Retinal findings in a patient with mutations in ABCC6 and ABCA4

Omar A. Mahroo,1,3 Kaoru Fujinami,1,2,4 Anthony T. Moore,1,2,5 Andrew R. Webster1,2

1. UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL
2. Moorfields Eye Hospital, 162 City Road, London EC1V 2PD
3. Department of Ophthalmology, King’s College London, St Thomas’ Hospital Campus, Westminster Bridge Road, London SE1 7EH
4. National Institute of Sensory Organs, Tokyo, Japan
5. Department of Ophthalmology, UCSF School of Medicine, San Francisco CA 94143

Correspondence:

Andrew Webster at Address 1 above. Email: Andrew.webster@ucl.ac.uk

The authors declare they have no conflict of interest.

Funding Support:

NIHR Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology; Wellcome Trust (206619/Z/17/Z).

Running Title: Retinopathy in ABCC6 and ABCA4

Word count: 498 words
Sir,

In 2012, a case was reported in this journal, from our service,1 of a 24 year-old male of Somali ancestry (from consanguineous parents), referred initially due to reduced central vision. Fundus autofluorescence (FAF) showed angioid streaks but also a reduced signal in the central macula indicative of retinal pigment epithelium atrophy (Figure 1). Severe macular dysfunction and generalised retinal involvement were shown on electrophysiological testing. Skin biopsy was consistent with a mild form of pseudoxanthoma elasticum (PXE) and a homozygous mutation in exon 7 of the \textit{ABCC6} gene (c.708_709dupCT, p.(Trp237fsX21)) was subsequently found. The severity, early onset and distribution of maculopathy were atypical for PXE and considered worthy of report. The purpose of the present correspondence is to provide an update to the case’s interpretation.

Given the appearance of the maculopathy, the possibility of additional \textit{ABCA4}-retinopathy was considered, particularly homozygosity for c.5882G>A (p.G1961E),2,5 a common allele in the Somali population.5 Subsequently, PCR-amplification and Sanger sequencing of Exon 42 of \textit{ABCA4} confirmed homozygosity for this allele. Later, DNA was tested for mutations in a number of genes implicated in macular dystrophies (Stargardt/Macular dystrophy SmartPanel v5; Molecular Vision Laboratory, Hillsboro, Oregon), and the findings were confirmed, with no additional pathogenic mutations identified. Thus, this patient has bi-allelic variants in both \textit{ABCC6} and \textit{ABCA4}, and the phenotype includes features of both, with the maculopathy more likely to be \textit{ABCA4}-related. Figure 1 depicts FAF imaging when the patient was 31 years old, and also ultra-widefield FAF imaging 9 years later. There has been mild enlargement of the areas of hypo-autofluorescence (both in the central macula and the peripapillary angioid streaks), although the peripheral retina appears unaffected.

Patients homozygous for this \textit{ABCA4} mutation have been reported previously to have limited retinal disease with no peripheral involvement.2-4 Our patient’s ultra-widefield imaging appears to fit with this phenotype, although electrophysiological testing did show evidence of generalised retinal
dysfunction as detailed in the first report,¹ and the PXE might be contributory. Generalised retinal
dysfunction in PXE has been previously reported.⁶

It is tempting to speculate that the two distinct molecular pathologies might interact. The c.5882G>A
(p.G1961E) ABCA4 allele is too prevalent in the general population (http://gnomad.broadinstitute.org/variant/1-94473807-C-T) to be a fully penetrant allele and so
other modifying factors are likely to be acting. It is possible that many from Somalia with this ABCA4
genotype remain normally sighted, but that, in this case, the additional compromise of RPE and/or
photoreceptor function due to mineralisation of Bruch’s from PXE, might contribute to early visual
dysfunction.

The case is of particular interest: i) it reminds clinicians of the possible co-occurrence of two
unlinked recessive disorders in consanguineous families; ii) It demonstrates that in some cases, a
person’s ethnic background can efficiently direct molecular testing (in this case a specific DNA base
substitution in a single gene was suggested and confirmed using a single-amplimer PCR reaction in
the laboratory); iii) there remains no evidence that PXE can produce a maculopathy that resembles
that seen in Stargardt disease.

References

 Angioid streaks with severe macular dysfunction and generalised retinal involvement due to
 a homozygous duplication in the ABCC6 gene. Eye (Lond). 2012 May;26(5):753-5. doi:

 mutant allele in the Stargardt disease gene ABCA4 causes bull's eye maculopathy. Exp Eye

Figure Legends.

Figure 1. Fundus autofluorescence findings nine years apart. A-D, short wavelength (488 nm) autofluorescence imaging (Spectralis, Heidelberg, Germany) obtained age 31. Angioid streaks are visible as well as central macular hypo-autofluorescence (with a surrounding hyperautofluorescent ring and some discrete hyperautofluorescent lesions in close proximity to the ring). E, F, ultra-widefield autofluorescence (532 nm) imaging (Optos plc, Dunfermline, UK) acquired 9 years later.