic at the
 105 NMDAR (Jevtović-Todorović *et al.* 1998, 2001) is well
 106 tolerated, has rapid onset and offset kinetics and can
 107 be administered very easily (Amey *et al.* 1981). For
 108 these reasons it is currently widely used as a pre-hospital
 109 analgesic by emergency services (O'Sullivan & Benger,
 110 2003). It could thus be readily implemented as a poten-
 111 tial first-line preventive treatment in the aftermath of
 112 trauma to prevent the formation of maladaptive trauma
 113 memories. However, N₂O shares with other NMDAR
 114 antagonists the ability to produce profound dissociation

and may interfere with the consolidation of 'protective' 115
 temporal, contextual and verbal aspects of traumatic 116
 experiences. Persistent dissociation during and after 117
 traumatic events is a key predictor of later development 118
 of PTSD (Briere *et al.* 2014). N₂O administered after a 119
 traumatic event may therefore produce paradoxical 120
 worsening of PTSD symptoms through increases in dis- 121
 sociation. Opportunistic studies with ketamine, a more 122
 potent NMDAR antagonist and dissociative than N₂O, 123
 have shown deleterious effects on the development of 124
 PTSD following its use in an emergency setting 125
 (Schönenberg *et al.* 2005, 2008). However, a recent ran- 126
 domized control trial has shown efficacy of ketamine 127
 in the treatment of chronic PTSD (Feder *et al.* 2014). 128
 Experimental models of post-trauma N₂O do not cur- 129
 rently exist and are required in order to properly assess 130
 its therapeutic and harmful potential. 131

In the current study, we therefore sought to examine 132
 the effects of N₂O on consolidation of distressing intru- 133
 sive memories in a laboratory model of trauma. In line 134
 with previous research using behavioural tasks 135
 (Holmes *et al.* 2009; Holmes *et al.* 2010; James *et al.* 136
 2015), we hypothesized that 50% N₂O (Entonox, 137
 British Oxygen Company, UK) following an aversive 138
 'trauma film' would interfere with consolidation of 139
 memories of the film, evidenced by a greater reduction 140
 in the frequency of self-reported intrusive thoughts 141
 related to the film over the subsequent week compared 142
 to inhalation of medical air. However, acknowledging 143
 the potential for a deleterious effect of N₂O, putatively 144
 due to its potent dissociative properties, we hypothe- 145
 sized that its effects on intrusive memories would inter- 146
 act with post-film levels of dissociation, producing less 147
 benefit in those with higher dissociation levels post-film. 148

Method 149

Participants and design 150

Fifty-two participants (24 women) took part in the 151
 study. Inclusion criteria were age 18–65 years, normal 152
 physical health, normal or corrected to normal colour 153
 vision. Exclusion criteria were self-reported historical 154
 or current diagnosis of mental health issues; a history 155
 of trauma, memory impairments, pregnancy or breast- 156
 feeding, regular (>1 times per month) recreational use 157
 of drugs other than alcohol and caffeine (including 158
 N₂O or other NMDAR antagonists), vitamin B12 defi- 159
 ciency and pneumothorax. All procedures were 160
 approved by the UCL research ethics committee. 161

Stimuli and apparatus 162

Trauma film 163

The emotional video consisted of two clips taken from 164
 the film 'Irreversible' (Studio Canal, France). The 165

166 scenes depicted a violent rape (scene 1, 15 min long)
 167 and a man being beaten to death in a club (scene 2,
 168 4 min long). The use of these clips was based on pilot
 169 data showing a greater number of intrusions following
 170 this clip than previously used multiple short scenes
 171 (Soni *et al.* 2013).

172 Subjective assessments

173 To assess levels of dissociation, the Clinical
 174 Administered Dissociative States Scale (CADSS;
 175 Bremner *et al.* 1998) was used. The Beck Depression
 176 Inventory (BDI; Beck *et al.* 1988) was used to assess
 177 levels of depression, the Distress Tolerance Scale
 178 (DTS; Simons & Gaher, 2005) to assess participants' in-
 179 dividual capacity for managing distressing experiences
 180 and the Dissociative Experiences Scale (DES) as assess
 181 naturalistic levels of dissociation (Carlson & Putnam,
 182 1993). Acute emotional responses to the film were
 183 assessed with a set of six visual analogue scales
 184 (VAS) measuring levels of disgust, fear, anger, sadness,
 185 happiness and distress. These were anchored with the
 186 descriptors 'not at all' and 'extremely'. A single-item
 187 VAS was also used to assess drug-induced nausea.
 188 After the first night of sleep following the film, partici-
 189 pants also completed a short online survey where
 190 they reported how many hours they had slept and
 191 their quality of sleep compared to normal (better
 192 than normal, around the same, or worse than normal).

193 Memory assessment

194 Participants logged intrusions in a diary via an online
 195 Qualtrics interface (Qualtrics, USA). Participants
 196 received daily email/smartphone prompts for 7 days
 197 (starting on the day of the trauma film) to record the
 198 number of intrusive memories related to the trauma
 199 film they had experienced that day. The diary prompt
 200 defined intrusions as '*A spontaneously occurring mem-
 201 ory. By spontaneous we mean memories of the film that sud-
 202 denly pop into your mind automatically. We do not mean
 203 times when you deliberately think about it. The spontaneous
 204 memories may pop into your mind when you are doing or
 205 thinking about something completely unrelated. The main
 206 thing is that you didn't mean to think about the film but
 207 recalled something about it out of the blue.*' Participants
 208 briefly reported the content of the intrusion and the
 209 number of occurrences of the intrusion that day.
 210 Logged 'intrusions' that were unrelated to the film
 211 were not counted.

212 A cued recall task was used to assess explicit mem-
 213 ory of the trauma film. This consisted of ten questions
 214 about occurrences in each film. Participants were
 215 scored 2 for a correct answer, 1 for a partially correct
 216 answer and 0 for an incorrect answer to each question.

Heart rate variability (HRV)	217
HRV reflects the interplay between sympathetic and parasympathetic influences on the heart and indicates the autonomic nervous system's response to threat (Porges, 1997). Heart rate data (RR intervals) were recorded using a BodyGuard 2 ECG device (FirstBeat Technologies, Finland). HRV was acquired at a sampling rate of 1000 Hz and expressed as the standard deviation of successive RR intervals (SDNN). A 5-min epoch prior to viewing the trauma film, and a 5-min epoch after the film served as pre-film (baseline) and post-film indices of autonomic arousal. The recording during the entire film (peri-film) along with the pre- and post-film epochs were used in the statistical analysis of arousal effects.	218 219 220 221 222 223 224 225 226 227 228 229 230 231
Drug administration	232
Drug was medical 50% N ₂ O in oxygen (Entonox) and was administered via an Ultraflow demand valve regulator (BPR Medical Ltd, UK). Participants in the placebo group were fitted with an inhalation mask connected a cylinder of medical air (British Oxygen Company) with transparent polyethylene tubing. Gas cylinders were not visible to participants in order to maintain the single blind. All participants inhaled the appropriate gas for 30 min in total.	233 234 235 236 237 238 239 240 241
Procedure	242
Day 1	243
After completing a telephone screening to assess eligibility, participants attended the study centre for the first day of testing and completed informed consent and the DES, DTS and BDI before being fitted with the ECG device and viewing the trauma film. After this, participants were fitted with inhalation masks connected to an Entonox (N ₂ O) or air cylinder and completed the baseline CADSS before gas administration began. After 10 min of equilibration to the gas, the CADSS was repeated to assess any acute changes in dissociation. Ten minutes after cessation of gas inhalation, the CADSS was completed once more. Participants were finally briefed on the completion of the intrusion diary, which they were required to complete on a daily basis until the next testing day. Participants completed the sleep survey remotely the morning after day 1. Testing commenced between 10:00 and 16:00 hours. There were an equal number of participants in each group who were tested in the morning and afternoon.	244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
Day 8	263
Participants returned to study centre and completed the cued recall task at approximately the same time	264 265

266 as they commenced testing on day 1. After this they
 267 were debriefed and reimbursed at a rate of £7.50 per
 268 hour of participation.

269 *Data handling*

270 Heart rate data were imported into Kubios (Tervainen
 271 *et al.* 2009) for Matlab (The MathWorks Inc., USA) and
 272 artefact correction was performed using pre-defined
 273 settings. All data were analysed using R (R Core
 274 Development Team, 2014) and IBM Statistical
 275 Package for the Social Sciences (SPSS) version 22 for
 276 Windows (IBM Corp, USA). For general linear models,
 277 assumptions were checked through inspection of histo-
 278 grams and scatterplots of standardized residuals
 279 against predicted values in models. Group differences
 280 on trait variables at baseline were assessed using
 281 independent-samples *t* tests and χ^2 tests.

282 Intrusion counts were modelled using Poisson gen-
 283 eralized linear mixed models (GLMMs) in SPSS and
 284 the *glmer* function of the *lme4* package (Baayen *et al.*
 285 2008). Satterthwaite approximations were used to de-
 286 termine the degrees of freedom and robust covariance
 287 estimation to assess model effects. Model specification
 288 was based upon *a priori* hypotheses, with Group,
 289 Day, Gender, post-film CADSS and Group \times Day and
 290 Group \times CADSS terms entered as fixed effects of
 291 interest. These were selected because (1) the time-
 292 course of intrusions was of primary interest to the
 293 study, (2) gender and dissociation predict PTSD-like
 294 symptomatology following traumatic events and (3)
 295 dissociation was hypothesized to interact with
 296 Group, due to the highly dissociative nature of N₂O.
 297 A random intercept per participant was specified to ac-
 298 count for dependencies caused by repeated measure-
 299 ments on the same participants. For exploratory
 300 analyses on heart rate and sleep data, generalized lin-
 301 ear models were used to model total intrusion counts,
 302 since no hypotheses were made concerning the effects
 303 of these variables on intrusions over time. Poisson
 304 models were fit using maximum likelihood estimation,
 305 with a log link function. Model fit was assessed by
 306 minimizing the finite-corrected Akaike's Information
 307 Criterion (AICc). In these models, $k > 2$ main effects
 308 and interactions were assessed with sequential
 309 Bonferroni-adjusted contrasts. Outlier removal was
 310 based upon model-based residuals and influence diag-
 311 nostics, as recommended by Baayen *et al.* (2008) and
 312 Bates (2010). These tests, alongside tests for overdisper-
 313 sion and fulfilment of regression assumptions, were
 314 conducted using custom scripts written in R. One ex-
 315 tremble outlier was found and removed using these
 316 tests (a female in the N₂O group) and excluded from
 317 all analyses.

Missing data	318
One participant's whole data (a male in the Air group) was lost due to technical failure, leaving a final $N=25$ per group. For the cued recall ($N=4$), HRV ($N=7$) and sleep ($N=2$) data, some data records were lost due to technical failure. As the proportion of data lost was small and Little's test demonstrated that the data was missing completely at random ($\chi^2_{187} = 177.94$, $p = 0.671$), these data records were imputed using the EM algorithm in SPSS. Analysis was conducted with and without these imputations, and the results were not affected in any meaningful way. Reported results therefore include imputed values.	319 320 321 322 323 324 325 326 327 328 329 330
Results	331
Fifty participants aged between 18 and 41 years (mean \pm S.D.: 24.4 ± 4.9) contributed data to the analyses. Descriptive statistics for baseline and trait measures are given in Table 1. The groups did not differ in any of these measures at baseline.	332 333 334 335 336
Acute responses to trauma film	337
The ability of the trauma film to produce intense negative affective responses and reduction in positive affect was assessed using 2 (Group) \times 2 (Time: pre-film/ post-film) ANOVAs on each of the VAS items. Inferential and descriptive statistics for these tests are presented in Table 2. The film produced marked increases in negative and decrease in positive affect and these changes did not differ between groups.	338 339 340 341 342 343 344 345
Primary analysis	346
<i>Drug effects on intrusive memory</i>	347
Mean daily intrusion frequency over the week following the trauma film were low in both groups (N ₂ O: 1.155 ± 1.068 ; Air: 1.068 ± 0.858). A <i>t</i> test on these data showed no significant differences between the absolute number of experienced intrusions between the N ₂ O group and the Air group ($t_{48} = 0.458$, $p = 0.649$). However, as previously observed in studies using the trauma paradigm, intrusion frequency was highest in the first few days after the video (Soni <i>et al.</i> 2013) and declined over the course of the week (James <i>et al.</i> 2015).	348 349 350 351 352 353 354 355 356 357 358
For the primary mixed model analysis the AICc for the full model (1261.1) was significantly lower than an intercept-only comparison model (1359.73), indicating an improvement in overall complexity-penalized model fit following the addition of the predictors ($F_{16,36} = 10.051$, $p < 0.001$).	359 360 361 362 363 364
Significant effects of Day ($F_{6,315} = 16.141$, $p < 0.001$) and Gender (women > men; $F_{1,30} = 16.131$, $p < 0.001$) and	365 366

Table 1. Descriptive statistics for baseline subjective measures with associated tests of significance. Data represent mean \pm s.d.

	N ₂ O (N = 25)	Air (N = 25)	Test statistic	Significance
Gender	F = 14/M = 11	F = 13/M = 12	$\chi^2_1 = 0.081$	0.777
BDI score	7.31 \pm 7.79	5.42 \pm 5.27	$t_{48} = 1.01$	0.324
DTS score	34 \pm 9.6	38.71 \pm 9.38	$t_{48} = 1.75$	0.086
DES amnesia	2.88 \pm 3.88	2.44 \pm 4.12	$t_{48} = 0.381$	0.705
DES derealization	1.35 \pm 3.08	2.51 \pm 4.37	$t_{48} = 1.09$	0.281
DES absorption	9.33 \pm 9.18	9.83 \pm 8.64	$t_{48} = 0.196$	0.846
STAI	39.38 \pm 9.68	38.33 \pm 9.77	$t_{48} = 0.382$	0.704
CADSS baseline	19.96 \pm 5.17	18.71 \pm 4.7	$t_{48} = 0.894$	0.376
CADSS on-gas	45.23 \pm 20.86	23.42 \pm 4.33	$t_{48} = 5.213$	<0.001
CADSS post-gas	33.38 \pm 12.4	22.21 \pm 4.02	$t_{48} = 4.355$	<0.001

BDI, Beck Depression Inventory; DTS, Distress Tolerance Scale; DES, Dissociative Experiences Scale; STAI, State-Trait Anxiety Inventory; CADSS, Clinical Administered Dissociative States Scale.

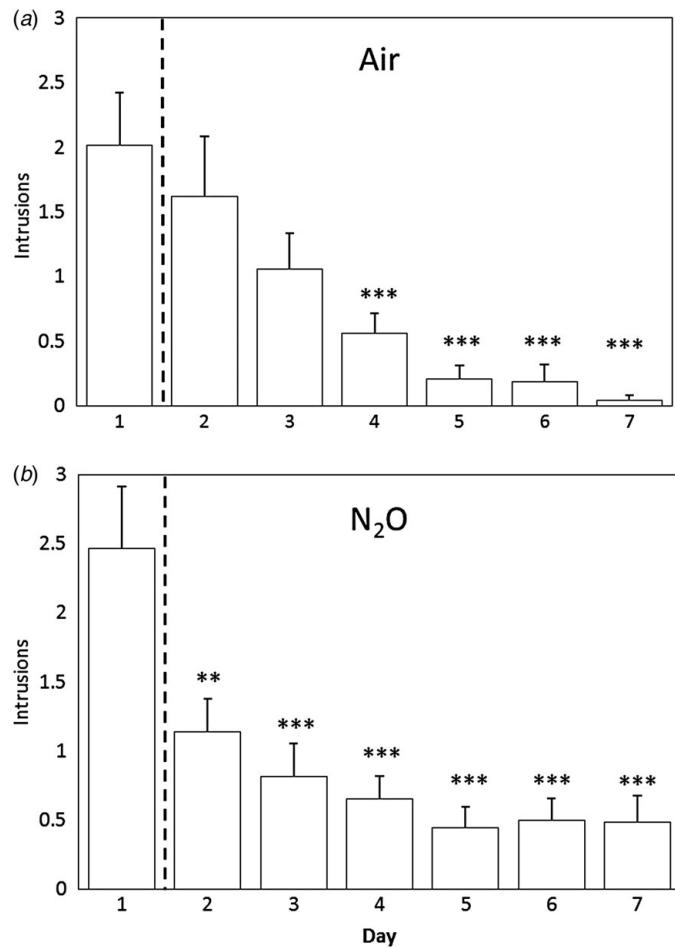
Table 2. Acute emotional responses to trauma film. Statistics represent mean \pm s.d. F values are given below their respective effects in the 2 \times 2 ANOVA.

	N ₂ O		Air		Group ME	Sig.	Time ME	Sig.	Interaction	Sig.
	Pre-film	Post-film	Pre-film	Post-film						
Disgust	0.8 \pm 4	72.8 \pm 27.2	0.8 \pm 2.8	69.6 \pm 3.5	0.226	0.637	257.3	<0.001	0.164	0.688
Fear	2.4 \pm 06.6	29.6 \pm 25.4	2.5 \pm 5.3	34.69 \pm 3.3	0.101	0.752	53.38	<0.001	0.151	0.7
Anger	1.2 \pm .3.3	51.6 \pm 3.4	6.7 \pm 2.1	51.7 \pm 35.7	0.103	0.75	99.8	<0.001	0.458	0.502
Sadness	5.6 \pm 15.3	46.4 \pm 35.5	7.5 \pm 11.1	39.2 \pm 31.3	0.425	0.517	70.381	<0.001	1.193	0.28
Happiness	62.4 \pm 2.24	19.2 \pm 2.1	60 \pm 28.3	25 \pm 26	0.117	0.733	97.077	<0.001	1.129	0.293
Distress	6.8 \pm 17.7	42.8 \pm 28.9	5.8 \pm 15	52.5 \pm 32.2	0.418	0.521	99.994	<0.001	1.242	0.271

ME, Main effect. For all effects, degrees of freedom are 1, 48

critically a Group \times Day ($F_{6,315} = 2.382$, $p = 0.029$) and a Group \times Dissociation ($F_{1,13} = 5.602$, $p = 0.034$) interaction were found. A Wald test on the variance of the intercept was highly significant (variance = 0.371, $Z = 3.095$, $p = 0.002$).

The Day effect represented a significant reduction in intrusions from day 1 to day 2 ($\beta = -0.775$, 95% CI -1.289 to -0.262 , $t_{315} = 2.971$, $p = 0.003$) and all subsequent days (all β 's < -0.112 , t 's > 2.83 , $p < 0.005$).


The Group \times Day interaction reflected that this reduction in intrusions between day 1 and day 2 ($\beta = -1.33$, $t_{315} = -2.767$, $p = 0.007$, 95% CI -2.32 to -0.341), day 1 and day 3 ($\beta = -1.655$, 95% CI -2.93 to -0.38 , $t_{315} = -2.924$, $p = 0.007$) and all subsequent days (all β 's < -1.89 , t 's > 4.35 , p 's < 0.0005) was significant only in the N₂O group. In the Air group, there was no significant reduction in intrusions between day 1 and day 2 ($\beta = -0.396$, 95% CI -1.451 to 0.66 , $t_{315} = -0.739$, $p = 0.461$) or day 3 ($\beta = -0.958$, 95% CI -1.994 to 0.078 , $t_{315} = 2.082$, $p = 0.08$). A significant reduction in

intrusions (compared to day 1) was not observed in the Air group until day 4 ($\beta = -1.453$, 95% CI -2.298 to -0.608 , $t_{224} = 4.331$, $p < 0.001$). The reduction in the frequency of intrusions was therefore faster following post-encoding N₂O than air (see Fig. 1).

The Group \times CADSS interaction represented a significant positive predictive relationship between post-film dissociation levels and intrusion frequency in the N₂O group ($\beta = 0.085$, 95% CI 0.008 to 0.162 , $t = 2.367$, $p = 0.034$) but not in the Air group ($\beta = -0.006$, 95% CI -0.083 to 0.0071 , $t = 0.198$, $p = 0.849$) indicating a potential baseline-dependency of the effects of N₂O-induced dissociation on intrusion frequency (see Fig. 2).

Cued and free recall

The groups did not differ in correct recall of events in scene 1 ($t_{48} = 0.696$, $p = 0.49$) or scene 2 ($t_{48} = 1.014$, $p = 0.316$). However, correct recall was relatively low for

Fig. 1. Faster reduction in intrusion frequency in following post-encoding nitrous oxide (N_2O). Bars represent mean \pm S.E.M. Denoted significance is for simple contrasts of each day against day 1 intrusion frequency. ** $p < 0.01$, *** $p < 0.001$. The vertical dotted line indicates the first night of sleep following encoding of the trauma film.

405 scene 1 (N_2O group: 11.36 ± 3.4 ; Air group: 11.94 ± 2.4)
 406 and lower still for scene 2 (N_2O group: 8.52 ± 4.13 ; Air
 407 group: 7.52 ± 2.7).

408 Drug-induced dissociation and nausea

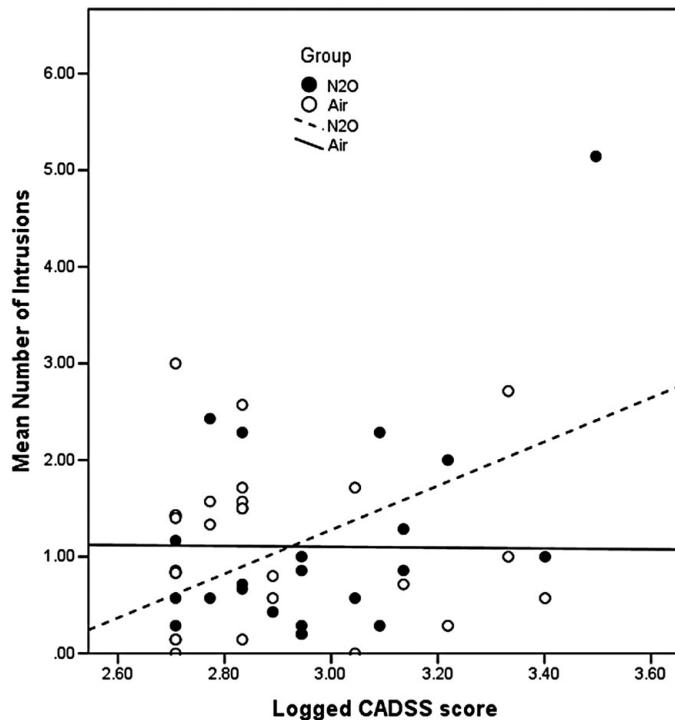
409 A 3 (baseline, on-gas, post gas) \times 2 (Group) mixed
 410 ANOVA on CADSS scores found main effects of
 411 Group ($F_{1,48} = 23.9$, $p < 0.001$, $\eta^2_P = 0.332$), Time ($F_{2,96} =$
 412 39.242 , $p < 0.001$, $\eta^2_P = 0.45$) and a Group \times Time inter-
 413 action ($F_{2,96} = 18.37$, $p < 0.001$, $\eta^2_P = 0.277$). The groups
 414 did not differ in dissociation at baseline ($F_{1,48} = 0.8$,
 415 $p = 0.376$, $\eta^2_P = 0.016$), but the N_2O group were signifi-
 416 cantly more dissociated than the Air group during
 417 gas administration ($F_{1,48} = 25.212$, $p < 0.001$, $\eta^2_P = 0.344$)
 418 and 5 min after cessation of inhalation ($F_{1,48} = 17.756$,
 419 $p < 0.001$, $\eta^2_P = 0.27$). These data are shown in Fig. 3.
 420 There was no effect of Group ($F_{1,48} = 2.069$, $p = 0.157$,
 421 $\eta^2_P = 0.041$), Time ($F_{2,96} = 1.467$, $p = 0.237$, $\eta^2_P = 0.03$) or
 422 interaction ($F_{2,96} = 1.77$, $p = 0.186$, $\eta^2_P = 0.036$) on self-
 423 rated nausea.

Exploratory analyses

424

HRV

425


A 2 (Group) \times 3 (Time: pre-film, peri-film, post-film) mixed ANOVA on SDNN data found a highly significant main effect of time ($F_{2,96} = 39.12$, $p < 0.001$, $\eta^2_P = 0.449$), driven by an increase in SDNN post-film, compared to peri-film ($t_{48} = 6.702$, $p < 0.001$, $r = 0.7$) and pre-film baseline ($t_{48} = 7.966$, $p < 0.001$, $r = 0.75$) epochs. There was no interaction between Time and Group ($F_{2,96} = 0.165$, $p = 0.848$, $\eta^2_P = 0.003$) and no main effect of Group ($F_{1,48} = 3.179$, $p = 0.081$, $\eta^2_P = 0.062$).

Sleep

435

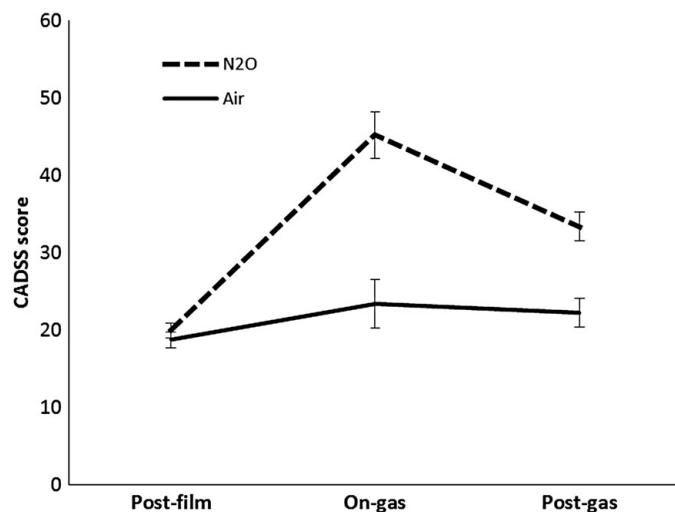

As sleep is critical for memory consolidation (Gais & Born, 2004; Stickgold, 2005) and N_2O may affect sleep quality (Lahti *et al.* 2011), we examined whether drug-related changes in sleep were responsible for the observed drug effects on intrusion frequency. The groups did not differ in the hours of sleep after

Fig. 2 - B/W online, B/W in print

Fig. 2. Differential predictive power of pre-gas dissociation on intrusion frequency between groups. Nitrous oxide (N₂O) group = solid circles; Air group = clear circles; CADSS, Clinical Administered Dissociative States Scale.

Fig. 3 - B/W online, B/W in print

Fig. 3. Changes in dissociation following nitrous oxide (N₂O) and Air. Bars represent S.E.M. CADSS, Clinical Administered Dissociative States Scale.

442 watching the film ($t_{48} = 0.987$, $p = 0.328$, $r = 0.14$).
 443 Critically, modelling total number of intrusions (sum
 444 over the week) as a function of Group, hours of sleep
 445 and their interaction found no effect of hours of sleep
 446 ($\beta = -0.071$, 95% CI -1.70 to 0.027 , $p = 0.155$) nor an
 447 interaction between Group and hours of sleep ($\beta =$
 448 0.007 , 95% CI -0.146 to 0.161 , $p = 0.924$). A χ^2 test on
 449 rated sleep quality (better than normal, the same as

normal, worse than normal) found no group differences in proportions of participants experiencing enhanced or disturbed sleep ($\chi^2 = 0.487$, $p = 0.923$). 450 451 452

453 *Drug guess*

454 A χ^2 of Group against drug guess (N₂O, placebo, don't know) found that participants could generally tell 455

456 which gas they received, owing to the strong effects of
 457 N_2O ($\chi^2 = 33.44$, $p < 0.001$). Twenty-two participants in
 458 the N_2O group guessed correctly, with none guessing
 459 'placebo' and three said 'don't know'. Three partici-
 460 pants in the Air group guessed N_2O , 19 guessed Air
 461 and 3 said 'don't know'.

462 Discussion

463 The current study tested whether a 30-min inhalation
 464 of, N_2O could reduce intrusion frequency if adminis-
 465 tered following an experimental analogue of trauma.
 466 Although the total number of intrusions experienced
 467 between the N_2O and Air groups did not differ signifi-
 468 cantly, the time-course of intrusion frequency showed
 469 clear differences, with the N_2O group experiencing a
 470 markedly faster drop-off in intrusion frequency than
 471 the Air group. Intrusion frequency in the N_2O group
 472 showed an exponential reduction while the Air
 473 group experienced a more gradual, linear reduction
 474 in intrusive thoughts over the week.

475 This difference was most pronounced between day 1
 476 (the day of the trauma film) and day 2 (the day after;
 477 see Fig. 1). These findings are consistent with a 'tag
 478 and capture' model of LTP, resulting in a sleep-
 479 dependent consolidation-impairing effect of N_2O via
 480 antagonism of NMDARs. In the current study, it is un-
 481 likely that N_2O -induced NMDAR antagonism had any
 482 direct effect on late-phase LTP, due to the rapid offset
 483 of central activity upon cessation of inhalation, but
 484 may have affected late-phase consolidation via inhib-
 485 ition of downstream plasticity-related protein synthesis
 486 during early LTP (i.e. reducing the level of 'tagging' of
 487 trauma-film related representations).

488 Whether this mechanism underlies the current
 489 effects are unclear, as N_2O is not purely selective for
 490 the NMDAR and it is possible that its GABA_A or opio-
 491 oid activity may have contributed to, or even be re-
 492 sponsible for, the observed effects (McGaugh, 2004).
 493 However, mechanistic considerations are important
 494 determining whether and when N_2O (or indeed other
 495 drugs that interfere with consolidation) may be useful
 496 in reducing the development of maladaptive fear
 497 memory. The primary limitation of secondary preven-
 498 tion strategies targeting memory is that they are se-
 499 verely time-limited. In many scenarios, it may not be
 500 possible to provide medical care to victims immediate-
 501 ly after trauma. However, interventions may be effica-
 502 cious for several hours after traumatic events. It has
 503 been shown, for example, that delayed behavioural
 504 interventions can retroactively strengthen memory
 505 traces via a putative late-LTP mechanism (Dunsmoor
 506 *et al.* 2015) hours after original learning. The extent of
 507 this 'window of opportunity' remains to be estab-
 508 lished, although it is likely to be bounded on the

509 upper end by the onset of sleep. However, recent re-
 510 search into the potential of behavioural interventions 510
 511 (James *et al.* 2015) and NMDAR antagonism (Das 511
 512 during memory reconsolidation following 512
 513 retrieval and destabilization suggest that such inter- 513
 514 ventions could be employed in a potentially non time- 514
 515 limited manner. 515

516 Importantly, self-reported sleep length and quality 516
 517 were not found to be affected by N_2O . Thus the effects 517
 518 cannot simply be attributed to altered sleep following 518
 519 N_2O . Interestingly, we found that hours of sleep fol- 519
 520 lowing encoding did not predict intrusion frequency. 520
 521 The measures of sleep quality employed here were ne- 521
 522 cessarily crude, however, and there is now a body of 522
 523 evidence suggesting that specific phases of sleep (par- 523
 524 ticularly slow-wave) (Diekelmann & Born, 2010) are 524
 525 key for consolidation. We are unable to say whether 525
 526 such specific oscillatory elements of sleep were affected 526
 527 by N_2O in the current study. Future research may 527
 528 benefit from the use of electroencephalography to as- 528
 529 sess the potential mechanisms of interventions that pu- 529
 530 tatively target memory consolidation. Similarly, the 530
 531 observed effects are unlikely to be attributable to dif- 531
 532 ferential stress responses to the film, as HRV did not 532
 533 differ between groups and subjective responses to the 533
 534 film were equivalent. However, further research may 534
 535 benefit from more direct measures of glucocorticoid 535
 536 responses in the trauma film paradigm, given the 536
 537 known interactions between glucocorticoids, sleep 537
 538 and memory consolidation (Payne & Nadel, 2004). 538

539 Limitations

540 There were no group differences in absolute intrusion 540
 541 frequency in the current study, which could be inter- 541
 542 preted as evidence for a lack of effect of N_2O on intru- 542
 543 sive memories. However, intrusion frequency in the 543
 544 current study was generally low. Indeed this is quite 544
 545 typical of the trauma film paradigm (Bisby *et al.* 545
 546 2009; Holmes *et al.* 2009; Soni *et al.* 2013). The nature 546
 547 of the data (count) and high proportion of low counts 547
 548 can obscure potentially clinically significant effects and 548
 549 reduce the sensitivity of simple between-group ana- 549
 550 lyses. This highlights the fact that, although the current 550
 551 study drew upon a well validated and replicated para- 551
 552 digm (Bisby *et al.* 2009; Holmes *et al.* 2009; Holmes *et al.* 552
 553 2010; James *et al.* 2015) the intrusive memory effects we 553
 554 produced were far milder than those following true 554
 555 traumatic events. This can produce problems with 555
 556 regards to 'room for improvement' from baseline 556
 557 rates. Thus while one might normally expect an attenu- 557
 558 ation of effects when moving from an experimental 558
 559 model in healthy volunteers to a clinical intervention, 559
 560 the opposite may be true in the case of this paradigm, 560

561 where baseline intrusion frequency is higher in the
562 latter.

563 In the absence of absolute group differences in num-
564 bers of intrusions, if the current findings are replicated
565 in a clinical sample, speeding the reduction of intru-
566 sion frequency could still be clinically important, as
567 shortening disease course may prevent the develop-
568 ment of secondary comorbid psychiatric disorders
569 such as depression and suicide, which are rife among
570 people with a diagnosis of PTSD (O'Donnell *et al.*
571 2004).

572 In the current study, N₂O also produced pro-
573 nounced dissociation and higher levels of post-film
574 dissociation, prior to drug predicted more subsequent
575 intrusions in the N₂O group. This is problematic for
576 a post-trauma intervention, as dissociation has been
577 associated with the development of chronic PTSD
578 (Murray *et al.* 2002; Halligan *et al.* 2003). The exact
579 mechanism by which dissociation may lead to
580 increased intrusions is unclear, but it may reduce the
581 availability of attentional and cognitive resources for
582 encoding and consolidation of temporal and context-
583 ual information (Van der Kolk & Fisler, 1995;
584 Verwoerd *et al.* 2008) surrounding traumatic events.
585 The dissociative profile of N₂O might therefore attenu-
586 ate the beneficial effects of weakening the consolida-
587 tion of trauma memory, or in extreme cases of
588 dissociation, may even produce worsening of symp-
589 toms. Caution is therefore required in translating the
590 current findings to the clinic, as there is scope for ag-
591 gravation of PTSD-like symptomatology.

592 The applicability of the current findings to indivi-
593 duals following real-life trauma remains to be estab-
594 lished, as the current study produced only a mild
595 trauma analogue in a healthy sample. Given the cur-
596 rent results, further research with N₂O is required to
597 replicate these effects in a clinical sample and establish
598 the potential benefits and dangers of its use following
599 traumatic events. As N₂O is an effective and portable
600 analgesic, it is already very widely used by emergency
601 services for pre-hospital pain management (Fisher *et al.*
602 2006). Given the current results, it is possible that this
603 practise has unintended (beneficial or deleterious)
604 effects on maladaptive memory formation in the post-
605 trauma period. Prospective studies of the development
606 of maladaptive memory following traumatic events
607 where N₂O (or indeed other NMDAergic analgesics,
608 such as ketamine) has been administered as a first-line
609 analgesic will be useful in determining the extent of
610 such effects.

611 Conclusion

612 The current study provides the first evidence, to our
613 knowledge, that N₂O may speed the reduction in

intrusion frequency following encoding of stressful
events through consolidation-dependent mechanisms. 614
Although much further work is required to establish
615 clinical efficacy, these findings suggest that N₂O, or
616 the use of non-dissociative amnestic is a promising
617 avenue for first-line intervention in trauma. 618
619

620 Acknowledgements

621 This research has was funded internally via UCL. 621

622 Declaration of Interest

623 None. 623

624 References

Amey BD, Ballinger JA, Harrison EE (1981). Prehospital administration of nitrous oxide for control of pain. *Annals of Emergency Medicine* **10**, 247–251.

APA (2013). *Diagnostic and Statistical Manual of Mental Disorders (DSM-5)*. American Psychiatric Association: Washington, D.C.

Baayen RH, Davidson DJ, Bates DM (2008). Mixed-effects modeling with crossed random effects for subjects and items. *Journal of Memory and Language* **59**, 390–412.

Bates DM (2010). lme4: Mixed-effects modeling with R (<http://lme4.r-forge.r-project.org/book>).

Beck AT, Steer RA, Carbin MG (1988). Psychometric properties of the beck depression inventory: twenty-five years of evaluation. *Clinical Psychology Review* **8**, 77–100.

Bisby JA, Brewin CR, Leitz JR, Curran HV (2009). Acute effects of alcohol on the development of intrusive memories. *Psychopharmacology* **204**, 655–666.

Bliss TV, Collingridge GL (1993). A synaptic model of memory: long-term potentiation in the hippocampus. *Nature* **361**, 31–39.

Bremner JD, Krystal JH, Putnam FW, Southwick SM, Marmar C, Charney DS, Mazure CM (1998). Measurement of dissociative states with the clinician-administered dissociative states scale (CADSS). *Journal of Traumatic Stress* **11**, 125–136.

Brewin CR (2001a). A cognitive neuroscience account of posttraumatic stress disorder and its treatment. *Behaviour Research and Therapy* **39**, 373–393.

Brewin CR (2001b). Memory processes in post-traumatic stress disorder. *International Review of Psychiatry* **13**, 159–163.

Brewin CR (2013). Episodic memory, perceptual memory, and their interaction: foundations for a theory of posttraumatic stress disorder. *Psychological Bulletin* **140**, 69–97.

Brewin CR, Dalgleish T, Joseph S (1996). A dual representation theory of posttraumatic stress disorder. *Psychological Review* **103**, 670.

Briere J, Scott C, Weathers F (2014). Peritraumatic and persistent dissociation in the presumed etiology of PTSD. *American Journal of Psychiatry* **162**, 2295–2301.

665 **Carlson EB, Putnam FW** (1993). An update on the
666 dissociative experiences scale. *Dissociation: Progress in the*
667 *Dissociative Disorders* **6**, 16–27.

668 **Cohen S, Kozlovsky N, Matar MA, Kaplan Z, Zohar J, Cohen H** (2012). Post-exposure sleep deprivation facilitates
669 correctly timed interactions between glucocorticoid and
670 adrenergic systems, which attenuate traumatic stress
671 responses. *Neuropsychopharmacology* **37**, 2388–2404.

672 **Das RK, Freeman TP, Kamboj SK** (2013). The effects of
673 N-methyl D-aspartate and B-adrenergic receptor antagonists
674 on the reconsolidation of reward memory: a meta-analysis.
675 *Neuroscience & Biobehavioral Reviews* **37**, 240–255.

676 **Diekelmann S, Born J** (2010). The memory function of sleep.
677 *Nature Reviews Neuroscience* **11**, 114–126.

678 **Dunsmoor JE, Murty VP, Davachi L, Phelps EA** (2015).
679 Emotional learning selectively and retroactively strengthens
680 memories for related events. *Nature* **520**, 345–348.

681 **Ehlers A, Hackmann A, Michael T** (2004). Intrusive re-
682 experiencing in post-traumatic stress disorder:
683 phenomenology, theory, and therapy. *Memory* **12**, 403–415.

684 **Emmanouil DE, Quock RM** (2007). Advances in
685 understanding the actions of nitrous oxide. *Anesthesia
686 Progress* **54**, 9–18.

687 **Feder A, Parides MK, Murrough JW, Perez AM, Morgan JE, Saxena S, Kirkwood K, Aan Het Rot M, Lapidus KA, Wan L-B** (2014). Efficacy of intravenous ketamine for treatment
688 of chronic posttraumatic stress disorder: a randomized
689 clinical trial. *JAMA Psychiatry* **71**, 681–688.

690 **Fisher JD, Brown SN, Cooke MW, Committee JRCAL, Association AS, Wales N, Ireland N** (2006). UK
691 Ambulance Service clinical practice guidelines. London:
692 Joint Royal College Ambulance Liaison Committee.

693 **Frey U, Morris RG** (1997). Synaptic tagging and long-term
694 potentiation. *Nature* **385**, 533–536.

695 **Gais S, Born J** (2004). Declarative memory consolidation:
696 mechanisms acting during human sleep. *Learning &
697 Memory* **11**, 679–685.

698 **Hackmann A, Ehlers A, Speckens A, Clark D** (2004).
699 Characteristics and content of intrusive memories in PTSD
700 and their changes with treatment. *Journal of Traumatic Stress*
701 **17**, 231–240.

702 **Halligan SL, Michael T, Clark DM, Ehlers A** (2003).
703 Posttraumatic stress disorder following assault: the role of
704 cognitive processing, trauma memory, and appraisals.
705 *Journal of Consulting and Clinical Psychology* **71**, 419.

706 **Hellawell SJ, Brewin CR** (2004). A comparison of flashbacks
707 and ordinary autobiographical memories of trauma: content
708 and language. *Behaviour Research and Therapy* **42**, 1–12.

709 **Holmes EA, James EL, Coode-Bate T, Deeprose C** (2009).
710 Can playing the computer game 'Tetris' reduce the
711 build-up of flashbacks for trauma?: a proposal from
712 cognitive science. *PLoS ONE* **4**, e4153.

713 **Holmes EA, James EL, Kilford EJ, Deeprose C** (2010). Key
714 steps in developing a cognitive vaccine against traumatic
715 flashbacks: visuospatial tetris versus verbal pub quiz. *PLoS
716 ONE* **5**, e13706.

717 **James EL, Bonsall MB, Hoppitt L, Tunbridge EM, Geddes JR, Milton AL, Holmes EA** (2015). Computer game play
718 reduces intrusive memories of experimental trauma via
719 reconsolidation-update mechanisms. *Psychological Science*
720 **26**, 1201–1215.

721 **Jevtović-Todorović V, Todorović S, Mennerick S, Powell S, Dikranian K, Benshoff N, Zorumski C, Olney J** (1998).
722 Nitrous oxide (laughing gas) is an NMDA antagonist,
723 neuroprotectant and neurotoxin. *Nature Medicine* **4**, 460–463.

724 **Jevtovic-Todorovic V, Wozniak DF, Benshoff ND, Olney JW** (2001). A comparative evaluation of the neurotoxic
725 properties of ketamine and nitrous oxide. *Brain Research*
726 **895**, 264–267.

727 **Ji D, Wilson MA** (2007). Coordinated memory replay in the
728 visual cortex and hippocampus during sleep. *Nature
729 Neuroscience* **10**, 100–107.

730 **Jones M, Errington M, French P, Fine A, Bliss T, Garel S, Charnay P, Bozon B, Laroche S, Davis S** (2001). A
731 requirement for the immediate early gene Zif268 in the
732 expression of late LTP and long-term memories. *Nature
733 Neuroscience* **4**, 289–296.

734 **Lahti T, Methuen T, Roine R, Seppa KL, Sinclair D, Partinen M, Alho H** (2011). The impacts of nitrous oxide
735 gas on sleep quality during alcohol withdrawal. *BMC
736 Research Notes* **4**, 108.

737 **McGaugh JL** (2004). The amygdala modulates the
738 consolidation of memories of emotionally arousing
739 experiences. *Annual Review of Neuroscience* **27**, 1–28.

740 **Michael T, Ehlers A, Halligan S, Clark D** (2005). Unwanted
741 memories of assault: what intrusion characteristics are
742 associated with PTSD?. *Behaviour Research and Therapy* **43**,
743 613–628.

744 **Murray J, Ehlers A, Mayou RA** (2002). Dissociation and
745 post-traumatic stress disorder: two prospective studies of
746 road traffic accident survivors. *British Journal of Psychiatry*
747 **180**, 363–368.

748 **O'Donnell ML, Creamer M, Pattison P** (2004). Posttraumatic
749 stress disorder and depression following trauma:
750 understanding comorbidity. *American Journal of Psychiatry*
751 **161**, 1390–1396.

752 **O'Sullivan Í, Benger J** (2003). Nitrous oxide in emergency
753 medicine. *Emergency Medicine Journal* **20**, 214–217.

754 **Payne JD, Nadel L** (2004). Sleep, dreams, and memory
755 consolidation: the role of the stress hormone cortisol.
756 *Learning & Memory* **11**, 671–678.

757 **Porcheret K, Holmes EA, Goodwin GM, Foster RG, Wulff K** (2015). Psychological effect of an analogue traumatic event
758 reduced by sleep deprivation. *Sleep* **38**, 1017–1025.

759 **Porges SW** (1997). Emotion: an evolutionary by-product of
760 the neural regulation of the autonomic nervous system.
761 *Annals of the New York Academy of Sciences* **807**, 62–77.

762 **R Core Development Team** (2014). *R: A Language and
763 Environment for Statistical Computing*. R Foundation for
764 Statistical Computing: Vienna, Austria, 2012.

765 **Rasch B, Büchel C, Gais S, Born J** (2007). Odor cues during
766 slow-wave sleep prompt declarative memory consolidation.
767 *Science* **315**, 1426–1429.

768 **Roozendaal B** (2000). Glucocorticoids and the regulation
769 of memory consolidation. *Psychoneuroendocrinology* **25**,
770 213–238.

771 **Roozendaal B** (2002). Stress and memory: opposing effects
772 of glucocorticoids on memory consolidation and
773 780

783 memory retrieval. *Neurobiology of Learning and Memory* **78**,
784 578–595.

785 **Roozendaal B, Quirarte GL, McGaugh JL** (2002).
786 Glucocorticoids interact with the basolateral amygdala
787 β -adrenoceptor-cAMP/cAMP/PKA system in influencing
788 memory consolidation. *European Journal of Neuroscience* **15**,
789 553–560.

790 **Sajikumar S, Frey JU** (2004). Late-associativity, synaptic
791 tagging, and the role of dopamine during LTP and LTD.
792 *Neurobiology of Learning and Memory* **82**, 12–25.

793 **Schönenberg M, Reichwald U, Domes G, Badke A,**
794 **Hautzinger M** (2005). Effects of peritraumatic ketamine
795 medication on early and sustained posttraumatic stress
796 symptoms in moderately injured accident victims.
797 *Psychopharmacology* **182**, 420–425.

798 **Schönenberg M, Reichwald U, Domes G, Badke A,**
799 **Hautzinger M** (2008). Ketamine aggravates symptoms of
800 acute stress disorder in a naturalistic sample of accident
801 victims. *Journal of Psychopharmacology* **22**, 493–497.

802 **Shimizu E, Tang Y-P, Rampon C, Tsien JZ** (2000).
803 NMDA receptor-dependent synaptic reinforcement as a
804 crucial process for memory consolidation. *Science* **290**,
805 1170–1174.

806 **Simons JS, Gaher RM** (2005). The distress tolerance scale:
807 development and validation of a self-report measure.
808 *Motivation and Emotion* **29**, 83–102.

Solomon SD, Davidson JR (1997). Trauma: prevalence,
809 impairment, service use, and cost. *Journal of Clinical Psychiatry*
810 58, S5–11.
811

Soni M, Curran VH, Kamboj SK (2013). Identification of a
812 narrow post-ovulatory window of vulnerability to
813 distressing involuntary memories in healthy women.
814 *Neurobiology of Learning and Memory* **104**, 32–38.
815

Stickgold R (2005). Sleep-dependent memory consolidation.
816 *Nature* **437**, 1272–1278.
817

Tarvainen M, Niskanen JP, Lipponen JA, Ranta-aho PO,
818 **Karjalainen PA** (2009). Kubios HRV– a software for
819 advanced heart rate variability analysis. In *4th European*
820 *Conference of the International Federation for Medical and*
821 *Biological Engineering* (ed. J. Vander Sloten, P. Verdonck,
822 M. Nyssen and J. Haueisen), pp. 1022–1025. Springer: Berlin
823 Heidelberg.
824

Van der Kolk BA, Fisler R (1995). Dissociation and
825 the fragmentary nature of traumatic memories:
826 overview and exploratory study. *Journal of Traumatic
827 Stress* **8**, 505–525.
828

Van der Kolk BA, McFarlane AC, Weisaeth L (1996).
829 *Traumatic Stress*. Guilford: New York.
830

Verwoerd J, de Jong P, Wessel I (2008). Low attentional
831 control and the development of intrusive memories
832 following a laboratory stressor. *Journal of Psychopathology
833 and Behavioral Assessment* **30**, 291–297.
834