Can renal and bladder ultrasound replace CT urogram in patients investigated for microscopic hematuria?

Wei Shen Tan, Rachael Sarpong, Pramit Khetrapal, Simon Rodney, Hugh Mostafid, Joanne Cresswell, James Hicks, Abhay Rane, Alastair Henderson, Dawn Watson, Jacob Cherian, Norman Williams, Chris Brew-Graves, Andrew Feber, John D. Kelly

PII: S0022-5347(18)43045-5
DOI: 10.1016/j.juro.2018.04.065
Reference: JURO 15571

To appear in: The Journal of Urology

DISCLAIMER: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our subscribers we are providing this early version of the article. The paper will be copy edited and typeset, and proof will be reviewed before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to The Journal pertain.

Embargo Policy

All article content is under embargo until uncorrected proof of the article becomes available online.

We will provide journalists and editors with full-text copies of the articles in question prior to the embargo date so that stories can be adequately researched and written. The standard embargo time is 12:01 AM ET on that date. Questions regarding embargo should be directed to jumedia@elsevier.com.
Can renal and bladder ultrasound replace CT urogram in patients investigated for microscopic hematuria?

Running head: Can ultrasound replace CT for microscopic hematuria

Wei Shen Tan¹,², Rachael Sarpong³, Pramit Khetrapal¹,², Simon Rodney¹,⁴, Hugh Mostafid⁵, Joanne Cresswell⁶, James Hicks⁷, Abhay Rane⁸, Alastair Henderson⁹, Dawn Watson⁶, Jacob Cherian¹⁰, Norman Williams³, Chris Brew-Graves³, Andrew Feber⁴, John D Kelly¹,² on behalf of DETECT I trial collaborators

¹ Division of Surgery and Interventional Science, University College London, London, UK
² Department of Urology, University College London Hospital, London, UK
³ Surgical & Interventional Trials Unit, University College London, London, UK
⁴ UCL Cancer Institute, London, UK
⁵ Department of Urology, Royal Surrey County Hospital, Egerton Road, Guildford, Surrey GU2 7XX, UK
⁶ Department of Urology, James Cook University Hospital, Marton Road, Middlesbrough TS4 3BW, UK
⁷ Department of Urology, Western Sussex Hospitals NHS Foundation Trust, Worthing Hospital, Lyndhurst Road, Worthing, West Sussex, BN11 2DH, UK
⁸ Department of Urology, East Surrey Hospital, Canada Avenue, Redhill RH1 5RH, UK
⁹ Department of Urology, Maidstone Hospital, Hermitage Lane, Maidstone ME16 9QQ, UK
¹⁰ Department of Urology, The Pennine Acute Hospitals NHS Trust, North Manchester General Hospital, Delaunays Road, Crumpsall M8 5RB, UK

* denotes joint senior author

Corresponding author:
Wei Shen Tan
Division of Surgery & Interventional Science,
University College London,
3rd floor Charles Bell House
43-45 Foley Street
London W1W 7TS
Email: wei.tan@ucl.ac.uk

Keywords: Bladder cancer, hematuria, imaging, kidney cancer, ultrasound

Word count: 2,494
Abstract

Purpose
Computed tomography urogram (CTU) is recommended when investigating patients with hematuria. We determine the incidence of urinary tract cancer and compare the diagnostic accuracy of CTU and renal and bladder ultrasound (RBUS) at identifying urinary tract cancer.

Methods
The DETECT I study (clinicaltrials.gov NCT02676180) is a prospective observational study recruiting patients ≥18 years following a presentation of macroscopic or microscopic haematuria at 40 hospitals. All patients had cystoscopy and upper tract imaging (CTU, RBUS or both).

Results
3,556 patients with a median age of 68 years were recruited, of which 2166 had RBUS and 1692 had CTU in addition to cystoscopy. The incidence of bladder, renal and upper tract urothelial cancer (UTUC) were 11.0%, 1.4% and 0.8% respectively in macroscopic hematuria patients. Patients with microscopic hematuria had a 2.7%, 0.4% and 0% incidence of bladder, renal and UTUC respectively. The sensitivity and negative predictive value (NPV) of RBUS for the detection of renal cancer was 85.7% and 99.9% respectively but 14.3% and 99.7% for the detection of UTUC. RBUS was poor at identifying renal calculi. Sensitivity of RBUS was lower than CTU for the detection of bladder cancer (both <85%). Cystoscopy has a specificity and PPV of 98.3% and 83.9% respectively.

Conclusion
CTU can be safely replaced with RBUS in patients with microscopic hematuria. The incidence of UTUC is 0.8% in patients with macroscopic hematuria and CTU is recommended. Patients with suspected renal calculi will require non-contrast renal tract CT. Imaging cannot replace cystoscopy to diagnose bladder cancer.
Introduction

Hematuria is a cardinal clinical symptom with an associated risk for urinary tract cancer. The risk of malignancy with patients presenting with macroscopic hematuria is 20.4% and by comparison, the risk of malignancy is 5.2% for patients presenting with microscopic hematuria.\(^1\) Bladder cancer is the most common cancer detected in patients with microscopic hematuria accounting for 4.8% of cases investigated whereas renal cancers and UTUC are less common with an incidence of 0.3% and 0.1% respectively.\(^1\)

Recommendations on who should be investigated for microscopic hematuria differ across guideline bodies.\(^2\) While there is a resounding consensus that cystoscopy remains the investigation of choice to visualise the bladder, there is a lack of consensus for the optimal upper tract imaging. RBUS and CTU are the most commonly used imaging modalities. The AUA recommends using CTU for both macroscopic and microscopic hematuria while the UK NICE and the American College of Physicians do not specify a recommended imaging modality.\(^3\)-\(^5\) Similarly, the role of upper tract imaging in newly diagnosed bladder cancer patients also differ between guidelines.\(^6\)

CTU has the highest diagnostic performance to identifying upper tract disease. Meta-analysis suggest CTU achieves a sensitivity of 93% and specificity of 99% for UTUC.\(^7\) However, the diagnostic performance of CTU should be balanced against the risk attributed by intravenous contrast. Intravenous contrast administration is associated with a 3% risk of contrast induced nephropathy in high risk patients (eGFR: 30-59 ml/min/1.73m\(^2\)) and prophylaxis hydration has been shown to be ineffective.\(^8,\)\(^9\) In addition, exposure to ionising radiation itself is carcinogenic and although rare, there is a risk of anaphylactic reaction.\(^10,\)\(^11\)

The DETECT I study (ClinicalTrials.gov: NCT02676180) represents a prospective multi-centre observational study prospectively recruiting patients referred from primary care physicians to urology departments for investigation following a presentation of hematuria.\(^12\) We report the incidence of upper tract disease and bladder cancer in patients with macroscopic and microscopic hematuria as well as the diagnostic ability of CTU and RBUS to identify upper tract cancer to determine if
CTU can be safely replaced with RBUS in patients presenting with microscopic hematuria.
Patient and Methods

Between March 2016 and June 2017, DETECT I recruited patients from 40 hospitals throughout the UK with one stop hematuria investigation clinics. All patients were referred to secondary care following a presentation of hematuria. Macroscopic hematuria was defined as a visible hematuria reported by patient or primary care physician. Microscopic hematuria was defined as \(\geq 1+ \) on urine dipstick on \(\geq 2 \) occasions.\(^\text{13}\) Study inclusion criteria was male or female patients \(\geq 18 \) years old and willing to provide consent. All patients underwent cystoscopy and upper tract imaging within 12 weeks from study registration. Determining the diagnostic accuracy of RBUS and CTU represents a post hoc analysis.

The study protocol was approved by Health Research Authority: North West Liverpool Central Research Ethics Committee on March 2016 (IRAS project ID: 179245, REC reference: 16/NW/0150). Full study protocol has been previously described.\(^\text{12}\)

A medical history and physical examination were performed on all patients. Patient demographics including age, gender, occupation, ethnicity and smoking history were collected. Patients with a suspicion of bladder cancer had a TURBT or bladder biopsy under general anaesthesia. The reference standard for bladder cancer was histopathological examination and classified according to TNM WHO tumour classification.\(^\text{14}\) Risk stratification of bladder cancer was performed based on clinical-pathological features according to the EAU risk classification.\(^\text{15}\) Upper tract imaging comprised of one of more radiological imaging modality: CTU, RBUS or both.

DETECT I is a pragmatic observational design study and choice of upper tract imaging and the decision to perform more than one imaging modality was according to local hospital guidelines. Renal cancer and UTUC were confirmed by histopathological examination where nephrectomy or renal biopsy were performed with the exception of a small number of renal cancers which had active surveillance without biopsy. Renal calculi diagnosed on CTU was used as the reference standard.

Continuous data such as mean, median, interquartile range and 95% confidence interval were reported using descriptive statistics. Categorical variables were compared using Chi-square test. T-test was used to compare continuous variables.
Normal distribution was assumed. Sensitivity, specificity, PPV and NPV were calculated for correct identification of bladder cancer or upper tract cancers. SPSS v22 (IBM Corp, Armonk, New York, USA) was used to perform all statistical analysis. Statistical significance was set at p value <0.05. This report adhered to the STROBE guidelines. This study was registered with ClinicalTrials.gov, number NCT02676180.
Results

Patient demographics

Flow diagram of patients recruited into the study is shown in Figure 1. Patient demographics were shown in Table 1. 3,556 patients with a median age of 68 years (IQR: 57, 76) were recruited. The overall incidence of urinary tract cancer was 10.0% (bladder cancer 8.1%, renal cancer 1.0%, UTUC 0.5%). RBUS was performed on 2,166 patients (60.9%) and CTU on 1,693 patients (47.6%), 470 patients (13.2%) had both URT and CTU.

Incidence of urinary tract disease

Table 1 shows the incidence of urinary tract cancer and renal stones stratified according presentation of microscopic and macroscopic hematuria. Overall, 2.7% (n=33) of patients investigated for microscopic hematuria had a diagnosis of bladder cancer, 0.4% (n=5) of patients had a renal cancer and 4.4% (n=55) of patients had renal calculi. No patients with NVH had a diagnosis of UTUC.

By comparison, patients with macroscopic hematuria had a higher incidence of urinary tract disease compared to microscopic hematuria. 11.0% (n=255) patients investigated for macroscopic hematuria had bladder cancer, 1.4% (n=32) had renal cancer and 0.8% (n=18) had a diagnosis of UTUC. A diagnosis of renal calculi was confirmed in 9.3% (n=215) of patients.

Diagnostic performance of RBUS and CTU for the detection of upper tract disease.

Of the 2166 patient who had RBUS, the incidence of RCC and UTUC were 0.6% (n=14) and 0.3% (n=7) respectively. CTU was performed in 1692 patients with a RCC and UTUC incidence of 2.1 (n=35) and 1.1% (n=18) respectively. Table 2 shows the diagnostic ability of RBUS and CTU at detecting upper tract disease.

RBUS identified 12 of 14 renal cancers (85.7%) and misclassified one renal cancer as a UTUC increasing the sensitivity of detecting cancer to 92.9% with a NPV of 99.9%. The sensitivity of RBUS for the detection of UTUC was poor (14.3%). Three patients were misclassified as renal cancer and one UTUC diagnosed on RBUS was
renal cancer on histology suggesting a sensitivity of 62.5% to detect cancer with a NPV of 99.9%.

Given that a suspicious CTU for renal cancer or UTUC was a trigger for nephrectomy or renal biopsy, the sensitivity and NPV for CTU cannot be determined. The PPV of CTU to diagnose renal cancer was 94.6% where two lesions were benign. CTU had a PPV of 72.0% for the diagnosis of UTUC with 19 suspected UTUC cases were correctly identified. Three suspected UTUC were histologically confirmed renal cancer suggesting a PPV of cancer of 88.0%. Ureteroscopy with/without biopsy did not confirm cancer in 3 cases. Diagnostic performance of RBUS at identifying renal calculi was poor using CT as a reference standard with a sensitivity, specificity, PPV and NPV of 34.0%, 97.9%, 65.4% and 92.7% respectively.

Diagnostic ability of RBUS, CTU and cystoscopy at identifying bladder cancer

Table 2 reports the diagnostic ability of RBUS, CTU and cystoscopy at detecting bladder cancer. The diagnostic accuracy for RBUS to identify bladder cancer was sensitivity: 50.7%, specificity 99.3%, PPV 84.3% and NPV 96.5%. CTU was better than RBUS at identifying bladder cancer. The sensitivity, specificity, PPV and NPV of CTU to identify bladder cancer was 80.8%, 97.0%, 78.9% and 97.3%. Excluding suboptimal scans, the diagnostic ability of RBUS and CTU to detect bladder cancer improved.

The sensitivity and NPV of cystoscopy cannot be determined as patients with a normal flexible cystoscopy were discharged without follow-up cystoscopy. Using histopathological confirmation of tumour as reference, the specificity of flexible cystoscopy was high at 98.3% with a PPV of 84.0%.
We report that the incidence of upper tract cancer in patients presenting with hematuria is low. Upper tract cancer was identified in 2.2% (n=50) of patients presenting with macroscopic hematuria (1.4% renal cancer, 0.8% UTUC) and 0.4% (n=5) of patients presenting with microscopic hematuria (0.4% renal cancer, 0% UTUC). RBUS can identify suspicious renal cancer and one cancer misclassified as UTUC with a sensitivity of 92.9%. However, RBUS only has a sensitivity of 62.5% to identify a suspected UTUC (including 3 cancers diagnosed as renal cancer and one UTUC which was renal cancer on histology) missing three of 8 UTUC. The fact that no UTUC was identified following a presentation of microscopic hematuria suggest that RBUS should be used to assess the upper urinary tract in patients presenting with microscopic hematuria.

The role of cystoscopy to diagnose bladder cancer remains the gold standard. Cystoscopy has a specificity of 98.3% with a PPV of 83.9%. Conventional imaging modalities cannot replace cystoscopy. Even after excluding suboptimum scans, the accuracy of RBUS to detect bladder cancer was poor, with a sensitivity of 63.6% and specificity of 99.3%. CTU had a higher diagnostic accuracy to identify bladder cancer but not sufficient to replace cystoscopy (sensitivity 83.6%, specificity 97.0%).

It is estimated that the incidence of microscopic hematuria is as high as 2.5% of the population and rises to as high as 18% in male patients ≥70 years. However, majority of these cases do not have a sinister identifiable cause for microscopic hematuria. CTU has been shown to be superior at identifying UTUC compared to RBUS. RBUS may miss small ureteric tumours, which are too small to cause luminal occlusion. This in turn results in a false negative because no hydronephrosis is identified which would otherwise prompt further imaging. The operator dependent nature of RBUS may also miss small renal pelvis UTUC. While CTU is superior at identifying UTUC, the risk of UTUC in patients presenting with microscopic hematuria is rare suggesting that there is no benefit for CTU over RBUS.

RBUS has been shown to detect renal cancer with a high sensitivity although a small number of cases are false positive (n=14). These false positive cases would have a second scan typically a renal protocol CT which will better characterise the renal mass. Hence, the approach of perform cystoscopy with RBUS instead of CTU to
investigate the upper tracts of patients presenting with microscopic hematuria should be the preferred upper tract imaging of choice. We acknowledge that RBUS has a poor sensitivity at identifying renal calculi. Hence, we proposed that patients presenting with symptoms suggestive of renal colic such as flank pain would benefit from RBUS with non-contrast CTKUB or CTU. We acknowledge that replacing CTU with RBUS for patients with microscopic hematuria would potentially miss asymptomatic renal calculi with no hydronephrosis presenting with microscopic hematuria. We believe such patient would be uncommon and identifying such a patient will be at the expense of subjecting a high number of patients to CTU which would yield negative results.

In an ideal world, all patients should be investigated with the best diagnostic test available. However, risk of adverse events, low incidence of disease in the specific patient cohort as well as the high cost of diagnostic test suggest that this may not be warranted. In the case of microscopic hematuria, where the disease specific incidence of UTUC is low (0%) and below the 3% threshold for diagnostic investigation used by NICE and the 1% suggested by the AUA. Additionally, the risk of adverse reaction to iodinated contrast while low, can be life threatening. Ionising radiation from CTU is 4 mSv with is 200 times that of a standard chest X-ray. And the cumulative exposure to ionising radiation has been shown to account for 0.6-0.9% of cancer diagnosed.

Further, cost-effectiveness analysis recommends using RBUS instead of CTU for the evaluation of microscopic hematuria patients. A comparison of four diagnostic approaches comprising of CT alone, cystoscopy alone, CT with cystoscopy and RBUS with cystoscopy suggest that the RBUS with cystoscopy combination represents the most cost-effective combination at $53,810 per cancer detected. Replacing RBUS with CTU will cost $6,480,484 per cancer identified. It is estimated that using RBUS instead of CTU will result in cost savings of $390 million which is much needed in an era of escalating healthcare cost.

The role of cystoscopy to visualise the bladder remains the gold standard. Even after excluding suboptimal scans, a patient with a normal CTU or RBUS will still require cystoscopy due to a high risk of false negative. This is similar to the diagnostic ability of FDA approved urinary biomarkers for the detection of bladder cancer with a
reported sensitivity of 57-82% and specificity of 74-88%. While larger tumours
would be easily identifiable, smaller tumours might be missed. It is likely that an
optimised CTU, where the urinary bladder is well distended, and contrast has fully
opacified the bladder lumen, will improve the diagnostic accuracy. However, such
scans may be difficult to achieve in clinical practice.

While majority of bladder lesions are considered cancer until proven otherwise, we
report that a visual diagnosis of malignancy has a PPV of 83.9% following white light
cystoscopy. In the setting of surveillance cystoscopy, low grade bladder cancer was
identifiable from high grade cancers by urologists 99% of the time. Cystoscopy is
operator dependent and the specificity for a more experienced cystoscopist will be
higher. Hence, it is essential that suspicious bladder lesions be biopsied due to a
high likelihood of malignancy. Bladder biopsy can be performed at the point of initial
diagnosis with flexible cystoscopy and this can reduce the need for a general
anaesthetic.

There are several limitations to this study. While we did not identify any UTUC
presenting with microscopic hematuria, it is plausible that these patients might have
initially presented with microscopic hematuria if screening for microscopic hematuria
was performed although this is not recommended by any consensus. While
sonographers normally will visualise the renal tract with the bladder distended to
adequately visualise the bladder, this was not performed in all cases. Similarly,
assessment of the urinary bladder was limited in some CTU scans where contrast
did not opacify the bladder or where the was artefact due to metal work in the pelvis.
To account for these suboptimal scans, we exclude these scans to determine the
diagnostic accuracy of imaging to identify bladder cancer. Additionally, we cannot
determine the sensitivity of cystoscopy as we are unable to determine if tumours
were missed due as patients with a normal cystoscopy were discharged and did not
have a repeat test.
Conclusions

Our results suggest that CTU can safely be replaced with RBUS to image the upper tracts in conjunction with cystoscopy as part of investigations following a presentation of microscopic hematuria. The risk of UTUC in patients with microscopic hematuria is extremely low and RBUS can identify renal parenchymal cancers with a high sensitivity. Where renal calculi is suspected, a non-contrast CTKUB with RBUS or CTU is necessary. Cystoscopy remains the diagnostic test of choice to detect bladder cancer.
DETECT I collaborators
Participating centres and investigators (*principle investigators at each centre):

WS Tan, P Khetrapal, BW Lamb, A Sridhar, F Ocampo, H McBain, JD Kelly (UCLH),
K Baillie, K Middleton, D Watson* (James Cook University Hospital), H Knight, S
Maher, A Rane* (East Surrey Hospital), B Pathmanathan, A Harmathova, G
Hellawell* (London North West University Healthcare), S Pelluri, J Pati* (Homerton
Hospital), A Cossons, C Scott, S Madaan* (Darent Valley Hospital), S Bradfield, N
Wakeford, H Mostafid* (Royal Surrey County Hospital) A Dann, J Cook, M Cornwell,
R Mills* (Norfolk & Norwich University Hospital) S Thomas, S Reyner, G Vallejera, P
Adeniran, S Masood* (Medway Maritime Hospital), N Whotton, K Dent, S Pearson, J
Hatton, M Newton, E Hheeney, K Green, S Evans, M Rogers* (Northern Lincolnshire
& Goole NHS Foundation Trust), K Gupwell, S Whiteley, A Brown, J McGrath*
(Royal Devon and Exeter Hospital), N Lunt, P Hill, A Sinclair* (Macclesfield Hospital),
A Paredes-Guerra, B Holbrook, E Ong* (North Devon District Hospital), H Wardle, D
Wilson, A Bayles* (University Hospital of North Tees), R Fennelly, M Tribbeck, K
Ames, M Davies* (Salisbury District Hospital), J A Taylor, E Edmonds, J Moore*
(East Sussex Healthcare NHS Trust), S Mckinley, T Nolan, A Speed, A Tunnicliff, G
Fossey, A Williams, M George, I Hutchins, R Einosas, A Richards, A Henderson*
(Maidstone Hospital), B Appleby, L Kehoe, L Gladwell, S Drakeley, J A Davies, R
Krishnan* (Kent & Canterbury Hospital), H Roberts, C Main, S Jain* (St James’s
University Hospital), J Dumville, N Wilkinson, J Taylor, F Thomas* (Doncaster Royal
Infirmary), K Goulden, C Vinod, E Green* (Salford Royal Hospital), C Waymont, J
Rogers, A Grant, V Carter, H Heap, C Lomas, P Cooke* (New Cross Hospital), L
Scarratt, T Hodgkiss, D Johnstone, J Johnson, J Allsop, J Rothwell, K Connolly, J
Cherian* (The Pennine Acute Hospitals NHS Trust), S Ridgway, M Couling, H
Savill, J Mccormick, M Clark, G Collins* (Tameside General Hospital), K Jewers, S
Keith, G Bowen, J Hargreaves, K Riley, S Srirangam* (East Lancashire Hospitals
NHS Trust), A Rees, S Williams, S Dukes, A Goffe* (Dorset County Hospital), L
Dawson*, R Mistry, J Chadwick, S Cocks, R Hull, A Loftus (Royal Bolton Hospital), Y
Baird, S Moore, S Greenslade, J Margalef, I Chadbourn, M Harris, J Hicks* (Western
Sussex Hospitals NHS Foundation Trust), P Clitheroe, S Connolly, S Hodgkinson, H
Haydock, A Sinclair* (Stepping Hill Hospital), E Storr, L Cogley, S Natale* (Derriford
Hospital), W Lovegrove , K Slack, D Nash, K Smith* (King’s Mill Hospital), J Walsh, A
M Guerdette, M Hill, D Payne* (Kettering General Hospital), B Taylor, E Sinclair, M
Perry, M Debbarma* (Pinderfields Hospital), D Hewitt, R Sriram* (University Hospitals Coventry), A Power, J Cannon, L Devereaux, A Thompson* (Royal Albert Edward Infirmary), K Atkinson, L Royle, J Madine, K MacLean* (Royal Cornwall Hospital).

Funding
DETECT I was funded by the Medical Research Council (MRC). Additional funding was by the Urology Foundation and the UCLH Biomedical Research Centre. It was supported both in the delivery and development by the UCL Surgical Interventional Trials Unit (SITU). NHS associated cost supported all standard of care investigations and procedures.

Declaration of intent and financial disclosures
No direct or indirect commercial incentive associated with publishing this article.

The corresponding author certifies that, when applicable, a statement(s) has been included in the manuscript documenting institutional review board, ethics committee or ethical review board study approval; principles of Helsinki Declaration were followed in lieu of formal ethics committee approval; institutional animal care and use committee approval; all human subjects provided written informed consent with guarantees of confidentiality; IRB approved protocol number; animal approved project number.

Ethical approval of studies and informed consent
The study protocol was approved by Health Research Authority: North West Liverpool Central Research Ethics Committee on March 2016 (IRAS project ID: 179245, REC reference: 16/NW/0150).
References

Table 1: Patient demographics according to type of hematuria

<table>
<thead>
<tr>
<th></th>
<th>All patients (n=3556)</th>
<th>Macroscopic hematuria (n=2311)</th>
<th>Microscopic hematuria (n=1245)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (median, IQR)</td>
<td>67.7 (57, 76)</td>
<td>68.1 (56.4, 76.2)</td>
<td>67.0 (56.9, 75.0)</td>
<td>0.568</td>
</tr>
<tr>
<td>Gender, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>2112 (59.4)</td>
<td>1607 (69.5)</td>
<td>505 (40.6)</td>
<td><0.001</td>
</tr>
<tr>
<td>Female</td>
<td>1444 (40.6)</td>
<td>704 (30.5)</td>
<td>740 (59.4)</td>
<td></td>
</tr>
<tr>
<td>Ethnicity, n (%)</td>
<td></td>
<td></td>
<td></td>
<td>0.235</td>
</tr>
<tr>
<td>Afro-Caribbean</td>
<td>51 (1.4)</td>
<td>36 (1.6)</td>
<td>15 (1.2)</td>
<td></td>
</tr>
<tr>
<td>South Asian</td>
<td>86 (2.4)</td>
<td>57 (2.5)</td>
<td>29 (2.3)</td>
<td></td>
</tr>
<tr>
<td>East Asian</td>
<td>15 (0.4)</td>
<td>8 (0.3)</td>
<td>7 (0.6)</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>3080 (86.6)</td>
<td>2013 (87.1)</td>
<td>1067 (85.7)</td>
<td></td>
</tr>
<tr>
<td>Mix</td>
<td>31 (0.9)</td>
<td>20 (0.9)</td>
<td>11 (0.9)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>23 (0.6)</td>
<td>18 (0.8)</td>
<td>5 (0.4)</td>
<td></td>
</tr>
<tr>
<td>Not known</td>
<td>271 (7.6)</td>
<td>159 (6.9)</td>
<td>111 (8.9)</td>
<td></td>
</tr>
<tr>
<td>Smoking history, n (%)</td>
<td></td>
<td></td>
<td></td>
<td>0.739</td>
</tr>
<tr>
<td>Non-smoker</td>
<td>1528 (42.9)</td>
<td>991 (42.9)</td>
<td>537 (43.1)</td>
<td></td>
</tr>
<tr>
<td>Current/ ex-smoker</td>
<td>1896 (53.2)</td>
<td>1240 (53.7)</td>
<td>656 (52.7)</td>
<td></td>
</tr>
<tr>
<td>Not known</td>
<td>137 (3.8)</td>
<td>80 (3.4)</td>
<td>52 (4.2)</td>
<td></td>
</tr>
<tr>
<td>Any urinary tract cancer, n (%)</td>
<td>354 (10.0)</td>
<td>315 (13.6)</td>
<td>39 (3.1)</td>
<td><0.001</td>
</tr>
<tr>
<td>Bladder cancer, n (%)</td>
<td>288 (8.1)</td>
<td>255 (11.0)</td>
<td>33 (2.7)</td>
<td><0.001</td>
</tr>
<tr>
<td>Renal cancer, n (%)</td>
<td>37 (1.0)</td>
<td>32 (1.4)</td>
<td>5 (0.4)</td>
<td>0.006</td>
</tr>
<tr>
<td>UTUC, n (%)</td>
<td>18 (0.5)</td>
<td>18 (0.8)</td>
<td>0 (0)</td>
<td>0.002</td>
</tr>
<tr>
<td>Renal calculi, n (%)</td>
<td>270 (7.6)</td>
<td>215 (9.3)</td>
<td>55 (4.4)</td>
<td><0.001</td>
</tr>
</tbody>
</table>
Table 2: Comparison of RBUS, CTU and cystoscopy to diagnose bladder cancer, renal cancer and UTUC

<table>
<thead>
<tr>
<th>Diagnostic test</th>
<th>Reference standard</th>
<th>Diagnostic accuracy</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>sensitivity</td>
<td>specificity</td>
<td>PPV</td>
<td>NPV</td>
<td>Area under the curve</td>
</tr>
<tr>
<td>RBUS (n=2166)</td>
<td>Histopathological confirmation of UTUC</td>
<td>14.3 (0.9-49.4)</td>
<td>100 (99.8-100.0)</td>
<td>50.0 (3.8-96.2)</td>
<td>99.7 (99.4-99.9)</td>
<td>0.571</td>
</tr>
<tr>
<td>CTU (n=1692)</td>
<td>Histopathological confirmation of UTUC</td>
<td>99.6 (99.2-99.8)</td>
<td>72.0 (52.8-86.9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RBUS (n=2166)</td>
<td>Histopathological confirmation of renal cancer</td>
<td>85.7 (62.1-97.5)</td>
<td>99.2 (98.8-99.5)</td>
<td>41.4 (24.8-59.5)</td>
<td>99.9 (99.7-100.0)</td>
<td>0.925</td>
</tr>
<tr>
<td>CTU (n=1692)</td>
<td>Histopathological confirmation of renal cancer</td>
<td>99.9 (99.6-100.0)</td>
<td>94.6 (84.2-99.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RBUS (n=475)</td>
<td>CTU to diagnose renal calculi</td>
<td>34 (21.9-47.7)</td>
<td>97.9 (96.2-99.0)</td>
<td>65.4 (46.3-81.6)</td>
<td>92.7 (90.0-94.8)</td>
<td>0.659</td>
</tr>
<tr>
<td>RBUS (n=2166)</td>
<td>Histopathological confirmation of bladder cancer</td>
<td>50.7 (42.7-58.7)</td>
<td>99.3 (98.9-99.6)</td>
<td>84.3 (75.8-90.8)</td>
<td>96.5 (95.6-97.2)</td>
<td>0.750</td>
</tr>
<tr>
<td>Unoptimized RBUS</td>
<td></td>
<td>63.6 (54.7-71.9)</td>
<td>99.3 (98.9-99.6)</td>
<td>84.3 (75.8-90.8)</td>
<td>97.9 (97.2-98.4)</td>
<td>0.814</td>
</tr>
<tr>
<td>excluded (2090)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTU (1692)</td>
<td>Histopathological confirmation of bladder cancer</td>
<td>80.5 (74.8-85.4)</td>
<td>97.0 (96.1-97.8)</td>
<td>79.3 (73.6-84.4)</td>
<td>97.2 (96.3-98.0)</td>
<td>0.887</td>
</tr>
<tr>
<td>Unoptimized CTU</td>
<td></td>
<td>83.6 (78.1-88.3)</td>
<td>97.0 (96.1-97.8)</td>
<td>80.0 (74.2-85.0)</td>
<td>97.7 (96.8-98.4)</td>
<td>0.903</td>
</tr>
<tr>
<td>excluded (1615)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cystoscopy (n=3556)</td>
<td>Histopathological confirmation of bladder cancer</td>
<td>98.3 (97.9-98.7)</td>
<td>84.0 (79.7-87.5)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 1: Flow diagram of patients recruited into study

Total number of patients enrolled in study, n= 3699

Total number of patients withdrawn from study, n= 143
- Patient choice, n=29
- Did not have cystoscopy and/or imaging, n=114

Total number of patients remaining, n= 3556

CT urogram, n=1692
Renal bladder ultrasound, n=2166

CT urogram and renal bladder ultrasound, n= 475
Abbreviations and Acronyms:
AUA (American Urological Association), CT (Computed tomography), CTKUB (Computed tomography kidney, ureters, bladder), CTU (Computed tomography urogram), EAU (European Association of Urology), IRAS (Intergrated Research Application System), NICE (National Institute for Health and Care Excellence), NPV (negative predictive value), PPV (positive predictive value), REC (Research Ethics Committee), RBUS (renal and bladder ultrasound), STROBE (STrengthening the Reporting of OBservational studies in Epidemiology), TURBT (transurethral resection of bladder cancer), UK (United Kingdom), UTUC (upper tract urothelial carcinoma), WHO (World Health Organisation)