UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Quantum plasmonic nanoantennas

Fitzgerald, JM; Azadi, S; Giannini, V; (2017) Quantum plasmonic nanoantennas. Physical Review B , 95 , Article 235414. 10.1103/PhysRevB.95.235414. Green open access

[img]
Preview
Text
PhysRevB.95.235414.pdf - ["content_typename_Published version" not defined]

Download (3MB) | Preview

Abstract

We study plasmonic excitations in the limit of few electrons, in one-atom-thick sodium chains. We compare the excitations to classical localized plasmon modes, and we find for the longitudinal mode a quantum-classical transition around 10 atoms. The transverse mode appears at much higher energies than predicted classically for all chain lengths. The electric field enhancement is also considered, which is made possible by considering the effects of electron-phonon coupling on the broadening of the electronic spectra. Large field enhancements are possible on the molecular level allowing us to consider the validity of using molecules as the ultimate small size limit of plasmonic antennas. Additionally, we consider the case of a dimer system of two sodium chains, where the gap can be considered as a picocavity, and we analyze the charge-transfer states and their dependence on the gap size as well as chain size. Our results and methods are useful for understanding and developing ultrasmall, tunable, and novel plasmonic devices that utilize quantum effects that could have applications in quantum optics, quantum metamaterials, cavity-quantum electrodynamics, and controlling chemical reactions, as well as deepening our understanding of localized plasmons in low-dimensional molecular systems.

Type: Article
Title: Quantum plasmonic nanoantennas
Open access status: An open access version is available from UCL Discovery
DOI: 10.1103/PhysRevB.95.235414
Publisher version: https://doi.org/10.1103/PhysRevB.95.235414
Language: English
Additional information: This version is the version of record. For information on re-use, please refer to the publisher’s terms and conditions.
Keywords: Science & Technology, Physical Sciences, Physics, Condensed Matter, Physics, ENHANCED RAMAN-SCATTERING, OPTICAL-ABSORPTION, FIELD ENHANCEMENT, METALLIC NANOPARTICLES, RESPONSE THEORY, NANOSTRUCTURES, EXCITATIONS, RESONANCES, SYSTEMS, DIMERS
URI: http://discovery.ucl.ac.uk/id/eprint/10048525
Downloads since deposit
6Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item