UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Differential diagnosis of neurodegenerative diseases using structural MRI data

Koikkalainen, J; Rhodius-Meester, H; Tolonen, A; Barkhof, F; Tijms, B; Lemstra, AW; Tong, T; ... Lotjonen, J; + view all (2016) Differential diagnosis of neurodegenerative diseases using structural MRI data. NeuroImage: Clinical , 11 pp. 435-449. 10.1016/j.nicl.2016.02.019. Green open access

[thumbnail of Differential diagnosis of neurodegenerative diseases using structural MRI data.pdf]
Preview
Text
Differential diagnosis of neurodegenerative diseases using structural MRI data.pdf - Published Version

Download (2MB) | Preview

Abstract

Different neurodegenerative diseases can cause memory disorders and other cognitive impairments. The early detection and the stratification of patients according to the underlying disease are essential for an efficient approach to this healthcare challenge. This emphasizes the importance of differential diagnostics. Most studies compare patients and controls, or Alzheimer's disease with one other type of dementia. Such a bilateral comparison does not resemble clinical practice, where a clinician is faced with a number of different possible types of dementia. Here we studied which features in structural magnetic resonance imaging (MRI) scans could best distinguish four types of dementia, Alzheimer's disease, frontotemporal dementia, vascular dementia, and dementia with Lewy bodies, and control subjects. We extracted an extensive set of features quantifying volumetric and morphometric characteristics from T1 images, and vascular characteristics from FLAIR images. Classification was performed using a multi-class classifier based on Disease State Index methodology. The classifier provided continuous probability indices for each disease to support clinical decision making. A dataset of 504 individuals was used for evaluation. The cross-validated classification accuracy was 70.6% and balanced accuracy was 69.1% for the five disease groups using only automatically determined MRI features. Vascular dementia patients could be detected with high sensitivity (96%) using features from FLAIR images. Controls (sensitivity 82%) and Alzheimer's disease patients (sensitivity 74%) could be accurately classified using T1-based features, whereas the most difficult group was the dementia with Lewy bodies (sensitivity 32%). These results were notable better than the classification accuracies obtained with visual MRI ratings (accuracy 44.6%, balanced accuracy 51.6%). Different quantification methods provided complementary information, and consequently, the best results were obtained by utilizing several quantification methods. The results prove that automatic quantification methods and computerized decision support methods are feasible for clinical practice and provide comprehensive information that may help clinicians in the diagnosis making.

Type: Article
Title: Differential diagnosis of neurodegenerative diseases using structural MRI data
Open access status: An open access version is available from UCL Discovery
DOI: 10.1016/j.nicl.2016.02.019
Publisher version: https://doi.org/10.1016/j.nicl.2016.02.019
Language: English
Additional information: Copyright © 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Keywords: MRI, Neurodegenerative diseases, Classification, Volumetry, TBM, VBM, Alzheimer's disease, Frontotemporal lobar degeneration, Vascular dementia, Dementia with Lewy bodies
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Brain Repair and Rehabilitation
URI: https://discovery.ucl.ac.uk/id/eprint/10048984
Downloads since deposit
84Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item