The effect of antidiabetic medications on non-alcoholic fatty liver disease (NAFLD)

Laura Iogna Prat, Emmanuel A. Tsochatzis

UCL Institute for Liver and Digestive Health, Royal Free Hospital and UCL, London, UK

Key words: steatohepatitis, metformin, liraglutide, pioglitazone, HCC

FUNDING STATEMENT

No funding.

DECLARATION OF INTEREST

The authors declare that there is no conflict of interest
The term non-alcoholic fatty liver disease (NAFLD) includes a broad spectrum of liver disease ranging from steatosis (NAFL) to non alcoholic steatohepatitis (NASH), fibrosis and cirrhosis. The diagnosis of NAFLD relies on imaging \(^1\) and histology which enables to distinguish simple fatty liver from NASH, where lobular inflammation and ballooning degeneration are also present \(^2,3\). This distinction is not a merely didactic classification but delines different outcomes: notably NAFL, due to its slower progression, is considered to have a benign course whereas NASH is strongly associated with the risk of developing liver fibrosis including cirrhosis and its complications \(^4-6\). Moreover, in patients with NAFLD the severity of fibrosis is the strongest predictor of liver-related outcomes \(^7,8\).

NAFLD is at present the most common liver disorder in Western countries affecting about 25% of the population worldwide \(^9-11\); its prevalence ranges from 6% to 35% depending on different population groups, age and diagnostic techniques; furthermore, NAFLD is the second cause for liver transplantation in the USA and is projected to become the leading indication for liver transplant in the next 10 years \(^12\).

This epidemics coincides with the huge spread of obesity, type 2 diabetes (T2DM) and the metabolic syndrome (MS) in Western countries; accordingly, NAFLD is considered the hepatic manifestation of the latter \(^13\). MS is a cluster of different components sharing insulin resistance as the common
pathophysiological feature \(^{14}\): several studies demonstrated that MS is an independent predictor of development of NAFLD and NASH and its individual histological features including fibrosis \(^{15-20}\); notably, the more components of MS affecting a patient, the more frequently NAFLD will develop \(^{21}\). However, NAFLD per se is also associated with a higher incidence of MS \(^{22}\).

Although strong evidence supports the link between NAFLD and metabolic syndrome, in some cases, fatty liver can develop independently from MS, particularly in the presence of genetic variants of PNPLA 3 \(^{23}\).

On this basis, many studies had focused on the relationship between NAFLD and diabetes, supporting with growing evidence a bidirectional causative link and identifying insulin resistance as the key factor of this connection \(^{24,25}\).

At present there is no approved therapy for NASH. Until now, the only proven effective interventions in improving biochemical and histological features of NASH, including fibrosis, are weight loss \(^{26-28}\) and physical activity even without weight loss \(^{29-31}\). Because of the common epidemiological and pathophysiological features between NAFLD and T2DM, many antidiabetics drugs have been tested in patients with NAFLD over the years. The rational and results of these studies are discussed in the present review.

Metformin
Metformin is an insulin sensitizer which has a multiorgan effect resulting in a decrease in plasma glucose and free fatty acids (FFA); in particular it reduces hepatic glucose production through suppression of gluconeogenesis and increased oxidation of fatty acids, inhibits lipolysis and subsequent FFA release from the adipose tissue, enhances glucose uptake and storage from the muscle and reduces intestinal glucose absorption. It is the preferred initial pharmacologic agent for the treatment of T2DM according to American and European guidelines.

In a pilot study run in 2001 that included 20 non-diabetic patients, a 4 month course of metformin was associated with an improvement in serum aminotransferase levels, insulin sensitivity and liver volume detected with ultrasound (US) in patients with NAFLD. The study included patients with fatty liver and ALT increase. This study, as others which followed using larger number of patients, longer treatment and histological outcomes, failed to show a superiority of metformin over diet interventions and lifestyle changes.

A positive effect on transaminases was observed in a larger study with 110 non-diabetic NAFLD patients receiving nutritional counseling at baseline, metformin was compared to vitamin E and dietetic intervention alone: aminotransferase levels improved in all groups, in association with weight loss, but the effects in the metformin group were more pronounced. A subgroup of 17 metformin-treated patients with histological diagnosis of NASH at baseline (the majority of whom did not meet the primary outcome of normalization of ALT levels after 1 year treatment with metformin), underwent a post-treatment biopsy with
evidence of significant histological improvement in terms of steatosis, necroinflammation and fibrosis.

Furthermore, metformin was studied in combination with rosiglitazone in a randomized clinical trial (RCT) involving 137 patients with biopsy-proven NASH. Among the 108 subjects who completed the trial, 18 were diabetic. Subjects were divided into three groups receiving respectively rosiglitazone and metformin, rosiglitazone and losartan or rosiglitazone alone for 48 weeks. The primary outcome was improvement in steatosis, hepatocellular inflammation or fibrosis; no significant difference was found between the three treatment groups even if the within-group comparison showed a significant histological improvement of each component of NASH within all treatment arms.41

Failure of metformin to significantly improve histological features in NASH was also confirmed in children and adolescents. The TONIC trial enrolled 173 non-diabetic patients aged 8-17 years old with biopsy-proven NAFLD and persistent increase in ALT. Patients were randomized to a 96-week course of metformin versus vitamin E versus placebo and the primary outcome was ALT decrease, while histological improvement/NASH resolution was the secondary outcome; neither vitamin E nor metformin was superior to placebo in achieving the primary outcome whereas the resolution of NASH was significantly greater in the vitamin E group; metformin, apart from an isolated improvement of ballooning degeneration, did not significantly resolve NASH.42

Interestingly, although there is no benefit of using metformin to treat NAFLD, metformin seems to be effective on NAFLD-related complications: dose-
dependent reduction in hepatocellular carcinoma (HCC) was demonstrated in a large cohort of diabetic Taiwanese patients \(^{43,44}\) with a 7% reduction in the risk of HCC per year of metformin use. Furthermore, from a cardiovascular point of view, metformin is known to reduce cardiovascular complications related to diabetes \(^{45}\) and therefore may contribute to reduce such complications among NAFLD patients who are more prone to develop coronary, cerebrovascular and peripheral vascular disease independently of multiple CVD risk factors \(^{46}\).

Peroxisome proliferator-activated receptor agonists

Thiazolidinediones are peroxisome proliferator-activated receptor γ (PPAR-γ) agonists and act as insulin sensitizers on the muscle, adipose tissue and the liver. PPAR are a family of nuclear transcription factors divided in different subtypes (PPAR \(\alpha\), \(\gamma\) and \(\beta/\delta\)) which have a large variety of effects on energy homeostasis and metabolism regulation. Compared to metformin, thiazolidinediones act more on peripheral tissues (adipose tissue, muscle) than on the liver due to the specific distribution of their target receptors \(^{47}\).

Rosiglitazone and pioglitazone, have been largely studied in NAFLD patients, however rosiglitazone was withdrawn from the European market in 2010 because of a high risk of myocardial infarction \(^{48}\). Regarding rosiglitazone, RCTs demonstrated a biochemical improvement on liver enzymes and glycaemic control both in diabetic and non-diabetic patients with NAFLD, whereas
evidence on histological improvement is less clear: results yielded from different studies are controversial regarding the effect on steatosis, ballooning and fibrosis \(^49-52\)

In a single arm, open label trial involving 22 overweight/obese patients with biopsy-proven NASH, 15 of them with impaired glucose metabolism, a 48 week course of rosiglitazone improved significantly the mean global necroinflammatory score, steatosis, hepatocellular ballooning and fibrosis \(^49\). Different results were obtained from other two single centre trials. In a cohort of 74 patients with biopsy-proven NASH a 48 week treatment with rosiglitazone associated to diet and physical activity, compared to diet and exercise alone, showed to significantly ameliorate NAS, steatosis and ballooning but no effect was detected on fibrosis \(^51\). Another study involved 64 patients with impaired glucose metabolism and biopsy-proven NAFLD who were randomly assigned to receive metformin or rosiglitazone or metformin plus rosiglitazone for 12 months. A control liver biopsy at the end of treatment was performed in 35 patients: NAS improvement was shown only in the groups receiving rosiglitazone but still no significant effect on fibrosis was detected \(^50\).

Moreover, in the FLIRT trial, 63 patients with biopsy-proven NASH and increased ALT, of which 20 were diabetic, were randomized to receive either rosiglitazone or placebo for 1 year. The rosiglitazone group met the primary outcome of significant improvement/resolution of steatosis whereas no significant change was detected on any other histological lesions \(^52\). Subsequently 44 out of the original 63 patients participated in the extension phase of this study (FLIRT 2)
and were treated with rosiglitazone for two additional years. Interestingly, after this further treatment, significant improvement in steatosis was seen only in patients treated with placebo during the FLIRT whereas patients who already received rosiglitazone during the FLIRT showed no additional benefit with longer duration of treatment. Combination treatment with metformin does not confer additional benefits apart from a part mitigation of weight gain due to rosiglitazone.

Pioglitazone was also broadly evaluated in clinical trials. A prospective pilot study ran in 2004 involved 18 non-diabetic patients with biopsy-proven NASH and tested hepatic histological improvement as primary outcome after 48 week course of pioglitazone: results showed significant improvement in histology regarding all main features of NASH (steatosis, parenchimal inflammation, cellular injury and Mallory bodies) including fibrosis despite a significant increase in body weight. Follow up after 48 weeks of the end of treatment revealed a significant recurrence of NASH in those who had previously recovered with serum transaminase and histology similar to the baseline suggesting a need for a lifelong therapy duration. Interestingly, there was no worsening of fibrosis in these patients.

Promising results of the efficacy of pioglitazone among NAFLD diabetic patients has been demonstrated in a RCT of pioglitazone versus placebo involving 55 subjects, which showed a significative histological improvement of steatosis, inflammation and ballooning and reduction in liver fat content (assessed by magnetic resonance spectroscopy) after treatment. In this study no effect of
pioglitazone on liver fibrosis was shown.

A subsequent double blind RCT conducted in 2008 that included 74 non-diabetic patients with NAFLD confirmed the beneficial effects of pioglitazone on liver histology. The primary outcome was the reduction in hepatocyte injury (namely cellular ballooning, apoptosis and necrosis) and fibrosis score. Pioglitazone was tested versus placebo and showed a significant improvement not only in steatosis but also in hepatocyte injury, lobular inflammation, Mallory bodies and fibrosis 57.

Compared to these studies, contrasting results have been collected from a big multicentre phase III RCT (the PIVENS trial) which involved 247 non-diabetic patients with biopsy-proven NASH and compared vitamin E versus pioglitazone versus placebo after 96 week-treatment. In this trial only vitamin E met the prespecified significance level of the primary outcome (ie improvement in histological findings which included an improvement in hepatocellular ballooning) although both active-treatment groups had a significant reduction in steatosis, lobular inflammation and NAS (NAFLD activity score). This results was explained by the authors by the lack of hepatocellular ballooning in a more consistent percentage of subjects within the pioglitazone group on initial biopsies as assessed after central review. In fact, when subjects who initially did not have hepatocellular ballooning were excluded from the analyses, both active drug groups were associated with a significant improvement in histological findings. Neither vitamin E nor pioglitazone improved significantly fibrosis score in this study 58.
More recently Cusi et al. ran a similar RCT involving 101 prediabetic and diabetic patients with biopsy-proven NASH who were randomized to receive pioglitazone or placebo for 18 months. The pioglitazone group, compared to placebo, showed a significant improvement of NAS and no worsening of fibrosis (primary outcome). Moreover, in the pioglitazone group there was a significant resolution of NASH, significant improvement in all the single main features of NASH (steatosis, inflammation and ballooning necrosis) and significant reduction in the fibrosis score. Extending treatment with pioglitazone for further 18 months gave no additional benefit.

A metaanalysis of thiazolidinediones supported the beneficial effects of pioglitazone on liver fibrosis. It included 8 RCTs (5 evaluating pioglitazone and 3 evaluating rosiglitazone) enrolling 516 patients with biopsy-proven NASH for a duration of 6 to 24 months. Thiazolidinedione therapy was associated with improving advanced fibrosis (OR 3.15, 95% CI, 1.25-7.93), fibrosis of any stage (OR 1.66, 95% CI, 1.12-2.47) and NASH resolution (OR 3.22, 95% CI, 2.17-4.79). Similar results were obtained restricting analyses to RCTs enrolling non-diabetic patients. Beneficial effects were accounted for by pioglitazone use whereas rosiglitazone use did not reach statistical significance for any histological outcome.

It is important to underscore that pioglitazone is associated with potentially serious adverse events such as fluid retention, weight gain and increased risk of congestive heart failure even in the absence of increased cardiovascular mortality. Notably, weight gain seems to persist even after discontinuation.
of the drug 55.

Regarding other PPAR agonists, research is currently focusing on the development of new molecules for the treatment of NAFLD. Saroglitazar, a dual PPAR α/γ agonist currently used in India for treatment of diabetic dyslipidaemia, has shown promising effects in experimental models of NASH 63 and seems to be effective also in humans reducing serum aminotransferase levels and liver size assessed by US in NASH patients after a 24 week course 64; a small phase IIa single arm clinical trial (PRESS VIII) using saroglitazar in biopsy-proven NASH patients has finished recruitment and its results are awaited. In contrast with pioglitazone, saroglitazar does not seem to correlate with weight gain and peripheral edema 65.

Other than saroglitazar, elafibranor, a PPAR α/δ agonist, was tested in a 1-year phase II RCT involving 274 subjects with biopsy-proven NASH, 107 of which were diabetic: using a modified post-hoc primary endpoint, elafibranor resolved NASH in a significant percentage of patients without worsening of fibrosis and ameliorated the hepatic and metabolic profile 66. In this large study no cardiovascular events or deaths in the elafibranor arm were reported. Currently, a phase III RCT evaluating histological improvement, all-cause mortality and liver-related outcomes in patients with NASH and fibrosis is ongoing. (ClinicalTrials.gov Identifier: NCT02704403).

Lobeglitazone, a PPARα/γ agonist licensed in Korea for treatment of T2DM, has been recently studied in a pilot trial recruiting diabetic NASH patients diagnosed by CAP values on Fibroscan; this drug was shown to reduce CAP values
independently of glucose lowering effect, improve lipid, glycemic and hepatic serum parameters 67.

Glucagon-like peptide 1 receptor (GLP-1 R) agonists

This class of drugs (which includes liraglutide, exenatide, lixisenatide and dulaglutide), acts on the pancreas, brain and adipose tissue in a way similar to physiological GLP 1 and exert its antidiabetic effect through controlling food intake, energy absorption and glucose-dependent insulin secretion 68. They are considered a second-line treatment for T2DM 33. Apart from their glucose lowering effect, they have further positive consequences such as cardioprotective effects 69,70 and an induction of weight loss which is very beneficial in patients with NAFLD 71.

In a metanalysis including 4442 patients, liraglutide improved serum transaminases in diabetic patients; this effect is thought to be mediated by its action on weight loss and improved glycaemic control 72.

Moreover, apart from the presence or absence of NAFLD, liraglutide reduced liver fat content as assessed by MRI spectroscopy in patients with uncontrolled T2DM thanks to its weight lowering effect, whereas insulin glargine, despite an effective control on glycaemic status, exerted no improvement on weight loss and liver fat content 73. However, these results have been in contrast with those obtained by Tang who compared the effect of a 12-week course of insulin
glargine versus liraglutide among 35 patients with T2DM inadequately controlled on metformin monotherapy or in combination with other oral antidiabetic drugs. Despite similar glycaemic control, the insulin group showed significant reduction in liver fat burden assessed radiologically (mean MRI-PDFF, liver volume, total liver fat index) whereas no significant change was detected in the liraglutide group 74. In agreement with the results of Tang, no changes in liver fat content and surrogate biomarkers of fibrosis were showed in a RCT comparing the effect of 12 week course with liraglutide versus sitagliptin or placebo among 52 overweight diabetic patients on metformin or sulphonylurea. Results did not change restricting the analysis to patients with NAFLD at baseline (15 patients in the liraglutide group, 16 in the sitagliptin group and 15 in the placebo group) 75.

Histological effects of liraglutide have been recently studied in a pilot phase II multicentre RCT involving 52 patients with biopsy-proven NASH, 17 of which had T2DM; liraglutide met the primary endpoint of NASH resolution without worsening of fibrosis both in diabetic and non diabetic patients. These results were attributed in part to a cumulative effect on weight loss and glycaemic control 76. In this trial, a subgroup of patients was assessed for organ specific insulin sensitivity, hepatic lipid handling and adipose dysfunction: the results showed that liraglutide improved hepatic and adipose insulin sensitivity and reduced the hepatic de novo lipogenesis 77, a key component of the hepatic fat accumulation in NASH.

Evidence of an hepatoprotective effect also exists for exenatide: this drug has
been evaluated in several randomized clinical studies involving T2DM and obese patients and was shown to reduce liver enzymes, hepatic fat content, hepatic triglyceride content and epicardial fat \(^{78-80}\). Similar to other GLP-1R agonists, results were influenced by the simultaneous weight loss observed in these studies. Histological efficacy of exenatide was investigated in 8 diabetic patients with biopsy proven NAFLD but, although some improvement in isolated histologic features and fibrosis was demonstrated, there was no statistical significance, most likely due to the small sample size \(^{81}\).

Impact of lixisenatide and dulaglutide on NAFLD is not well known by now as few studies have been completed \(^{82,83}\).

Another GLP-1 agonist, semaglutide, is in development for the treatment of T2DM. An ongoing phase IIb RCT, currently recruiting patients, aims to evaluate the safety and efficacy of this drug in NASH with a primary outcome consisting in NASH resolution without worsening of fibrosis. The trial, which has a duration of 72 weeks, is planned to finish in July 2019 (ClinicalTrials.gov Identifier: NCT02970942).

The vast majority of these studies highlighted frequent gastrointestinal side effects from GPL-1 RA, however these usually subside after the initial phase of dose escalation (usually 6 weeks).
Dipeptidil dipeptidase-4 inhibitors

These drugs, consisting primarily of sitagliptin, vildagliptin, linagliptin, saxagliptin, and alogliptin, enhance the effects of incretins by inhibiting dipeptidil dipeptidase 4 (DPP-4), the enzyme responsible for their degradation. Incretins are a group of metabolic hormones released from the bowel in response to a meal. The main molecules of this group, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), exert a common glucoregulatory effect stimulating insulin biosynthesis, β-cell proliferation and glucose-dependent insulin secretion from pancreas: furthermore, they exert different multiorgan effects. In particular GLP-1 acts on the stomach slowing gastric emptying and, indirectly, enhances glucose uptake from the muscle and adipose tissue. Because native incretins have a very short half-life, degradation resistant GLP-1R agonist and inhibitors of DDP-4 have been developed as antidiabetic medications 68.

DPP-4 inhibitors are neutral on body weight and on cardiovascular system according to major cardiovascular events rates even if the rate of hospitalization due to heart failure was increased for saxagliptin 84-86.

In animal models of NASH, DPP-4 inhibitors showed promising results preventing the development of steatohepatitis by affecting both inflammatory and fibrosis pathways; this effect seems to be due to different mechanisms.
including reduced expression of proinflammatory mediators such as TNFα, IL-6 and p-NFκB, attenuation of endoplasmic reticulum stress, reduction in hepatocyte apoptosis, decreased accumulation of fibronectin and alpha-smooth muscle actin (α-SMA) and reduction in plasminogen activator inhibitor 1 (PAI-1) expression 87,88. Nevertheless in humans, the efficacy of DPP-4 inhibitors on NAFLD was more difficult to prove and results yielded by now are conflicting.

Although a small observational pilot study on 15 diabetic patients with biopsy-proven NAFLD demonstrated biochemical and histological improvement after 1 year course of sitagliptin 89, further RCTs failed to demonstrate any beneficial effect of sitagliptin on NAFLD in diabetic patients. Limitations of these studies are the small number of patients involved, the relatively short duration of intervention (6 months) and the lack of evaluated histological outcomes 90,91.

Furthermore, in a 24-week RCT involving 52 overweight patients with T2DM, sitagliptin was compared with liraglutide and placebo according to the study endpoints of evaluation of hepatic fat content and hepatic fibrosis: no difference in hepatic fat content measured with H-MRS and surrogate indicators of liver fibrosis was shown between the 3 groups 75.

On the other side, a Japanese single-centre open-label trial compared sitagliptin at suboptimal dosage with glimepiride in a cohort of 20 diabetic patients with ultrasound evidence of fatty liver: after 24 weeks of treatment, in the sitagliptin group but not in the glimepiride group there was a significant reduction in intrahepatic lipid content and total body fat mass on H-MRS and DEXA despite similar decrease in HbA1c 92.
There are even less studies supporting the effect of other types of DPP-4 in NAFLD: in a double blind RCT involving 44 patients with well controlled T2DM vildagliptin was proved to reduce liver trygliceride content assessed by MRI along with a significant improvement in serum transaminase and fasting plasma glucose after a 6 month course \cite{93}; for alogliptin evidence of any effects in NAFLD are poor \cite{94}.

Further evidence supporting the efficacy of this class of drugs are awaited from two similar ongoing phase III clinical trials: NCT02147925 aimed to compare the change of intrahepatic lipids (IHL) in type 2 diabetic patients with non-alcoholic fatty-liver disease after a 26-week treatment of liraglutide, sitagliptin or insulin glargine per day combined with metformin whereas NCT02365233 assesses similar outcome comparing pioglitazone to DPP-4 inhibitors (sitagliptin or saxagliptin) to insulin glargine.

Sodium-glucose co-transporters (SGLT2) inhibitors

This class of antidiabetic drugs lowers plasma glucose by inhibiting glucose reabsorption in the renal proximal tubule. Their mechanism of action is independent from insulin secretion or action and is not affected by pancreatic β cell function, making them a suitable potential therapy at any stage of T2DM progression \cite{95}.

Canaglifozin, dapaglifozin and empaglifozin are the active substances approved in Europe and United States as second line treatment in association with
metformin as well as third line treatment. Other molecules, namely ipraglifozin, luseoglifozin and tofoglifozin, are approved only in Japan, while molecules such as ertuglifozin and sotaglifozin, are in clinical development.

Apart from their well-recognized efficacy in improving glycaemic profile in diabetic patients, SGLT2 inhibitors have shown numerous beneficial effects separate from glycaemic control which makes them a potentially useful therapy in the contest of NAFLD and its complications. In particular, they can induce weight loss by decreasing body fat mass and exert a cardiorenal protection by lowering blood pressure, arterial stiffness and renal hyperfiltration. Notably, long terms effects of empaglifozin on renal and cardiovascular outcomes were assessed with the EMPA REG OUTCOME trial which demonstrated a reduction in the risk of of death from cardiovascular disease (HR 0.62, 95% CI, 0.49-0.77), hospitalization for heart failure (HR 0.65, 95% CI, 0.50-0.85) and death from any cause (HR 0.68, 95% CI, 0.57-0.82) as well as slower progression of kidney disease (HR 0.61, 95% CI, 0.53 to 0.70) and lower rates of clinically relevant renal events than placebo (HR 0.54, 95% CI, 0.40-0.75).

Based on the above evidence, SGLT2 inhibitors have been tested in numerous NAFLD animal models, showing promising results. In obese mice with diet induced NAFLD remoglifozin reduced plasma aminotransferase levels, liver weight and hepatic trygliceride content. Empaglifozin was studied alone and in combination with linagliptin in a novel mouse model of NASH and diabetes showing antisteatotic and antiinflammatory effects in both cases while an antifibrotic effect was only demonstrated in combination with linagliptin.
Benefits on liver steatosis in animal models exists also for others SGLT2 inhibitors such as luseoglifozin and ipraglifozin101,102.

Human studies assessing the efficacy of SGLT2 inhibitors for NAFLD are still scarce: there is some evidence that canaglifozin and dapaglifozin may lower serum aminotransferase in diabetic patients103,104 but data on histological outcomes are lacking. Their side effects include increased risk of genital mycotic infections and urinary tract infections, diabetic ketoacidosis and bone fractures96. Due to their mechanism of action, which is independent from β cell function, SGLT2 inhibitors do not cause hypoglycemia. In February 2017 EMA issued a warning concerning increased risk of lower limb amputation (especially toes) related to SGLT2 inhibitor therapy although this risk was demonstrated to be significant only for canaglifozin105.

\textbf{α glucosidase inhibitors}

Acarbose and miglitol inhibit the intestinal enzyme α glucosidase which is responsible for the breakdown of complex carbohydrates into small monosaccharides and therefore slow intestinal carbohydrate digestion and absorption. Due to their only modest antidiabetic efficacy, the frequency of administration and their side effects, they are not often used into clinical practice33.
Despite some scientific interest for the use of acarbose for the treatment of NAFLD \(^{106}\) there is scarce data on the effect of this class of drugs in NAFLD animal models \(^{107,108}\) and none in humans. Acarbose was occasionally associated with a mild symptomless increase in aminotransferase levels and even one case of acute hepatotoxicity \(^{109}\) which was however recognized as idiosyncratic reaction. Despite this, acarbose has been proved to be safe in patients with cirrhosis \(^{110}\) and to reduce cardiovascular events and hypertension among patients with impaired glucose tolerance \(^{111}\).

Intensive insulin therapy

Although insulin resistance is one of the leading force for the development of NAFLD in most cases \(^{40}\) insulin therapy has not been proved to resolve or improve NAFLD. On the contrary, insulin therapy has been associated with weight gain and increased risk of cardiovascular events \(^{112,113}\) which are common risk factors in patients diagnosed with NAFLD.

Conclusions

Despite the huge progress in the understanding of the natural history and the pathophysiology of NAFLD \(^{114}\), effective therapeutic options are still lacking. Among the antidiabetic drugs, the evidence of potential efficacy is stronger for
pioglitazone; there are however important potential side effects, notably peripheral oedema resulting in weight gain, that need to be considered. Liraglutide is also promising, however further data are required. Other antidiabetics drugs such as DPP-4 inhibitors and SGLT2 inhibitors could be a promising option and further studies with histological outcomes are awaited.

According to the available evidence, it would be clinically useful to define a stepwise approach to antidiabetic treatment in patients with NAFLD. Metformin, as suggested from international guidelines, should be the first-line treatment: patients with NAFLD can benefit from its positive impact on body weight (trend to weight loss) and from a decrease in the risk of HCC which seems to occur even in absence of cirrhosis in those patients. Second line treatment should be chosen according to the nutritional status of the patient (ie BMI): in obese patients (BMI>30-35 kg/m²) GLP-1 agonists could be an helpful option considering their positive effect on body weight and potential beneficial effect on histology, whereas in normal weight or overweight patients (BMI<30 kg/m²) use of pioglitazone can be justified even if it associated with weight increase.

In the next few years the scenario in the treatment of NAFLD is expected to change as big phase IIb and III trials with histological outcomes are running (ClinicalTrials.gov Identifier: NCT02970942 and NCT02704403); semaglutide and elafibranor may be effective not only on steatosis and inflammation but also on
fibrosis and thus be able to modify the strongest predictor of disease-specific mortality in patients with NAFLD.

2 European association for the study of the liver, European association for the study of diabetes, and European association for the study of obesity, 2016 EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol 64: 1388-1402.

3 Chalasani N, Younossi Z, Lavine JE et al., 2012 The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Gastroenterological Association, American Association for the Study of Liver Diseases, and American College of Gastroenterology. Gastroenterology 142: 1592-1609.

5 Singh S, Allen AM, Wang Z et al., 2015 Fibrosis progression in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: a systematic review and meta-analysis

8 Ekstedt M, Hagstrom H, Nasr P et al., 2015 Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology 61: 1547-1554.

Bellentani S, 2017 The epidemiology of non-alcoholic fatty liver disease. Liver Int 37 Suppl 1: 81-84.

Alberti KG, Eckel RH, Grundy SM et al., 2009 Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120: 1640-1645.

Tsochatzis E, Papatheodoridis GV, Manesis EK et al., 2008 Metabolic syndrome is associated with severe fibrosis in chronic viral hepatitis and non-alcoholic steatohepatitis. Aliment Pharmacol Ther 27: 80-89.

Yki-Järvinen H, 2014 Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. The Lancet Diabetes & Endocrinology 2: 901-910.

Promrat K, Kleiner DE, Niemeier HM et al., 2010 Randomized controlled trial testing the effects of weight loss on nonalcoholic steatohepatitis. Hepatology 51: 121-129.

Loomba R, Lutchman G, Kleiner DE et al., 2009 Clinical trial: pilot study of metformin for the treatment of non-

40 Bugianesi E, Gentilcore E, Manini R et al., 2005 A randomized controlled trial of metformin versus vitamin E or prescriptive diet in nonalcoholic fatty liver disease. Am J Gastroenterol 100: 1082-1090.

42 Lavine JE, Schwimmer JB, Van Natta ML et al., 2011 Effect of Vitamin E or Metformin for Treatment of Nonalcoholic Fatty Liver Disease in Children and Adolescents The TONIC Randomized Controlled Trial. JAMA 305: 1659-1668.

44 Bhat A, Sebastiani G, and Bhat M, 2015 Systematic review: Preventive and therapeutic applications of

46 Targher G, Bertolini L, Padovani R et al., 2007 Prevalence of Nonalcoholic Fatty Liver Disease and Its Association With Cardiovascular Disease Among Type 2 Diabetic Patients. Diabetes Care 30: 1212-1218.

Belfort R, Harrison SA, Brown K et al., 2006 A placebo-controlled trial of pioglitazone in subjects with

57 Aithal GP, Thomas JA, Kaye PV et al., 2008 Randomized, placebo-controlled trial of pioglitazone in nondiabetic subjects with nonalcoholic steatohepatitis. Gastroenterology 135: 1176-1184.

Jain MR, Giri SR, Bhoi B et al., 75th Scientific Session - ADA, June 5-9, 2015 • Boston, MA, USA Saroglitazar Shows Therapeutic Benefits in Mouse Model of Non-alcoholic Fatty Liver Disease (NAFLD) and Non-alcoholic Steatohepatitis (NASH). Poster.

Pai V, Paneerselvam A, Mukhopadhyay S et al., 2014 A Multicenter, Prospective, Randomized, Double-blind Study to Evaluate the Safety and Efficacy of Saroglitazar 2 and 4 mg Compared to Pioglitazone 45 mg in Diabetic Dyslipidemia (PRESS V). J Diabetes Sci Technol 8: 132-141.

Ratziu V, Harrison SA, Francque S et al., 2016 Elafibranor, an Agonist of the Peroxisome Proliferator-Activated Receptor-alpha and -delta, Induces Resolution of Nonalcoholic Steatohepatitis Without
Fibrosis Worsening. Gastroenterology 150: 1147-1159 e1145.

Armstrong MJ, Houlihan DD, Rowe IA et al., 2013 Safety and efficacy of liraglutide in patients with type 2

74 Tang A, Rabasa-Lhoret R, Castel H et al., 2015 Effects of Insulin Glargine and Liraglutide Therapy on Liver Fat as Measured by Magnetic Resonance in Patients With Type 2 Diabetes: A Randomized Trial. Diabetes Care 38: 1339-1346.

75 Smits MM, Tonneijck L, Muskiet MH et al., 2016 Twelve week liraglutide or sitagliptin does not affect hepatic fat in type 2 diabetes: a randomised placebo-controlled trial. Diabetologia 59: 2588-2593.

Armstrong MJ, Hull D, Guo K et al., 2016 Glucagon-like peptide 1 decreases lipotoxicity in non-alcoholic steatohepatitis. J Hepatol 64: 399-408.

Gluud LL, Knop FK, and Vilsboll T, 2014 Effects of lixisenatide on elevated liver transaminases: systematic review with individual patient data meta-analysis of
randomised controlled trials on patients with type 2 diabetes. BMJ Open 4: e005325.

Shirakawa J, Fujii K, Ohnuma K et al., 2011 Diet-Induced Adipose Tissue Inflammation and Liver Steatosis Are Prevented by DPP-4 Inhibition in Diabetic Mice. Diabetes Metab Syndr 60: 1246-1257.

Trujillo JM and Nuffer WA, 2017 Impact of Sodium-Glucose Cotransporter 2 Inhibitors on Nonglycemic Outcomes in Patients with Type 2 Diabetes. Pharmacotherapy 37: 481-491.

Jojima T, Tomotsune T, Iijima T et al., 2016 Empagliflozin (an SGLT2 inhibitor), alone or in combination with linagliptin (a DPP-4 inhibitor), prevents steatohepatitis in a novel mouse model of non-alcoholic steatohepatitis and diabetes. Diabetol Metab Syndr 8: 45.

Qiang S, Nakatsu Y, Seno Y et al., 2015 Treatment with the SGLT2 inhibitor luseogliflozin improves nonalcoholic steatohepatitis in a rodent model with diabetes mellitus. Diabetol Metab Syndr 7: 104.
Komiya C, Tsuchiya K, Shiba K et al., 2016 Ipragliflozin Improves Hepatic Steatosis in Obese Mice and Liver Dysfunction in Type 2 Diabetic Patients Irrespective of Body Weight Reduction. PLoS One 11: e0151511.

Rudovich NN WM, Machann J, Pfeiffer AFH, 2010 Combination of acarbose and ezetimibe prevents non-alcoholic fatty liver disease: A break of intestinal insulin resistance? J Hepatol 52: 951-954.

Jil M, Rajnikant M, Richard D, and Iskandar I, 2017 The effects of dual-therapy intensification with insulin or dipeptidylpeptidase-4 inhibitor on cardiovascular events and all-cause mortality in patients with type 2

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Number of patients</th>
<th>T2DM</th>
<th>Intervention</th>
<th>Duration</th>
<th>Primary outcome</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belfort, 2006</td>
<td>55</td>
<td>IGT /diabetics</td>
<td>Pioglitazone 45 mg vs placebo (1:1)</td>
<td>6 months</td>
<td>Improvement in histology, aminotransferase and metabolic parameters</td>
<td>Improvement in all main histological features except fibrosis</td>
</tr>
<tr>
<td>Aithal, 2008</td>
<td>74</td>
<td>Non diabetics</td>
<td>Pioglitazone 30 mg vs placebo (1:1)</td>
<td>12 months</td>
<td>Reduction in hepatocyte injury and fibrosis score on histology</td>
<td>Significant reduction in steatosis, hepatocellular injury (ballooning, apoptosis, MD bodies), and fibrosis in pioglitazone group</td>
</tr>
<tr>
<td>Sanyal, 2010</td>
<td>247</td>
<td>Non diabetics</td>
<td>Pioglitazone 30 mg vs vitamin E 800 IU vs. placebo (1:1:1)</td>
<td>96 weeks</td>
<td>Improvement in hepatocellular ballooning, no increase in fibrosis score, decrease of NAS score</td>
<td>Met the primary endpoint only in the vitamin E group</td>
</tr>
<tr>
<td>Cusi, 2016</td>
<td>101</td>
<td>Prediabetics and diabetics</td>
<td>Pioglitazone 45 mg vs. placebo 1:1</td>
<td>18 months</td>
<td>Reduction of NAS score in 2 histological categories and no worsening of fibrosis</td>
<td>Met the primary endpoint with significant resolution of NASH</td>
</tr>
<tr>
<td>Idilman, 2008</td>
<td>74</td>
<td>Diabetics and non diabetics</td>
<td>Diet+exercise vs diet+exercise+insulinsensitizer (1:2)</td>
<td>48 weeks</td>
<td>Improvement in metabolic, biochemical and histological abnormalities</td>
<td>Met the primary endpoint</td>
</tr>
<tr>
<td>Ratziu, 2008</td>
<td>63</td>
<td>Diabetics and non diabetics</td>
<td>Rosiglitazone 8 mg vs placebo (1:1)</td>
<td>1 year</td>
<td>Reduction/disappearance of steatosis</td>
<td>Significant reduction/disappearance of steatosis in rosiglitazone group</td>
</tr>
<tr>
<td>Ratziu, 2010</td>
<td>44</td>
<td>Diabetics and non diabetics</td>
<td>Rosiglitazone 8 mg (extension phase of Ratziu 2008)</td>
<td>2 years</td>
<td>Reduction/disappearance of steatosis</td>
<td>Significant reduction/disappearance of steatosis only in patients treated with placebo in Ratziu 2008</td>
</tr>
<tr>
<td>Torres, 2011</td>
<td>137</td>
<td>Diabetics and non diabetics</td>
<td>Rosiglitazone 8 mg vs rosiglitazone 8 mg+ metformin 1 g vs rosiglitazone 8 mg+ losartan 50 mg (1:1:1)</td>
<td>48 weeks</td>
<td>Improvement in steatosis, hepatocellular inflammation and fibrosis</td>
<td>No significant difference between groups</td>
</tr>
<tr>
<td>Armstrong, 2016</td>
<td>52</td>
<td>Diabetics and non diabetics</td>
<td>Liraglutide 1.8 mg vs placebo (1:1)</td>
<td>48 weeks</td>
<td>Resolution of NASH without worsening of fibrosis</td>
<td>Primary outcome met in both diabetics and non diabetics</td>
</tr>
</tbody>
</table>

T2DM: type 2 diabetes mellitus, IGT: impaired glucose tolerance, MD: Mallory-Denk, NAS: non alcoholic fatty liver disease activity score