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Abstract

The bacterial communities within the human body have important associations with
health and disease. Understanding their complexity requires ecological approaches. In
this thesis, I apply ecological techniques and models to explore the microbial ecology of
human-associated bacterial communities at multiple scales. In the first half of this the-
sis, I explore the oral microbiome using 16S rRNA gene sequencing data to characterise
the effect of various factors on its diversity. Multiple factors apart from disease can also
affect the oral microbiome, but their relative importance remains a matter of debate. In
Chapter D, T use a dataset of saliva samples from a family of related Ashkenazi Jewish
individuals to show that host genetics plays much less of a role than shared household
in explaining bacterial community composition. In Chapter B, I use a large dataset of
plaque samples from women in Malawi to investigate associations between bacterial taxa
and periodontal disease. I show that the signals from gingivitis and periodontitis can be
distinguished, and use correlation networks to identify important taxa for the develop-
ment of disease. The second half of this thesis deals with the effect of antibiotics on the
human microbiome. I demonstrate new approaches at two extremes of scale: abstracting
the gut microbiome to a single metric, and also investigating the worldwide distribution
and diversity of a single resistance gene. In Chapter &, I develop a new and simple math-
ematical model of the gut microbiome’s response to antibiotic perturbation and fit it to
empirical data, showing that in some individuals the gut microbiome appears to return
to an alternative stable state, raising questions about the long-term impact of antibiotics
on previously healthy bacterial communities. Antibiotic use also selects for resistance,
which is a growing concern, particularly as resistance can be transmitted horizontally
on mobile genetic elements. In Chapter B, I describe a global dataset of isolates con-
taining the mobilized colistin resistance gene mcr-1 and use the diversity present within
a composite transposon alignment to explore its distribution and spread across multiple

bacterial communities.



Impact statement

The last decade has seen great interest in understanding the role of the bacterial commu-
nities within the human body for health and disease, but their complex ecology is still far
from satisfactorily understood. In this thesis, I present a number of different approaches
to the sequencing datasets that are now increasingly available about these communities.
These approaches represent distinct contributions, but have in common an ecological per-
spective that attempts to infer ecological units and interactions from the data at different
scales. My findings have several implications. My work on the oral microbiome provides
important examples of how to integrate detailed host genetic and demographic data into
a microbiome analysis to avoid confounding. The effects of antibiotics on our bacterial
communities and therefore our health are a global concern, both in terms of the develop-
ment and spread of resistance, but also possible long-term detrimental effects on healthy
individuals. The new mathematical model I develop for the perturbation response of the
gut microbiome could form a common basis for comparing different antibiotic treatments
and assessing their effects, something that is urgently needed to rationally decide lengths
of antibiotic courses. For the spread of resistance, I show how a phylogenetic analysis
of a mobile genetic element carrying an antibiotic resistance gene is possible by using a
combined approach to search all publicly available sequence data. Future work may rou-
tinely use this approach, including integrating the analysis for multiple resistance genes

to understand how resistance spreads globally.
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Chapter 1
Introduction

From the moment we are born, our bodies are homes for a vast and diverse array of bac-
teria. They live within us in complex communities, interacting with each other and with
our immune systems, collectively forming the human microbiome. Recent developments
in sequencing technology mean that we can now survey the diversity of the communi-
ties within the human microbiome at high resolution. Understanding their diversity, the
factors that shape their composition, and their importance for our health requires an eco-
logical approach. In this thesis I apply mathematical models to human-associated bacte-
rial communities to understand aspects of their microbial ecology. The first half of this
thesis focuses on the oral microbiome: Chapter [ tests the relative importance of environ-
ment and genetics for the composition of the salivary microbiome, and Chapter B looks
at using severity scores to separate out different aspects of periodontal disease and their
associations with bacteria in plaque. The second half of the thesis focuses on the effect of
antibiotics: Chapter @ outlines a model for the temporal response of the gut microbiome
to perturbation by antibiotics, and Chapter B analyzes the global distribution of a specific
resistance gene. These chapters are each relatively self-contained but are inter-related by
the approaches and techniques used. In this introductory chapter I provide a brief back-
ground to the human microbiome and the techniques used for analysing it. I review the
current understanding of the oral microbiome and the effects of antibiotics on the human
microbiome. I also discuss some important ecological concepts applicable to bacterial

communities, along with the challenges and opportunities these present.

1.1 The human microbiome

1.1.1 History

The human microbiome comprises all the microorganisms that live on and inside human
bodies. The first recorded use of ‘microbiome’ in the Oxford English Dictionary is in
the 1950s (OED Online, 20T8)", but the term was re-invented and popularised by Joshua

! “The protozoan fauna (as a matter of fact, the whole microbiome) [of a harbour station] is poor in
species and individuals, and those present are typically polysaprobes.” Science Monthly, January 7th 1952.
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Chapter 1

Lederberg in the early 2000s to refer to “the ecological community of commensal, symbi-
otic, and pathogenic microorganisms that literally share our body space and have been all
but ignored as determinants of health and disease” (Lederberg and McCray, 2001)). While
in its original meaning the term includes bacteria, archaea, viruses, and fungi, it is now
commonly used to refer to only to the bacterial component of these communities. This
component is often studied on its own due to the ease of marker gene sequencing. In this
thesis I follow common usage and use ‘microbiome’ to refer only to bacterial communi-
ties unless otherwise specified. While there is a growing literature on the human virome
(Lecuit and Eloit, 2013), the human mycobiome (Cui et al., 20T73), and most recently
even the human archaeome (Koskinen et al., 2017), I do not investigate these in any of
my analyses.

The human microbiome is not homogeneous. The body contains many different envi-
ronmental niches, each with their own corresponding bacterial community. Estimates of
the number of bacteria present in a human body vary, but the figure is likely to be ~ 10'3
bacterial cells, of the same order as the number of human cells (Sender et al., ZOT6). It is
not a new notion that the trillions of non-human cells that inhabit our bodies might have
important roles in health, but it is only in recent years that we have had the ability to use
DNA sequencing to profile these communities at high resolution. Exponential reductions
in the cost and efficiency of sequencing technology in recent decades have facilitated in-
vestigation of the role of human-associated bacterial communities in health and disease,
as well as their complex structures and genetic diversity.

The Human Microbiome Project (HMP) was created in 2008 to perform the impor-
tant work of characterising the core features of these bacterial communities using an
initial cohort of healthy individuals (Turnbaugh et al., 2007). In 2012, multiple papers
established a benchmark for the normal composition of oral, skin, gut, and vaginal com-
munities (Gevers et al., Z012; Methé et al., Z0T2; Huttenhower et al., Z0T2; Faust et al.,
2017; K. Li et al., POT2; Segata et al., 2012). One of the interesting findings of this ini-
tial work was that individuals appear to have a relatively stable taxonomic composition
over time (Schloissnig et al., 20172), but that taxonomic composition is typically much
more variable between individuals than metabolic pathways (Huttenhower et al., 20172).
This suggests that many different possible combinations of bacteria can perform the same
community functions, but once a particular combination is established in a niche it usu-
ally persists. Even since 2012, the datasets available on the human microbiome have
increased dramatically in size and the work of cataloguing the normal composition of
these communities is largely complete. Microbiome research is therefore now at a stage
to address ecological questions about the structure and complexity of the bacterial com-

munities we are home to and their role in our health.
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The microbial ecology of human-associated bacterial communities

1.1.2 Role in health and disease

At the moment of birth, previously sterile environments within a baby’s body are rapidly
colonized by environmental bacteria. The mode of delivery can affect this first coloniza-
tion with variation between body sites immediately after birth, although by six weeks this
variation has disappeared and the developing microbiome exhibits body-site specificity
(Chu et al., 20T7). Over time, these assemblages from environmental colonization form
communities and stabilise, typically reaching adult-like levels of diversity within a few
years (Koenig et al., POTT; Yassour et al., ZOT@). These interactions between the first
colonizers and the nascent immune system are believed to be extremely important for
the proper development of both (C. Petersen and Round, 2014)). Immune maturation in
mice is dependent on colonization by a host-specific microbiome (Chung et al., PO12).
In humans, early-life antibiotic use is associated with increased risk of allergies and au-
toimmune conditions, suggesting the disruption of immune development (Vangay et al.,
2015). Clearly, human-associated bacterial communities cannot be completely neutral
assemblages because of the highly specific conditions of particular niches. For internal
environments, homeostasis maintains a constant temperature around 37 °C, and oxygen
and light levels are low, so e.g. bacteria within the gastrointestinal tract tend to be largely
anaerobic (Huttenhower et al., PZ0T7). There can also be more specialized adaptations
based on interactions with the host immune system, even among these early colonizers.
For example, specific and reproducible phenotypic adaptations consistently occur in the
same genomic regions of Escherichia coli during colonization of the mouse gut (Barroso-
Batista et al., 2014). Even if a given bacterial community appears to perform no useful
function for the host, it still provides ‘colonization resistance’: by occupying available
environmental niches, the resident microbiota prevent opportunistic pathogens from gain-
ing a foothold.

The existence of specialized interactions with the immune system has led some to
propose the human microbiome as a ‘missing organ’ with influence over many different
aspects of human health (S. V. Lynch and Pedersen, 20T6). However, a major issue in mi-
crobiome research is the risk of reporting spurious disease assocations due to confound-
ing factors that are known to also be associated with the microbiome such as: diet (David
et al., P0T3), environment (Lax et al., 20T4), lifestyle (J. Wu et al., 20T6), and host genet-
ics (Blekhman et al., 2015).2 These factors can also interact in interesting ways. Bonder
et al. (2016) performed a genome-wide association study for microbial abundances and
found evidence of a gene-diet-microbiome interaction involving a genetic variant with a
recessive effect on lactose intolerance, dietary milk intake, and abundance of Bifidobac-
terium.

There are many challenges in correctly identifying associations between the human

microbiome and human health. These include:

2 See Section 272 for a discussion of these in the context of the oral microbiome.
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Chapter 1

e Inter-individual variation. Longitudinal studies are not always possible, so cross-
sectional datasets in microbiome research are common. Numerous factors affect
the variation between bacterial communities. Quantifying their relative strength

and importance is difficult due to the confounding of many of these factors.

e Multi-symptom diseases. Many diseases are broad groupings of multiple clinical
features, and are in fact more appropriately termed as syndromes (e.g. obesity).
Identifying associations with the microbiome using a case-control design cannot

provide information about which of these features are actually involved.

e The vagueness of dysbiosis. A common feature of ‘dysbiotic’ microbiome states
associated with disease is that inter-individual variation appears to be greater than
in healthy individuals. Standards exist for identifying individual pathogens (e.g.
Koch’s postulates), but microbiome research lacks concrete definitions of dybsio-

sis.

o Identifying the appropriate scale of association. The human microbiome and
its associated environmental meta-community contain astonishing genetic diver-
sity, meaning that associations can be found at multiple levels in large sequencing
datasets with high-resolution available (i.e. from phylum to species to gene). It is

not always clear which of these levels is appropriate.

In this thesis, I engage with these four challenges in different contexts, corresponding
to each of the four main chapters, and aim to show that it is possible to address them

using statistical techniques adapted from ecology.

1.1.3 Sequencing

For many years the human microbiome remained poorly characterized because bacte-
ria that live inside the body tend to be anaerobic and adapted to specialized conditions,
making it difficult to find appropriate culture conditions to grow them in vitro. Here
I describe two important technologies that allow the sequencing of DNA directly from
samples without culturing. As this thesis is not experimental, this is only a very brief

survey and readers interested in further details should consult the references cited.

16S rRNA marker gene sequencing

A marker gene constitutes a stable region of the genome across organisms that can be
used to accurately determine phylogenetic relationships. To be a good marker gene, a
gene should have a critical functional role — meaning that it is highly conserved — but
also have variable regions — meaning it contains information for taxonomic identifica-

tion. The 16S rRNA gene® is around 1,550 bp long and is universal among prokaryotes

3 16S refers to the sedimentation rate of the translated gene in a centrifuge measured in Svedbergs,
a unit equivalent to 10~!3 seconds. rRNA refers to the product of the translation of the gene from DNA
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Figure 1.1: Structure and sequence features of 16S ribosomal RNA (rRNA) and the 16S rRNA gene.
(a) Structure of the 30S subunit of Thermus thermophilus, shown from four different angles of rotation.
The structure consists of 19 proteins and a small polypeptide (blue) bound to folded 16S rRNA (khaki)
(Schluenzen et al., Z000). Adapted from an animation by David S. Goodsell (Goodsell, Z017). (b) Mean
frequency of the most common residue at each base position within the 16S rRNA gene from 4,383 se-
gences. Data has been smoothed with a 50 base sliding window. Adapted from Ashelford et al. (2005). (c)
Secondary structure of 16S rRNA. Different regions are shown in different colours, with variable regions
in bold. Adapted from Yarza et al. (20T14).

(Clarridge, 2004). It codes for an important part of the 30S subunit of the ribosome (Fig-
ure [Tla), the molecular machine that translates and assembles proteins from messenger
RNA (mRNA). Translating proteins is a fundamental cellular process, meaning that cer-
tain regions of the 16S rRNA gene are under high selection to preserve the function of
the ribosome. These regions are highly conserved across the bacterial domain. However,
the subunit is a large folded piece of RNA and there exist regions that loop around and
do not directly contribute to function (Figure [LTic). These regions are not under high se-
lection and so tend to accumulate more mutations, making them more variable than other
regions of the gene (Figure [b). The sequence of these hypervariable regions is closely
linked to the evolutionary history of bacteria, meaning that sequences can be associated
with taxonomic groups to varying levels of resolution. Generally, the more evolutionarily
divergent two bacterial species are the more divergent one would expect their hypervari-
able regions to be. Because of this, rRNA genes have been called “the ultimate molecular
chronometers” (Woese, 1T987). Woese and Fox (1977) used this insight for phylogenetic
inference and analyzed association coefficients between 16S or 18S rRNA from thirteen
species of eukaryotes and prokaryotes, showing three major groupings and providing
the first evidence for at least three primary branches in the tree of life by resolving the
prokaryotes into two domains: the bacteria and the archaea.

The 16S rRNA gene has a total of nine hypervariable regions interspersed with con-

into ribosomal ribonucleic acid (RNA). The /6S rRNA gene is often also referred to as 16S rDNA. Its
homologue in eukaryotes is the 18S rRNA gene.
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Chapter 1

served regions (Figure [Ib). The benefit of this combination is that universal DNA
primers can be designed to target a conserved region that is highly similar in all bacteria.
After the primer bonds to the conserved region, replication moves along the sequence
of DNA and continues into a hypervariable region. Thus, the polymerase chain reaction
(PCR) can be used to amplify a particular region of the 16S rRNA gene. When applied
to a sample containing many different species of bacteria, the relative abundances of the
taxa present can then be identified by partitioning sequences into units and counting the
abundances of these units. It is common to use primers that amplify in two directions
(forward and reverse) to cover a larger region of the gene using ‘paired-end’ sequencing

(Caporaso et al., 2012).

Identifying ecological units

The first challenge of marker gene sequencing data is to cluster or partition sequences into
units. To be practically useful, these sequence units should correspond in a meaningful
way to taxonomic units and ultimately ecological units. Sequence-based units are often
called phylotypes, and ecological units ecotypes. Achieving as high a correlation as
possible between phylotype and ecotype is essential for microbial ecology.

The most widely-used methods for inferring ecological units from marker gene data
use sequence similarity. Sequence reads that have a similarity above a certain cutoff are
grouped together into an operational taxonomic unit (OTU). This reduces the complexity
of datasets, saves computational time, and simplifies downstream analysis. A variety of
increasingly sophisticated algorithms have been developed to perform this clustering into

OTUs. The main methods can be thought of in three groupings:

e Closed — sequences are clustered using seed sequences from a reference database.
e De novo — sequences are clustered without a reference database.

e Open — a mixture; sequences are first clustered using a closed algorithm against a

reference database, then any that do not cluster are clustered de novo.

In this thesis, I largely use de novo clustering methods, as these have been shown to
be generally superior to closed or open clustering methods (Westcott and Schloss, POT5).
All OTU clustering methods require a similarity cutoff below which sequences are con-
sidered to be different units. A convention in microbial ecology is to use an arbitrary
similarity cutoff of 97% for largely historical reasons. 97% was given as the approximate
16S rRNA gene sequence similarity level that was equivalent to a 70% DNA-DNA hy-
bridisation (which had previously been recommended as a heuristic for determining bac-
terial species) by the Ad Hoc Committee on Reconciliation of Approaches to Bacterial
Systematics (Moore et al., T987). In other words, the 97% cutoff is a rough approximation
built on a rough approximation, which was intended only as a proxy for species identity.

Sequence-based similarity cutoffs will not be identical for all pairs of extant species and
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are strongly influenced by phenotypic consistency (Moore et al., T987). Added to this,
bacterial taxonomy is usually highly historically contingent, which has led some to sug-
gest entirely divorcing strain classification from previous species names (Baltrus, 2O16).
Furthermore, species with virtually identical 16S rRNA genes can have very different
habitats. For example, two strains of Candidatus Pelagibacter ubique with >98% similar-
ity across the whole 16S rRNA gene have distinct geographical distributions: HTCC1062
dominates in polar regions and HTCC7211 in tropical locations (Brown et al., 2017). Re-
markably, similar distinct distributions to those shown at a global scale in the world’s
oceans can exist even within the human mouth (see Section [ 21).

OTU clustering is a powerful approach, but because highly similar phylotypes with
only a few base changes can still correspond to meaningful ecotypes, there exist newer
methods to avoid losing this ecological information. These ‘oligotyping’ methods avoid
clustering by overall similarity and use a substantially different methodology based on po-
sitional entropy, aiming to find the most informative bases in an alignment of sequences
and iteratively partition sequences into clusters using these bases. Oligotyping (Eren
et al., 20T3) and its unsupervised counterpart minimum entropy decomposition (MED)
(Eren, Morrison, et al., 2014) provide much higher resolution of taxonomic and therefore
ecological units, even in the presence of sequencing errors. All marker gene datasets will
contain sequences with bases in their alignment that are inaccurate; a sequencing error
per base of 0.03 (the probability of a base being inaccurate) intuitively suggests that clus-
tering will be limited to at most a 97% overall similarity cutoff.? However, the insight
used in oligotyping methods is that as long as these sequencing errors are randomly dis-
tributed they can be distinguished from true sequence differences by the different signals
of positional entropy: positions with true varying bases will show much higher positional
entropy compared to those with no differences but random errors. These positions will
appear as peaks of positional entropy. Phylotypes are generated by clustering sequences
based on their bases at the position with the highest entropy, then repeating this process
to generate sub-clusters from remaining positions until no position has entropy above a
pre-specified limit. This can generate higher resolution phylotypes separated by just a
single base, often referred to as oligotypes.

There are further subtleties to working with the 16S rRNA gene. Bacteria can carry
multiple copies of the gene, with some species having as many as 15 different copies
(Vtrovsky and Baldrian, P0T3; Stoddard et al., 2015). Furthermore, PCR primer bias can
also result in preferential amplification of certain taxa (Edgar, 2017) as can the choice of
amplification region, with different regions detecting phyla in different proportions and
so potentially biasing diversity metrics (Cai et al., 2013). Therefore, relative abundances

do not necessarily correspond to true numbers of bacterial cells. Note that differential

41In fact, even an intuitive 97% cutoff will lead to incorrect clusters in this scenario. For a given
sequence the percentage of bases with errors will be binomially distributed (n = 100, p = 0.03). If we now
sample from a large population of sequences, by the Central Limit Theorem their percentage error will be
normally distributed with a mean of 3% and a standard deviation of ~ 1.7%. Thus, a practical sequence
similarity cutoff will be lower than 97% to ensure clusters can be trusted.
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abundances across samples for a particular taxa can still be calculated.

Ultimately, phylotypes from 16S rRNA gene sequences are only a proxy for true eco-
types, so sometimes they simply do not resolve ecologically distinct populations. This
fact has been known for many years: Jaspers and Overmann (2004)) analyzed 11 strains of
the planktonic bacterium Brevundimonas alba and showed that despite completely iden-
tical 16S rRNA genes they had non-overlapping niches in terms of their ability to syn-
thesize carbon substrates. Bacterial genomes are often highly flexible and dynamic, and
mobile genetic elements can result in very different phenotypes and therefore ecotypes
for species with identical 16S rRNA genes. For example, antibiotic resistance genes
can be transferred on integrons between species in the oral microbiome (Tansirichaiya
et al., 2OT@). These studies illustrate dramatically that while 16S rRNA is extremely use-
ful for profiling bacterial communities, it cannot directly give information on the other
genomic content of the community. To a certain extent phylogeny is correlated with func-
tion. Methods exist that attempt to infer functional content from 16S rRNA data alone
(Langille et al., 20T3). However, these methods have serious shortcomings: they rely
on the availability of complete genomes; they cannot capture frequent horizontal gene
transfer (HGT); and they can only give information on broad KEGG pathways which are
often highly uninformative. In summary, 16S rRNA contains only a small fraction of the
total genetic diversity in a bacterial community. It is the most generally ecologically in-
formative and practical fraction to sequence, but it is not always sufficient for answering
ecological questions with a focus on functional capacity. Exploring this deeper functional

diversity requires other sequencing approaches.

Shotgun sequencing

Unlike marker gene surveying, where PCR is used to target a specific region of genomic
DNA, in shotgun sequencing all DNA in a sample is extracted and sequenced. The short
reads generated can then be mapped to existing metagenomic databases to identify genes
of interest (e.g. 16S rRNA) and also used to assemble genomes. When higher taxonomic
resolution and information on functional capacity is needed, metagenomic sequencing is
undeniably superior to 16S rRNA sequencing. It also presents a correspondingly more
complex challenge for data analysis. Identifying ecological units within shotgun sequenc-
ing data is often even more challenging than for marker gene data, particularly for metage-
nomic datasets. Approaches exist to cluster metagenomic datasets of mixed communities
into genomes based on k-mer abundances and coverage (Alneberg et al., 2014; Cleary
et al., 2OTY) with recent methods even claiming strain-level resolution (Quince et al.,
2017). Developments in long-read sequencing promise to address some of these difficul-
ties, but it still remains important to consider the biology and ecology. The questions to
be answered from whole genome sequencing are fundamentally the same as for marker
gene sequencing: how to organise data to identify meaningful ecological units, how to

quantify variation in these units, and how to associate this variation with other factors.
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1.1.4 Summary

The advent of high-throughput sequencing technologies and the use of universal primers
for the 16S rRNA gene has permitted the characterization and description of the many
different communities within the human microbiome. There are many challenges to un-
derstanding how to correctly infer ecological units from this sequencing data and inves-
tigate their microbial ecology, but the past few decades have seen many advances in our
understanding. In the next section, I go into more detail about a particular group of

communities within the human microbiome: the oral microbiome.

1.2 The oral microbiome®

Research into the bacteria that live in our mouths has the longest history of any part
of the human microbiome. In 1683, Antoni van Leeuwenhoek scraped plaque from his
teeth, mixed it with rainwater, and examined it under a microscope. Despite what he
thought of as a rigorous daily tooth-cleaning regime — involving rubbing his teeth with
salt every morning and vigorously rubbing them with a cloth after eating — he was as-
tonished to describe dierken (‘little animals’ or ‘animalcules’) “very prettily a-moving”,
representing the first recorded observations of oral bacteria (Leeuwenhoek, T683). The
oral microbiome is now perhaps the most well-characterized environmental niche in the
human body due to two factors: not only is sampling from the mouth easier than from
internal environments, but also the culture conditions for bacteria are more easily repro-
duced than for truly internal body niches. As of 2017 just 32% of taxa are estimated to
remain uncultivated (www.homd.org). The oral microbiome typically has very high di-
versity, with samples from the mouth typically having higher alpha diversities than those
from other body sites (Stearns et al., 20T1; Huttenhower et al., 20172). In this section I
summarise the current state of knowledge about the oral microbiome, the investigation

of which is the topic of the first two chapters of this thesis.

1.2.1 Structure and characterization

The biogeography of the oral environment

Referring to ‘the’ oral microbiome might suggest a degree of homogeneity within the
mouth, but it should be stressed that the biogeography of the oral cavity leads to highly
structured and differentiated microenvironments with correspondingly different micro-
bial populations. Examples of microenvironments within the oral cavity include the pe-
riodontal sulcus, tongue, hard palate, buccal mucosa, and saliva (Krishnan et al., ZOT6),
although there is clearly overlap and some degree of mixing between these sites (Fig-

ure 7). More generally, a broad distinction can be made between hard tissue surfaces

3 Parts of this section have been published as: L. P. Shaw, A. M. Smith, and A. P. Roberts (2017). The
oral microbiome. Emerging Topics in Life Sciences 1(4), 287296. doi: TO_TO42/ETT.S?20170040
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Figure 1.2: Sampling sites in the mouth. Left panel: non-metric multidimensional scaling (NMDS) plot of samples from various habitats in the oral environment. To generate this

plot I used a table of 16S rRNA V3-V5 MED phylotypes from data described in Eren, Borisy, et al. (20iT4). Right panel: the location of these habitats on a diagram of the mouth.

Diagram adapted from Humananatomyly.com (2017).
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(dental plaque) and soft tissue surfaces (Warinner et al., 2015), which clearly separate in
terms of microbial community composition.

The complex nature of oral biofilms is beginning to be explored with new techniques
that promise to reveal a great deal about their development and progression. A recent
pioneering study by Mark Welch et al. (2016) combined metagenomic sequencing with
fluorescence in situ hybridization to reveal complex radial structures in supragingival
plaque, with anaerobic taxa at the centre and aerobes at the edges. Co-localization of
consumers and producers of metabolites within such structures supports the real func-
tional importance of such spatial organization within the oral microbiome. Such biofilm
structure can also be investigated with in vitro models that allow the culturing of pre-
viously unculturable oral microbes (Vartoukian et al., 20T6). The associations between
taxa that facilitate the buildup of biofilms are crucial in the etiology of oral disease and
are still not well understood. In Chapter B I demonstrate that even without explicit infor-
mation on structure, correlations in relative abundance between disease-associated taxa
reveal patterns in a correlation network that can be analyzed to identify central taxa that

are consistent with previous experimental work.

Development and resilience

The oral microbiome already exhibits body-site specificity six weeks after birth (Chu et
al., P20T7) and undergoes a substantial increase in diversity up until 3 years, especially
after the eruption of teeth (Cephas et al., 2OTT), followed by a maturation process that
continues into adulthood (Sampaio-Maia and Monteiro-Silva, P2{1T4). Even once estab-
lished, the oral microbiome is subject to continual perturbation. Unlike more internal
environments within the body, the mouth experiences daily physicochemical fluctuations
in temperature, oxygen content, acidity, and carbohydrate availability. Despite this, the
oral microbiome exhibits marked stability over time (Utter et al., Z0T6). It has been sug-
gested that this need to be robust to multivariate fluctuations may explain the salivary
microbiome’s greater resilience to antibiotic perturbation when compared to the more
homogenous gut microbiome (Zaura et al., 20T15).

The resilience of the oral microbiome once established contributes to colonization
resistance, where established microorganisms confer protection from external pathogens
by occupying available surfaces and environmental niches (Zaura et al., 20T4). Many
authors have observed that the normal ‘commensal’ microorganisms that confer protec-
tion from external pathogens are also responsible for a wide range of oral diseases (Ruby
and Barbeau, 2007; Wade, 20173). This apparent paradox can be resolved by relaxing
the strict distinction between the symbiotic and the pathogenic, which can be artificial
and misleading in the context of human-associated microbiomes. Indeed, the etiology of
oral microbial diseases such as caries and periodontitis has undergone several paradigm
shifts over the twentieth century, as molecular techniques have expanded in scope from

individual pathogens to the entire oral microbiome (Teles et al., P0T3). There is a grow-
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ing consensus that community-level dysbioses involving feedback loops between the oral

environment and oral bacteria are important in oral disease.

Difficulties in characterizing the oral microbiome

Marker gene sequencing allows apparently easy characterisation of the oral microbiome,
but this ease can be misleading. Importantly, it is well established that many oral mi-
crobes with highly similar 16S rRNA gene sequences can have different genomic con-
tent and correspondingly different ecological niches. For example, Eren, Morrison, et
al. (2014) reanalyzed HMP data sampled from multiple oral locations within the same
individual using oligotyping, and found that Neisseria oligotypes varied greatly in spa-
tial distribution. An oligotype of Neisseria flavescens/subflava that was detected in high
abundance in keratinized gingiva but rare at all other sites sampled had over 99% se-
quence similarity in the V3-V5 region of the 16S rRNA gene. Furthermore, different
choices of primers can result in differential PCR amplification from different bacterial
families because of primer mismatch (Morales and Holben, 2009) that can lead to biased
diversity metrics (Cai et al., 20T3; Kumar et al., 2Z01T), and differences between variable
regions can lead to reduced specificity depending on the bacterial genus (William Wade,
personal communication).

While partitioning oral microbes into ecological units based on marker genes is a
powerful technique, it is important to bear in mind that while positional entropy methods
may offer higher resolution and specificity than OTU clustering, they still may not sepa-
rate out true ecological differences (Section [13). Indeed, oral microbes with identical
16S rRNA can still possess dramatically different gene complements due to mobile DNA
e.g. highly dynamic integron gene cassette arrays (Y.-W. Wu et al., 20T72; Tansirichaiya
et al., 2016).

1.2.2 Factors shaping the oral microbiome

The core oral microbiome

As the first identified human-associated microbiome, it is unsurprising that the oral micro-
biome has been extensively characterized compared to other microbiomes. The Human
Oral Microbiome Database (HOMD) (www.homd.org, T. Chen et al. (2011)) provides
a curated collection of full-length 16S rRNA gene sequences of common oral microbes,
together with genome sequences where available. The characterized oral microbiome is
dominated by six major phyla making up 96% of the taxa: Firmicutes, Proteobacteria,
Bacteroidetes, Actinobacteria, Spirochaetes, and Fusobacteria (Dewhirst et al., DO10).
These major phyla define the core oral microbiome determined by the common nature of
the oral cavity across individuals: microbes subsisting on endogenous nutrients from the
human host with secondary differences in composition due to other factors (Wade, 20173).

Despite an overall similar core oral microbiome, individuals appear to have a stable

oral microbiome ‘fingerprint’ over timescales of a few months (Utter et al., PO16) to a
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year (David et al., 20T14), despite rapidly fluctuating relative abundances on a timescale
of days (Mark Welch et al., 20T4). Oral viruses have also been shown to be personal-
ized and persistent over similar timescales (Abeles et al., 2014, consistent with known
phage-bacteria interactions in the oral microbiome (K. Wang et al., 2016). The relative
importance of all factors that could conceivably lead to individual-level differences is
difficult to establish due to the complexity of performing a comprehensive controlled
analysis, although studies of various combinations allow some conclusions to be drawn.
These differences between individuals are typically at the sub-genus level, and do not
appear to translate into larger-scale geographic differences across global scales (Nasidze
et al., 2009).

Diet

The primary source of nutrients for oral microbes is saliva and gingival crevicular fluid
rather than food ingested by the host (Wade, 20173), suggesting that diet may not be a
key modulator of the oral microbiome in terms of its healthy composition. However,
there have been many postulated associations between diet and oral disease, most no-
tably dental caries (see Section [Z23). The higher prevalence of oral disease in industrial-
ized countries may be linked to diet-associated dysbioses in the oral microbiome (Marsh,
2003). Chronic disorders like diabetes and inflammatory bowel disease have been linked
to a “Western diet’ high in sugar and starch (Cordain et al., 2005), and the oral micro-
biome may play a role in this interaction. Despite a lack of global structuring in the
oral microbiome, the oral microbiomes of specific populations with distinct diets that
are perhaps more similar to historical human diets can show differences with Western
oral microbiomes. Lassalle et al. (2017) investigated the salivary microbiome of hunter-
gatherers and farmers in the Philippines, using a carefully controlled study design to iden-
tify shifts in composition that were likely to be due to diet alone.f Species regarded as
oral pathogens linked to periodontal disease were more abundant in the hunter-gatherers’
mouths but anecdotally this did not seem to lead to poorer oral health, suggesting the pos-
sibility that the Western diet may have selected for more virulent strains. Further insight
into the possible interaction of diet and the oral microbiome over evolutionary timescales
may come from investigations of ancient dental calculus (Warinner et al., 2015). It has
been claimed that there are major identifiable shifts in composition that correspond to the
Neolithic and Industrial Revolutions (Adler et al., 20173).

Lifestyle

Different behaviours may affect the oral microbiome in different ways, either by chang-
ing the oral environment directly or through regular seeding by particular taxa due to
repeated environmental exposure. Perhaps the most striking example is smoking, which

measurably affects the oral microbiome. A study of 1204 American adults found that

61 was a co-author of this paper, but do not discuss it again in this thesis.
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current smokers had distinct oral microbiome composition from those who had never
smoked, with lower levels of Proteobacteria and an increased abundance of Streptococ-
cus spp. (J. Wu et al., POT6). Interestingly smokers also experience higher susceptibility,
severity, and faster progression of periodontal disease, although the mechanisms under-
lying this faster disease progression remain unclear (Nociti et al., 20T5). Other lifestyle
factors such as physical activity may also influence the oral microbiome through links to
general health and immune status, although these appear to have less of an effect than
smoking (Michaud et al., 2OT3).

Genetics and the environment

There are several conceivable ways that host genetics could affect the oral microbiome,
including salivary composition, immune phenotype, or indirectly through gene-diet inter-
actions as observed in the gut microbiome (Bonder et al., 20T6). Typically genetics is
confounded with multiple other factors, most notably environment. Understanding the
role of the environment in determining the oral microbiome is of particular relevance
for conditions that show familial aggregation that could be driven by either genetics or
shared environment, such as inflammatory bowel disease (Nunes et al., ZOTT). While
there is a generally observable correlation between human genetics and oral microbiome
composition, a number of lines of evidence lead to the conclusion that environmental
effects are dominant.

It is well established that cohabiting individuals share overlapping oral microbiomes
(Lax et al., 20T4; Abeles et al., Z0T6) including — in some cases — with their cohabiting
dogs (Song et al., 20T3). Stahringer et al. (2012) performed a longitudinal study of
the salivary microbiome of twins over several years and concluded that ‘nurture trumps
nature’, with the effect of shared upbringing larger than that of genetics. They observed
that monozygotic and dizygotic twins did not have statistically more similar microbiomes
— in agreement with observations on the gut microbiome (Turnbaugh et al., 2009) — and
that oral microbiome similarity decreased over time once twins no longer co-habited,
pointing to the dominant effect of environment.

It has been suggested that there may be ethnic differences in the oral microbiome, pos-
sibly linked to differing susceptibilities to periodontitis (Takeshita et al., 2014; Mason et
al., 2013). Conclusions reached simply by comparing ethnic groups without any direct
genetic evidence should be viewed with scepticism, because they rely on the assumption
that other factors (such as lifestyle) are unimportant or controlled for, when these are
often confounded with ethnicity. A more rigorous analysis by Blekhman et al. (Z0TY)
explicitly used human genetic information extracted from HMP samples from 93 individ-
uals, and did find that host genetic variation correlated with the composition of the oral
microbiome. Notably, the most significant association was between genes involved in the
signalling pathway for leptin (Cava and Matarese, 2(104) and taxa in keratinized gingiva

and subgingival plaque, suggesting a link between immunity and the oral microbiome at
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these sites.

Twin studies are one way to investigate the effects of genetics and environment si-
multaneously, but the relationship between the oral microbiome in parents and children
is less clear: could associations be due to host genetic similarity as well as shared house-
hold environment? If so, which component dominates? If the hypothesis is that host
genetic similarity affects the microbiome via immune interactions which involve specific
genes, genetic relatedness based on pedigree may not capture the relevant portion of true
genetic similarity (Speed and Balding, 2014). In Chapter D I address this question using
a cohort of Ashkenazi Jewish individuals with both host exome and salivary microbiome
sequencing to investigate the simultaneous impact of genetics and the environment in a

population that controls for other common confounders of microbiome studies.

1.2.3 Associations with disease

Oral biofilms build up progressively in our mouths, and their daily removal is necessary
to prevent their establishment and progression. The oral microbiome is indicative of the
general relationship between the host immune system and the human microbiome. Indi-
viduals with compromised immune systems — either through genetic mutations, chronic
infection, immunomodulatory treatments, or pregnancy — have a greater risk of bacterial
infection, and a high proportion of these infections occur in the oral cavity. While there
is often debate about the direction of causation, it is clear that many oral diseases can be
associated with specific bacterial populations. Here I discuss some notable examples of
bacterial-associated disease linked to diet (dental caries), immune status (human immun-

odeficiency virus (HIV)), and multiple factors (periodontal disease).

Dental caries

Dental caries refers to tooth decay caused by acids produced by oral bacteria (Lauden-
bach and Simon, 20T14)). These acids are byproducts of the breakdown of oral carbohy-
drates (Takahashi and Nyvad, PO11). The association between dental caries and carbo-
hydrates was first hypothesised by Miller (W. D. Miller, T890), and is now supported by
extensive evidence (Rugg-Gunn, 20T3). Reduced sugar diets have been shown to be asso-
ciated with fewer dental caries (Moynihan and Kelly, 2014)), and it is known that cooked
starches can act as a stimulus that produces elevated acidity and aciduric species at caries-
prone sites (Bradshaw and R. J. M. Lynch, 2013). In response to this body of evidence,
the World Health Organization has issued guidelines that free sugars in diet should pro-
vide <5% of total energy intake (Moynihan, 20T6). Other important prevention strategies
include oral hygiene (to prevent the buildup of aciduric biofilms) and dietary fluoride (to

encourage the remineralisation of tooth enamel) (Rugg-Gunn, 20T3).
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HIV infection

The importance of the host immune system in maintaining the balance with the commen-
sal oral microbiome is clearly indicated by the oral manifestations of HIV infection, with
oral abnormalities related to HIV occurring in up to 80% of HIV-infected individuals
(Reznik, 2005). HIV has been associated with an increased prevalence of oral mucosal
infections and general oral dysregulation, including the overgrowth of the yeast Candida
albicans and the development of candidiasis as in other immunosuppressed populations
(Heron and Elahi, 2017). Candidiasis results from the loss in neutrophil recruitment to
the oral tissue through a depletion in number of mucosal associated Th17 lymphocytes.
Furthermore, impaired oral immunity in HIV-infected individuals may predispose them
to periodontal diseases. The precise effects HIV infection has on the oral microbiome are
complicated by potential effects of the anti-retroviral treatment. A study comparing HIV-
positive individuals to controls found only minor differences in the composition of the
salivary microbiome, although certain taxa including Haemophilus parainfluenzae were

significantly associated with HIV-positive individuals (Kistler et al., 2OT5).

Periodontitis

Periodontal disease is inflammation of oral tissues in reaction to oral biofilms (Van Dyke,
2008). Gingival inflammation (gingivitis) is associated with bleeding of the gums, but if
oral bacteria progress deeper into the gums this can lead to the formation of periodontal
pockets (periodontitis). The etiology of periodontitis remains a matter of debate, although
it is accepted that bacterial-derived factors can stimulate the inflammatory response in
the gingivae (Cochran, 200R). In general, after an earlier focus on specific pathogens that
were identifiable by culture techniques, newer paradigms take a more ecological view
where microbial communities enter a disrupted alternative stable state. This is due to
synergistic feedback between bacteria and their environment, shifting from homeostasis
into destructive inflammation (Hajishengallis and Lamont, 20T2). However, it is undoubt-
edly true that species such as Porphyromonas gingivalis, Porphyromonas intermedia and
Aggregatibacter actinomycetemcomitans, which reside within plaque, are highly impor-
tant in activating the host immune response and driving a chronic inflammatory reaction
within the gingivae. Tissue inflammation or gingivitis can lead to a cascade of events, re-
sulting in osteoclastogenesis and subsequent local bone loss via the receptor activator of
nuclear factor-kappa B (RANK)-RANK ligand (RANKL). Activation of RANKL drives
macrophage differentiation into osteoclasts and bone reabsorption, which results in the
development of periodontitis (Belibasakis and Bostanci, 2017).

There is a detailed literature on the molecular mechanisms involved in periodontal
etiology (Teles et al., PZ0T3). For example, P. gingivalis is known to express a range of
virulence factors which facilitate survival within the oral cavity and avoidance of the host
immune system (Sheets et al., 2008). Rubrerythrin, a nonheme iron protein, protects

the bacteria from neutrophil mediated oxidative killing and exacerbates the local and
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systemic inflammation within the gingivae (Mydel et al., 2006). The gingipains Kgp and
RgpA are the major proteases involved in hemin acquisition, binding, and accumulation,
and protect P. gingivalis from oxidative damage through the formation of an oxidative
sink (Sheets et al., 200K).

A historical focus on individual taxa means that the formation, persistence, and de-
velopment of bacterial biofilms that can eventually result in destruction of tissue is still
not fully understood. Particular species seem to act as bridging bacteria that are required
to facilitate the development of biofilms. As I have mentioned, the structure of these
biofilms has recently been studied using pioneering fluorescence in situ hybridization
(Mark Welch et al., 2OT6) but this approach is not practical across large cross-sectional
datasets. Case/control study designs do not reflect the true progression of periodontal
disease which is continuous rather than binary. While longitudinal studies of gingivitis
exist (Huang et al., 20T4) permitting the development of periodontal pockets is not pos-
sible for ethical reasons. In Chapter B I aim to address both these problems using a large
cross-sectional cohort of homogenized supragingival plaque samples. I demonstrate that
using two clinical features of periodontal disease allows distinguishing between the com-
munity features involved with gingivitis and periodontitis, and that bridging bacteria can
be identified using correlation network analysis despite an absence of direct information

on spatial organization.

1.2.4 Summary

Our understanding of the oral microbiome has improved significantly since Leeuwen-
hoek’s observations in Delft over 350 years ago, with next-generation sequencing meth-
ods beginning to provide us with a much fuller picture of its true taxonomic diversity.
However, despite great success in establishing its composition and variation across differ-
ent sites in the mouth and associations with various external factors, we still have much
to discover about the interactions within oral biofilms.

The work I present in this thesis contributes to our understanding of the oral micro-
biome in two ways. In Chapter 2 I investigate the effect of different factors on the com-
position of the salivary microbiome, contributing to the debate about whether genetics
or the environment is more important in shaping the oral microbiome. Then in Chapter
I find associations between taxa in supragingival plaque and periodontal disease using
two clinical variables rather than a case/control study design. I demonstrate how network
analysis can be used to tentatively identify members of the community that seem to be

central to the development of biofilms and the progression of disease.

1.3 Antibiotics and the microbiome

Our relationship with our resident bacterial communities is not always harmonious. Bac-

teria are responsible for many life-threatening infections, including species which under
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normal conditions are commensal members of the microbiome e.g. Streptococcus pneu-
moniae (O’Brien et al., 200Y). Bacterial infection into regions of the body that are not
normally colonized — such as the blood — can lead rapidly to an uncontrolled inflamma-
tory response, sepsis, and death (Ramachandran, 2014)).

The discovery of antibiotics led to a revolution in modern medicine, meaning that
conditions that were previously life-threatening could be effectively cured. An antibiotic
is any substance which acts against bacteria, either by preventing growth (bacteriostatic)
or directly killing cells (bacteriocidal). Many antibiotics are in fact naturally occurring
substances that are made by bacteria to act against other bacteria. After the discovery
of the first antibiotics the 20th century saw a great boom in the isolation, identification,
purification, and synthesis of these substances to allow mass production of antibiotics for
use in healthcare. It is difficult to overstate the benefits that antibiotics have provided for
healthcare as a crucial part of modern medicine, both as direct treatment for infection
and as prophylaxis in situations where infection is likely to develop. High concentrations
of antibiotics constitute a strong selective pressure on the microbiome that is probably
unprecedented in human evolutionary history, and there is an increasing awareness that
continuing to use antibiotics as we presently do constitutes a serious problem. In this
section, I describe two related issues concerning antibiotics: the damaging long-term
effects of antibiotics on the microbiome, and the development and spread of antibiotic

resistance.

1.3.1 Antibiotics and the individual

At any one time, it is estimated that between 1-3% of people worldwide are currently tak-
ing antibiotics (Goossens et al., 2005). This does not include consumption of antibiotics
through food or environmental contamination, which may provide a significant source of
low concentrations of antibiotics (Martinez, 2009). The effect of even a short course of
antibiotics can be extremely dramatic, both for the bacterial communities and for their
human host, but due to the effectiveness of antibiotics there has been little investigation
of these side-effects on the human microbiome. Here I outline some important points to

consider when thinking about how bacterial communities are affected by antibiotics.

Inter-species interactions dictate the in vivo effects of antibiotics

There is surprisingly limited evidence into the actual effects of antibiotics in vivo on bac-
terial communities. Experiments with single species in vitro cannot account for potential
interactions between different groups of bacteria, and these may be significant when con-
sidering the overall impact of antibiotics on a microbial community and its subsequent
time-evolution. By way of example, consider the trivial case of a community with species
that are either resistant or susceptible to an antibiotic. If bacteria A depends on bacteria
B via some crucial metabolite M, then using an antibiotic will affect not only bacteria B

but also bacteria A, due to the associated depletion of metabolite M. Investigating the ac-
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tual impact of antibiotics on real bacterial communities is important to understand these
interactions and the potential long-term impacts of antibiotic use.

Current prescribing practices rarely explicitly consider possible in vivo interactions
and are only guidelines based on clinical heuristics (see e.g. Cosgrove et al. (Z015)).
The killing rates and tolerances of bacteria for specific antibiotics are based on single
cultures; the European Committee on Antimicrobial Susceptibility Testing (EUCAST)
provides clinical breakpoints and minimum inhibitory concentration (MIC) distributions
for many widely-used antibiotics, as well as clinical guidelines for their usage based
on such experiments from multiple laboratories (EUCAST, 2017). It seems that rates
and tolerances for individual species cultured in vitro do not generally correlate with the
in vivo activity of antibiotics (Parijs and Steenackers, 2017), suggesting there is little
possibility for reliably extrapolating measured in vitro effects to in vivo effects. The
collateral damage of antibiotics is therefore potentially very high and is only beginning

to be seriously investigated.

Collateral damage to the microbiome

The mechanisms of action of many antibiotics target fundamental parts of cellular ma-
chinery which are shared by many different bacteria. In most cases, using an antibiotic
to treat an infection caused by a single species inadvertently affects other bacteria as well
and causes collateral damage. Such a depletion of normal bacterial communities consti-
tutes a strong perturbation to the stability of the ecosystem. Gastrointestinal disturbances
such as diarrhoea have always been recognized as a relatively common side-effect of
antibiotics (Hempel et al., 20172). The risk of further unintended consequences for the
gut microbiome has been known about for many decades: Bohnhoff and C. P. Miller
(T962) reported that streptomycin increased the likelihood of Salmonella infection in
mice. Recently, the advent of high-throughput sequencing has allowed quantification of
this disturbance at the community level.

Several pioneering studies have established the dramatic impact of short courses of
common antibiotics on the gut microbiome in healthy individuals (Modi et al. (2014)) pro-
vides a useful review). Lofmark et al. (Z006) looked at the effects of a week-long course
of clindamycin in eight healthy volunteers, and found an enrichment of clindamycin-
resistant strains of Bacteroides and long-term persistence of resistance genes two years
afterwards (Lofmark et al., 2006; Jernberg et al., 2007). Dethlefsen et al. (Z008) gave
a week’s course of ciprofloxacin to three individuals, expecting that effects would be
minimal because ciprofloxacin has little in vitro activity against members of the gut
microbiota. After four weeks, they observed that community composition had mostly
returned to its pre-treatment state, but even six months afterwards the depletion of cer-
tain taxa remained. In a follow-up study, around fifty samples each were collected over
ten months from three individuals, with two five-day courses of ciprofloxacin separated

by six months (Dethlefsen and Relman, 20T1). The effect of each of the courses of
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ciprofloxacin was different, suggesting the existence of hysteresis in the gut microbiome;
elsewhere in ecology, it is well established that compounded perturbation can produce
ecological surprises (Paine et al., T998). The longevity of this altered microbiome state
after antibiotics can be extraordinary when contrasted with the length of treatment: Jakob-
sson et al. (2010) found that three individuals who received combined clarithromycin and
metronidazole for seven days had persistent effects up to four years afterwards.

Certain effects of antibiotics appear to be highly reproducible across individuals while
other aspects remain highly individualized. Raymond, Ouameur, et al. (2016) reported
that a week-long course of cefprozil caused an increase of Lachnoclostridium bolteae
in sixteen out of eighteen individuals. However, in other ways there were strong asso-
ciations between the intitial state of the gut microbiome and the response: increased
levels of Enterobacter cloacae were only observed in individuals who had higher levels
of Bacteroides before treatment. These and other studies typically use small numbers of
individuals and approach the problem anecdotally. It is therefore striking that the effects
of antibiotics are dramatic enough to be clearly observable with such study designs when
associations between the microbiome and disease are usually quite subtle. A course of
antibiotics is perhaps the most abrupt perturbation that a bacterial community can ex-
perience. What is lacking is systematic quantification of the effects of antibiotics in a
consistent framework to allow associations with long-term impacts on health using large

populations.

Long-term impacts on health

Depletion of the diversity of bacterial communities can have negative impacts on the
health of the host. The main reason for this is that the colonization resistance provided
by the stable normal microbiome is reduced, allowing pathogenic colonization or over-
growth. Clostridium difficile infection (CDI) is often used as a poster child for micro-
biome research. Individuals who suffer from CDI have typically recently undergone
broad-spectrum antibiotic treatment, which reduces the diversity of the gut microbiome,
and have markedly different gut microbiome composition to both healthy individuals and
those with non-C. difficile-associated diarrhoea (Schubert et al., 2(0T4)). The opportunistic
overgrowth by C. difficile is the manifestation of the deeper community-wide dysbiosis;
it is the symptom, not the cause. Conventional treatments for C. difficile typically have a
very low success rate and a high relapse rate. A simple but effective treatment is faecal
microbiota transplant (FMT): stool from a healthy donor is transplanted into the sufferer
with the aim of suppressing the overgrowth and restoring a healthy gut microbiome. Con-
sistent success rates of above 90% have been reported in multiple trials (Aroniadis and
Brandt, 2014)). Although the mechanism by which FMT actually works is still not entirely
understood, it somehow restores the gut microbiome to a community state that controls
the growth of C. difficile (Stein et al., 20T3). Indication that the general principle of

dysbiosis is important — rather than specifically C. difficile — comes from the observation
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that intestinal colonization can also occur from other parts of the human microbiome dur-
ing gut dysbiosis; it has recently been shown that oral Klebsiella species can ectopically
colonize the intestine under certain conditions (Atarashi et al., 2ZOT7).

Colonization is not the only risk posed by a low diversity gut microbiome. Inter-
actions between the gut microbiome and the immune system can lead to associations
between abnormal states of the gut microbiome and the outcomes of other treatments.
Individuals undergoing haematopoetic stem cell transplant (HSCT) for underlying im-
mune conditions are typically immunocompromised or immunosuppressed before trans-
plant, meaning they are placed on high levels of antibiotic prophylaxis. Taur et al. (2014
looked at survival after three years in 80 patients undergoing HSCT and found that low
gut microbiome diversity at the time of engraftment was significantly associated with
lower survival in a multivariate model taking other clinical variables into account. The
mechanism for this may be connected to the risk of graft-versus-host-disease, which can
be modulated by the normal gut microbiota (Simms-Waldrip et al., 2017). Similarly, in
cancer treatment immune checkpoint inhibitors used to treat tumors fail to work in some
individuals due to abnormal gut microbiome composition; the efficacy of these inhibitors
can be restored by probiotics (Routy et al., 2017).

There is abundant evidence that perturbation by antibiotics can alter the long-term
composition of the gut microbiome and have associated detrimental effects on human
health. However, we lack a mathematical framework to systematically compare these
perturbations. The development of a common framework for comparing the effect of
antibiotics on the state of the gut microbiome would be an important step for population-
level studies into their long-term impact. In Chapter B I develop a mathematical model

to describe this perturbation derived from simple ideas in classical ecological theory.

1.3.2 Antimicrobial resistance

Any antibiotic exerts a selective pressure on bacteria to evolve or acquire resistance to
that antibiotic, contributing to the development and spread of antimicrobial resistance
(AMR), which has been described as one of the greatest threats to global health (O’Neill,
2016). AMR is an umbrella term for any form of increased tolerance or resistance of
microorganisms to drugs used to treat infections involving them, but there is considerable
diversity. Some forms of AMR occur due to chromosomal mutations in specific genes
e.g. in in Myobacterium tuberculosis, rifampicin resistance repeatedly arises through
predictable mutations in the rpoB gene (Ford et al., 2013). Other forms involve the
evolution of novel genes that confer resistance to specific antibiotics e.g. the mobilized
colistin resistance gene mcr-1 which was recently described by Liu et al. (Z0T6). In
bacteria, such genes can be transferred on mobile genetic elements (Frost et al., Z005).
The fact that bacteria in the body exist in communities is relevant for AMR, because
antimicrobial tolerance is known to be higher in multi-species biofilms due to a combina-

tion of multiple mechanisms including physical barriers, mutual cross-species protection,
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and the induction of tolerance phenotypes due to the presence of other species (Hathroubi
et al., 20T7). The persistence of plasmids carrying resistance elements has been shown
to be greater in biofilms of single species compared to well-mixed liquid cultures (Riden-
hour et al., 2017). AMR is fascinating because the genetic architecture of bacteria means
that it can be approached at multiple levels. There is a surprisingly limited evidence base
for antibiotics compared to other commonly-used drugs, and this is reflected in the va-
riety of ways that antibiotics are used worldwide: antibiotic availability and usage vary
dramatically between countries (Blommaert et al., P(1T4) and even within countries, with
different recommendations for empirical treatment of common syndromes at different
English hospital Trusts (Llewelyn et al., 2014)). Such a complexity of differing, individu-
alized responses might appear overwhelming, but this does not preclude the application

of general principles about ecosystems.

1.3.3 Summary

I have argued that understanding both the effect of antibiotics on the human microbiome
and the problem of antibiotic resistance requires thinking about the effect of antibiotics in
ecological terms, rather than focusing on single species. In Chapter @ I develop a model
of perturbation to the gut microbiome by antibiotics and demonstrate that it describes
the time-response behaviour and transition to a different long-term community state. In
Chapter B I look at how the spread of resistance on mobile genetic elements can be
tracked using whole genome sequencing, using a global dataset of isolates that carry a
gene conferring resistance to the ‘last-resort’ antibiotic colistin. Both these chapters are
framed as ecological problems. In the next section, I outline some important approaches

for analyzing bacterial communities that I adopt in this thesis.

1.4 Ecological approaches

The sequencing data that can now be collected on bacterial communities require differ-
ent approaches to those of culture-based microbiology — which by necessity usually fo-
cused on culturable single organisms — and can benefit from the application of techniques
adopted from traditional macro-ecology to understand the communities as ecosystems.
These approaches are collectively referred to as microbial ecology. In some instances,
the ease of sequencing means that more is known about the genetics of bacterial commu-
nities than about their traditional ecology, leading some to suggest the advent of ‘reverse
ecological’ approaches that attempt to infer ecological units from genomic data alone
(Shapiro and Polz, 2014; Lassalle et al., 20T5). I believe there is merit in this approach,
and in this thesis I attempt to synthesize information from multiple sources to address
ecological questions about bacterial communities. This section outlines some of the im-

portant concepts and modelling approaches I use to achieve this.
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Metric Definition Reference
Richness N
Shannon index H=— Zfil pilnp; Shannon (1948)
Simpson index A=YV p? Simpson (1949)
Hill diversity ap = ( R, p?) 1/(1=q) Hill (1973)
Phylogenetic diversity Sum of branch lengths of Faith (1992)
minimum spanning path of
tree

Table 1.1: Commonly used diversity metrics mentioned in this thesis. N is the total number of species
observed in the community, and p; is the proportional or relative abundance of species i. Most diversity
indices can be expressed in terms of the Hill diversity for various values of g e.g. richness is 4=°D, but
phylogenetic diversity cannot.

1.4.1 Diversity and composition

Diversity is variously defined as the number, evenness, and types of taxa within a com-
munity. Diversity metrics are summary statistics that measure different aspects of this
definition. There is no absolute measure of diversity and a variety of metrics exist — Ta-
ble [T gives a list of some commonly-used metrics mentioned in this thesis. Readers
interested in the ecological debate about the consistent framework for defining diversity
should consult Tuomisto (20T10). I take the stance of Ricotta (2Z005) that the substantial
disagreements about what diversity actually is are best resolved by taking diversity to
refer to “a set of multivariate summary statistics for quantifying different characteristics
of community structure”.

Higher diversity is sometimes assumed to be a positive quality of an ecosystem, im-
plicitly or otherwise. This is wrong: there is no such universal law of diversity. It is true
that higher diversity is associated with health in the gut microbiome (Lloyd-Price et al.,
2016) but a counterexample is that higher diversity correlates with disease in the oral
microbiome (Wade, 2013). More generally, the diversity of human-associated bacterial
communities varies substantially depending on the environmental niche (Huttenhower et
al., 2017?). Shade (P017) describes diversity as “the question, not the answer” — it should
provide a starting point for enquiry into ecological mechanisms, rather than a conclusion
in itself. I agree with this assessment. In this thesis, I use diversity as a way of summaris-
ing a community and as good first step for investigating communities within appropriate
contexts. It is also a useful way to incorporate bacterial communities into other models

using a single variable. Using diversity to compare samples can be misleading because
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very different communities can have identical diversities. Composition of samples can
also be directly compared with pairwise dissimilarity metrics. In this thesis I use the
Bray-Curtis dissimilarity metric (Bray and Curtis, T957) defined as

BC., — Lk ik — x|
i+ xr)]

where x;; 1s the abundance of species k at site i. The metric is bounded by 0 (completely

(1.1)

identical composition) and 1 (completely dissimilar composition). A matrix of pairwise
dissimilarities can then be used to produce an ordination of samples using many differ-
ent techniques. These ordinations are not a statistical test in themselves and the best
technique depends heavily on the dataset and research question (McMurdie and Holmes,
2(0173) but they are often valuable for an exploratory analysis. Using ordinations can show
clear general trends that can then be further investigated quantitatively (for example, Fig-
ure 7). Quantitatively, associations between environmental factors or metadata can be
tested using a permutational analysis of variance (Anderson, 200T; Ramette, 2007), as
used in Chapter D.

1.4.2 Associations and interaction networks

The ability to test for associations with disease for many different species simultaneously
rather than specifying in advance which species are to be tested allows a ‘hypothesis-free’
data-fishing approach to finding potential associations. The large number of simultaneous
tests produces a multiple testing problem, which it is important to correct with multiple
testing corrections such as the Benjamini-Hochberg procedure (Benjamini and Hochberg,
[995). However, reporting associations with taxa as if they were independent tests ne-
glects the fact that in reality taxa are interacting with each other, and this information
is encoded in the correlations of their abundances. Homogenized samples of bacterial
communities provide no direct information on spatial structure but they do contain in-
formation on the co-occurrence of taxa across samples, hinting at possible ecological
interactions (whether direct or indirect). There are problems with calculating correla-
tion coefficients from compositional data; the restriction on the total sum of abundances
means that relative abundances are on a simplex, so coefficients are not independent. In
Chapter B, I use correlations of log-transformed relative abundances of disease-associated
taxa (Friedman and Alm, P0T7) combined with a measure originally developed for social

network analysis (Freeman, T977) to identify important members of this network.

1.4.3 Stability and variability

The temporal stability of human-associated bacterial communities varies depending on
their location. The human gut microbiome has been suggested to be less resilient than
the oral microbiome (Zaura et al., 2015) but appears to be stable over time in the absence

of major perturbations (David et al., 20T4)). How a system responds to perturbation can
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give insight on the forces that underly its continued stability. In classical ecology such
perturbation experiments are common. As I have discussed, the effect of antibiotics on
the gut microbiome represents an ideal perturbation experiment, but this perturbation is
typically reported fairly anecdotally (Section T3T).

The idea that stable communities in a niche are usually similar and perturbation leads
to increased dissimilarity has led to the adaptation of the ‘Anna Karenina’ principle for
microbiome research: “dysbiotic individuals vary more in microbial community compo-
sition than healthy individuals” (Zaneveld et al., 2017). There have been calls for the
application of ecological theory to the gut microbiome (Costello et al., 20T2). The con-
cept of a fitness landscape from evolution has been adapted for ecological communities
as a stability landscape (Holling, T973), and applied heuristically to the human micro-
biome (Relman, 2017). In Chapter B I argue that this concept can be used to derive a
simple mathematical model that captures the time-response of the gut microbiome to a

short but intense perturbation.

1.4.4 Nested genetic diversity and horizontal gene transfer

Bacterial communities can exhibit complex nested genetic diversity. The amount of data
from a 16S rRNA analysis may seem large but it is only a tiny fraction of the true genetic
diversity in any given community. Bacteria reproduce asexually by clonal cell division
and inherit genetic material vertically. They can also undergo HGT i.e. genetic mate-
rial can move across this vertical line of descent. HGT can prevent the accumulation
of deleterious mutations and loss of fitness, rescuing populations from Muller’s ratchet
(Takeuchi et al., 20T4), and provides a valuable source of genetic novelty for pheno-
typic innovation and niche adaptation (Ravenhall et al., 2015). Genetic adaptation to gut
colonization in E. coli is conferred by gene inactivation or modulation by an insertion
sequence (IS) (Barroso-Batista et al., 2014). Bacteria also have mechanisms in place to
control or prevent HGT to prevent the accumulation of selfish genetic elements on their
chromosomes. The mechanisms (and counter-mechanisms) of HGT are complex but are
traditionally divided into three classes: transformation, transduction, and conjugation
(Juhas, 20T5). There is accumulating evidence that HGT is not just important for evolu-
tionary novelty in stress situations (Aminov, 2011; Peterson et al., 201T) but is a normal
feature of bacterial communities. HGT appears to be pervasive in the human microbiome,
with 25-fold increased rates observed between human-associated bacteria compared to
between non-human isolates (Smillie et al., 2O1T). These rates are likely much higher in
stress situations: Stecher et al. (Z017) demonstrated that gut inflammation can boost rates
of conjugative HGT between pathogenic and commensal Enterobacteriaceae.
Considering these fuzzy ecosystems presents new challenges for microbial ecology.
Unlike macroscopic ecology where species remain distinct, the boundaries for bacteria
are not as clear-cut. Indeed, some have questioned whether there are in fact meaningful

bacterial ‘species’, as bacteria do not fit standard definitions which stress reproductive
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isolation (Mayr, T947). It seems a mistake to conclude that because microorganisms do
not fit macroecological species definitions then they cannot exhibit any characteristics
of species; more sensibly a spectrum of speciation can be defined based on the level
of overlap of genomic and ecological units (Shapiro and Polz, 20T4). The clonality of
bacteria is determined by the balance of recombination and natural selection, and appears
to be largely stable over time for given populations (Shapiro, Z0T6).

Although inferring the presence of HGT is in general difficult (Ravenhall et al., 2OTS),
there are cases where the unit of selection is clear; one such case is resistance to antibi-
otics. Resistance genes are often carried on mobile genetic elements such as transposons:
the smallest transposable elements are ISs, which contain transposases to catalyze their
movement between genomic backgrounds. Tracking the spread of these genes can still be
challenging due to the nested genetic mobility of bacteria; transposons can jump between
plasmids, and plasmids can jump between species (Sheppard et al., POT6). Antibiotic re-
sistance genes are extremely common in the environment and in the human microbiome.
Bacterial communities in the human body are repeatedly exposed to a range of natural
antimicrobials in our diet. These include plant-based essential oils and flavonoids (Donsi
and Ferrari, 2016; D. Wu et al., 200R), as well as anthropogenically added antimicrobials
used for personal hygiene such as chlorhexidine and triclosan (Brading and Marsh, 20073).
In addition, exposure of the microbiome to antibiotics (whether clinical or environmen-
tal) is likely to select for HGT events which lead to the acquisition of genes that confer
resistance or increased tolerance. The human microbiome can harbour multiple antibi-
otic resistance genes (Sommer et al., 2009; Seville et al., 200Y9), often in association with
mobile genetic elements, and has previously been described as a resistance ‘reservoir’
(Roberts and Mullany, 20T0).

Bacterial genomes are now usually thought of as consisting of a conserved core
genome (found in all members of a species) and a variable mobile genome or mobilome
(found in only some species). The total diversity of genes is referred to as the pan-genome
(Tettelin et al., P00K). There are analogies here to the human microbiome, which also
consists of core components found in all individuals and variable components (whether
species or genes). The wider community of environmental bacteria represents the meta-
community of the microbiome (Adair and Douglas, ?017), and can provide a source of
new species and new genes, including those for antibiotic resistance. Understanding the
flexibility of bacterial genomes at this level is thus extremely important for efforts to
control disease (Adair and Douglas, 2017).

Genes viewed as part of the core genome for some species can confer antimicrobial re-
sistance when expressed in a different bacterial host. For example, resistance to triclosan
can be conferred when E. coli expresses a house-keeping metabolic gene (Enoyl-[acyl-
carrier-protein] reductase, fabl) derived from the oral microbiome (Tansirichaiya et al.,
20177). The fabl gene is present on a transposon in Staphylococcus and can be selected

for by triclosan (Furi et al., 2016). This is just one example to indicate how resistance
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Chapter Sample source Sequencing approach
Saliva

Supragingival plaque 16S rRNA (V5-V7)

a Faeces

B Multiple (including faeces, blood, urine) Whole genome sequencing

Table 1.2: Human-associated bacterial communities analyzed in this thesis. For more details on the
datasets, see the associated chapter.

elements can be mobile across species and have differential effects depending on their
host, making quantifying and tracking antimicrobial resistance extremely challenging. In
Chapter B I describe work studying bacterial isolates from multiple species that contain
a recently-described gene encoding resistance to colistin on a composite transposon (Liu
et al., P016). Using a global dataset allows the dating of the emergence of this composite

transposon and provides insight into its origins.

1.5 Conclusions

As I have outlined above, the recent dramatic increase in availability of sequencing data
about human-associated bacterial communities facilitates analysis of them in their en-
tirety as ecosystems. In this thesis, I analyze a total of four datasets. The first three
contain 16S rRNA marker gene sequences from various human niches. For these com-
munities, I adapt existing modelling techniques and develop new models to extract as
much information as possible from the data. This allows me to draw novel conclusions
about their role in the etiology of disease, the impact of various factors in shaping their
composition, and their temporal stability. The final dataset is a global whole genome
sequencing dataset of mcr-1 positive isolates, and contains samples from multiple hu-
man niches (including faeces, blood, urine, and sputum) as well as many agricultural and
environmental samples that form part of the wider ecological metacommunity.

Broadly, this thesis is divided into two complementary halves on the oral microbiome
(Chapters 2 and B)) and antibiotics (Chapters @ and B). Each chapter mainly addresses one
of the four challenges for associating bacterial communities with health and disease that I
outlined in Section T2, although components of each appear in all chapters. In Chapter
D, I demonstrate how to assess the role of different factors in determining inter-individual
variation in salivary microbiome composition. In Chapter B, I look at a multi-symptom
disease (periodontitis), and show that a cross-sectional dataset of homogenized samples
can be used to distinguish associations with different features of disease and even derive
information on possible biofilm interactions. In Chapter &, I go from a schematic picture
showing the vagueness of dysbiosis to a simple but effective mathematical model that can
be fitted to real data on antibiotic perturbation of the gut microbiome. Finally, in Chapter

B Iinvestigate a global dataset containing whole genome sequences of mcr-1-positive iso-
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lates and identify the appropriate scale of assocation as a composite transposon. I inves-
tigate this unit’s distribution in several species across the multiple countries and sample

sources that make up the meta-community of human-associated bacterial communities.
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Chapter 2

2.1 Introduction

As I have outlined in the introduction, the oral microbiome is one of the most diverse
of any human-associated bacterial community (Huttenhower et al., 2012; Wade, 20T13),
and is a causative factor in conditions such as dental caries (F. Yang et al., 20T7) and
periodontal disease (Teles et al., 20T3). It has also been implicated as a reservoir for
infection at other body sites (Wade, 2013) and in the pathogenesis of non-oral diseases,
such as inflammatory bowel disease (Lucas Lopez et al., 2017). Strictly speaking there is
no single ‘oral microbiome’ as its composition is highly heterogeneous across different
sites in the mouth (Eren et al., 2013; Mark Welch et al., 2016), but the term is commonly
used to encompass all of these. Site-specific microbiomes can be observed in the peri-
odontal sulcus, dental plaque, tongue, buccal mucosa and saliva (Krishnan et al., POT6).
The salivary microbiome exhibits long-term stability and can be considered as an impor-
tant reservoir that contains microorganisms from all distinct ecological niches of the oral
cavity. Characterizing and understanding the factors defining the composition of the sali-
vary microbiome is thus crucial to understanding the oral microbiome (Takeshita et al.,
2016; Belstrgm et al., 2OT6).

Some factors that are thought to influence the human microbiome include environ-
ment, diet, disease status and host genetics (Section [Z2X7). The relative importance of
these factors for the oral microbiome is still under debate, with the majority of previ-
ous studies focusing on the gut microbiome, although it seems reasonable to assume
some potential interaction between the salivary microbiome and microbial communities
in other parts of the human body including the intestinal tract. The concept of a vertically
transmissible microbiome that is directly encoded into the genome of individuals rather
than being purely environmental is extremely provocative. At extreme scales, there are
undoubtedly signals of long-term co-evolution between different primates and their gut
microbiomes (Moeller et al., 2014) and signals of short-term strain evolution within in-
dividuals (Garud et al., 2017; S. Zhao et al., 20T7). At intermediate scales, there is a
question over to what extent differences in the composition of oral microbial communi-
ties can be linked to genetic differences between their human hosts.

There is evidence that genetically related individuals tend to share more gut microbes
than unrelated individuals, whether or not they are living in the same house at the time of
sampling (Turnbaugh et al., 2009; Yatsunenko et al., 2012). However, the level of covaria-
tion is similar in monozygotic and dizygotic twins, suggesting that a shared early environ-
ment may be a more important factor than genetics (Turnbaugh et al., 2009; Stahringer
et al., OI2). The effect of co-habitation with direct and frequent contact is greatest
when considering the skin microbiome, with a less-evident effect on the gut and salivary
microbiomes (Song et al., 20T3).

There is also evidence that genetic variation is linked to microbiome composition
across other body sites, including the mouth (Blekhman et al., P0TS), with a recent

genome-wide association study (GWAS) identifying several human loci associated
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(p < 5x10~%) with microbial taxonomies in the gut microbiome (Bonder et al., 2OT6).
However, no study to date has incorporated both genetic relatedness as a continuous vari-
able and shared environment into the same analysis of the salivary microbiome.

Despite high diversity between individuals, the salivary microbiome appears to have
little geographic structure at genus level at the global scale (Nasidze et al., 2009). Nev-
ertheless, at smaller geographical scales it appears that the environment plays a role in
the oral microbiome. Song et al. (2013) studied 60 household units and found that the
bacterial composition of dorsal tongue samples was more similar between cohabiting
family members than for individuals from different households, with partners and mother-
child pairs having significantly more similar communities. However, this did not include
information on genetic relatedness in addition to family relationships. It appears that
household-level differences in the salivary microbiome may also apply to genetically un-
related individuals and non-partners, with a similar pattern observed in analysis of 24
household pairs of genetically unrelated individuals, only half of whom were considered
romantic couples at the time of sampling (Abeles et al., ZOT#).

The establishment of the oral microbiome appears to proceed rapidly in the first few
years of life, with a notable increase in diversity up to three years (Song et al., POT3),
especially after the eruption of teeth (Cephas et al., PZOTT). The plaque microbiome also
appears stable within adult individuals over at least a period of three months, with a
unique ‘fingerprint’ of oligotypes discernible even within a single bacterial genus (Utter
et al., 20T6). Another study indicates that the salivary microbiome is relatively stable
over a year, despite measurable effects of interventions like flossing (David et al., 2(114).
Taken together, these findings suggest the intriguing hypothesis that once a particular
oral microbiome is established earlier in life it can potentially persist over months and
perhaps even over years, particularly if external factors such as diet remain fixed. If
this were true, shared upbringing effects would continue to be detectable in the salivary
microbiome even after individuals are no longer living in the same household (Stahringer
et al., 2012).

A recently described large Ashkenazi Jewish family (Levine et al., ZOT6) offers an
opportunity to investigate the effect of both environment and genetics in closely-related
individuals. The availability of host genetic data for this cohort means it is possible cal-
culate similarity between individuals based on single nucleotide polymorphisms (SNPs),
rather than using measures of relatedness from pedigrees that do not precisely correspond
to shared genetic content (Speed and Balding, 2014). I hypothesized that using this more
accurate measure of host genetic similarity could lead to different conclusions about the
proportion of shared microbiome composition attributable to genetics compared with
previous studies. Furthermore, while like other studies this dataset lacks information
on potential confounders such as diet and lifestyle (Nasidze et al., 2009), due to shared
cultural practices between members of the ultra-orthodox Ashkenazi Jewish community

(Levine, 2015) they are likely to be more controlled for in this cohort than in others. For
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this reason, this cohort represents a unique opportunity to compare the salivary micro-
biome within a large number of individuals living in separate locations but nevertheless
sharing a similar diet, lifestyle, and genetic background, and to investigate the long-term

effect of shared upbringing on salivary microbiome composition.

2.2 Materials and Methods

2.2.1 Cohort

Cohort

The cohort contained data from 133 individuals within the same extended family (Fam-
ily A) living in four different cities (I, II, III, IV) across three continents (see Levine
et al. (20I6) for more information). There were also samples available from 18 indi-
viduals from a separate smaller family (Family B), and 27 unrelated Ashkenazi Jewish
controls. All individuals studied were of genetically confirmed Ashkenazi Jewish ances-
try (Levine, 2OTS; Levine et al., 2016). Shared household was not directly available but
Adam Levine’s doctoral work on this cohort had established that individuals within this
community grow up in the shared household that their parents live in, then marry and
subsequently leave the family home, having children at a median age of 21 (95% CI: 19-
26) (Levine, 20T15). Therefore, I inferred shared household according to age: I assumed
that individuals aged 18 or younger at the time of sampling were living with their parents
and individuals aged 25 or older were not. These tentative households were then verified
by Adam Levine. Individuals aged between 19 and 24 were excluded from household
analyses as household could not be reliably inferred.

For analysis of the effects of household, I included only households with two or more
individuals so as to remove the possibility that I was only measuring inter-individual
differences, which can be large in the salivary microbiome (Nasidze et al., 2009; Utter
et al., 20T6). 26 individuals were living with at least one other individual at the time of
sampling in a total of nine households. An additional 35 individuals who had grown up
in a shared household with at least one other individual in the cohort, but who were no
longer living together were subsequently included in the analysis.

I took the possibility of identification of participants due to the combined inclusion
of (inferred) household, age, sex, and city seriously, and anonymized the four cities to
remove this risk. Ethical and research governance approval was provided by the Na-
tional Research Ethics Service London Surrey Borders Committee and the UCL Research

Ethics Committee. Written informed consent was provided by all participants.
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2.2.2 Sampling and extraction
Sampling

Saliva samples were collected in sterile tubes containing saliva preservative buffer as per
the method of Quinque et al. (Z00€). 2x saliva preservative buffer was prepared according
to the following protocol: 50 mM Tris pH 8.0, 50 mM EDTA pH 8.0, 200 mM NacCl,
1% (w/v) SDS and 50mM sucrose dissolved in ddH,O, followed by a filter sterilization
through a 0.2 um filter. 2ml of saliva was collected from each participant and 500ml of
2x saliva preservative buffer was added. After that, 1ul of proteinase K (Sigma-Aldrich
Company Ltd, Dorset, UK), 75ul of 10% SDS and 2ul of 10% azide per ml was added
to the samples and incubated overnight at 50°C and stored at -200°C. Bacterial DNA
was extracted with the PurElute Bacterial Genomic Kit (Edge Biosystems, Gaithersburg,
MD) according to the manufacturers instructions from 0.5 ml sample/buffer mix and the
dried DNA pellet was re-suspended in 40ul of DNase RNase free water. After DNA
extraction, three spikes were added to all samples for the purposes of quality control in a

final concentration of 4pg/ml, 0.4pg/ml and 0.08pg/ml, respectively (see below).

PCR amplification, purification and sequencing

The Mastermix 16S Basic containing MolTaq 16S DNA polymerase (Molzym GmbH &
Co.KG, Bremen, Germany) was used to generate PCR amplicons. PCR amplicons were
purified in two rounds using the Agencourt AMPure system (Beckman Coulter, Beverly,
Massachusetts) in an automated liquid handler Hamilton StarLet (Hamilton Company,
Boston, Massachusetts). DNA quantitation and quality control was performed using the
Agilent 2100 Bioanalyzer system (Agilent Technologies, Inc., Santa Clara, CA). Amplifi-
cation was performed with 785F and 1175R 16S rRNA primers that amplified the V5-V7
region of the 16S rRNA gene. Sequencing was performed with [llumina MiSeq (Illumina,
San Diego, CA).

Quality control

With the aim of assessing technical variation across runs, samples had been spiked during
library preparation with a fixed amount of synthetic DNA. Three unique spike sequences
(350 bases in length) were designed which could be easily identifiable for quality control
purposes. I was not involved in the decision to use these spikes, which was made before
my involvement in the project; for more information on them see the Supplementary
Material of the associated publication (Shaw, Ribeiro, et al., ZOT7).

I found that the number of spike sequences and the number of putative 16S rRNA
sequences (length between 350 and 380 bases) were negatively correlated with each other,
which would be expected due to the limited total sequencing depth of the [llumina Miseq
(Figure Aa). The variation in reads corresponding to this spike across samples was

independent of run. After initial concern about the possibility of spikes affecting the
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Variable OTU F-statistic (p-value) MED F'-statistic (p-value)
Sequencing plate  2.876 (0.001) 3.132 (0.001)
Family 2.134 (0.004) 2.319 (0.001)
Gender 0.963 (0.442) 1.135(0.243)
Age 2.516 (0.009) 2.560 (0.001)

Table 2.1: Results from an example permutational analysis of variance for de novo OTUs at 98.5 %
sequence similarity and MED phylotypes. For every variable, MED phylotypes result in a greater expla-
nation of variance.

downstream analysis, Andre Ribeiro resequenced a subset of samples without spikes.
My analysis confirmed the same qualitative differences, although with a clear batch effect
(Figure A72b), implying that the addition of spikes would not have had a negative impact

on downstream analysis.

Phylotyping and taxonomic classification

Paired-end reads were merged with fastq-mergepairs in VSEARCH v1.11.1 (Rognes
et al., 2OTH), discarding reads with an expected error >1. As the expected length of the
V5-V7 region was 369 bases, I discarded sequences with <350 or >380 bases. I then
clustered sequences with MED (Eren, Morrison, et al., 20T4). MED requires that the
variation in read depth across samples does not differ by several orders of magnitude, so
I discarded samples with fewer than 5,000 reads and subsampled to a maximum number
of 20,000 sequences, resulting in 6,353,210 sequences. I ran MED v2.1 with default
parameters: minimum substantive abundance of an oligotype, M = 627 (1/5000 total
sequences); maximum nucleotide variation allowed within an oligotype d = 4. This anal-
ysis removed 1,044,114 sequences as outliers due to the minimum substantive abundance
criterion (853,159) and the nucleotide variation criterion (190,955). I assigned taxonomy
to MED phylotypes with RDP (Q. Wang et al., 2007) against HOMD (T. Chen et al.,
P010).

As mentioned in Section T3, MED offers higher resolution compared to OTU pick-
ing methods, and has previously been shown to differentiate the composition of the oral
microbiome of individuals over time even within the same genus in a study of plaque
samples (Utter et al., ZOTH). I wanted to see if this higher resolution improved results in
this dataset as well, so also clustered sequences into de novo OTUs at 98.5% sequence
similarity with VSEARCH v1.11.1 (Rognes et al., 2016) following the pipeline outlined
in Figure [A71l. The compositional dissimilarities between samples from using MED and
OTUs were highly correlated (Spearman’s p = 0.88, p < 0.001; Figure A73). In an ex-
ample analysis of variance MED phylotypes allowed increased statistical power, with a
greater F-statistic for every variable considered (Table D7) confirming that MED offers
greater differentiating power between samples, consistent with the literature (Eren, Mor-

rison, et al., 20T14)). All further analysis in this chapter uses MED phylotypes rather than
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OTUs.

Comparison to HMP samples from various sites in the mouth sequenced with V3-V5
primers (Eren, Borisy, et al., 2014) also indicated that Ashkenazi Jewish individuals do
not have a significantly different oral microbiome from other populations (Figure A-4).
However, the use of different primers makes it difficult to reach a robust conclusion on

this point.

2.2.3 Inclusion of host genetics

Genetic relatedness was clearly linked with salivary microbiome dissimilarity with a sim-
ple correlation (Figure DTla), but I wanted to test the effect of using different measures
of relatedness, as unusually this dataset had a genuine genetic distance available rather
than a proxy. I investigated the effect of relatedness between individuals on salivary mi-
crobiome composition using both genetic kinships k¢ (based on genome-wide SNPs) and
pedigree kinships k, (based on the pedigree). Pedigree kinships were calculated with
kinship2 (Sinnwell et al., 20T4) and genetic kinships with LDAK v5.94 (Speed et al.,
2017) using genome-wide SNP data from either the [llumina HumanCytoSNPv12 (Illu-
mina, USA) or the Illumina HumanCoreExome-24, as described elsewhere (Levine et al.,
2016).

These genetic kinships k, are normalized to have a mean of zero, and correspond
to genetic similarity between individuals. k, correlates with the pedigree kinship &, but
there can be substantial spread around the expected values due to the random nature of
genetic inheritance making k, a more accurate measure of true genetic similarity between
individuals (Speed and Balding, 200T4). These kinships are differently defined so have
different values and scalings, although they are correlated (Figure 2Z-Ib). I converted

kinships to dissimilarities scaled between 0 and 1 with:

ko, —min(kg)
max (kg) — min(k,)
d,=1-2k, 2.2)

dy=1- 2.1)

I then converted these dissimilarities to Euclidean distances using dist () (Figure
ic) and then used metaMDS () to produce a MDS ordination using vegan v2.4.4 (Ok-
sanen, 20T€6). For the ordination I followed Blekhman et al. (2015) who investigated
host genetic variation and its association with microbiome composition. I similarly used
k =5 dimensions, and found that using more did not affect the conclusions. 1 nor-
malised the MDS axes using a Box-Cox transformation, with parameter A calculated

from BoxCox.lambda using forecast v8.2 in R (Hyndman, 2017) with the formula

o =Y (2.3)
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Figure 2.1: Genetic dissimilarities based on SNPs weakly correlate with salivary microbiome dis-
similarities and are different from pedigree kinships. (a) Pairwise genetic dissimilarity appears weakly
but significantly correlated with pairwise salivary microbiome dissimilarity (Mantel statistic r = 0.065,
p = 0.001). Genetic dissimilarity was based on kinship calculated with LDAK, such that higher values
indicate lower relatedness. Salivary microbiome dissimilarity was calculated with the Bray-Curtis metric.
The rough clusters visible from left to right correspond to (i) siblings/parent-child pairs, (ii) first cousins,
and (iii) less-related individuals. (b) Correlation of observed calculated kinship with LDAK against the
expected kinship from the pedigree, showing pairwise kinship estimates before rescaling to dissimilarities
(see above). (¢) Pairwise Euclidean distances calculated from rescaled dissimilarities.
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Figure 2.2: Multidimensional scaling of kinships shows the familial structure of the cohort. This
example multidimensional scaling of samples based on kinships calculated using LDAK showing the first
and second metric multidimensional scaling (MDS). The family structure is visible (colors) from the three
arms of the pedigree (Figure AF). The first five MDS axes were used to describe host genetic variation,
following Blekhman et al. (Z0T15).

2.2.4 Statistical analysis

I calculated Bray-Curtis dissimilarities between samples based on relative abundances of
phylotypes, excluding samples with fewer than 1,000 reads. Variance explained in Bray-
Curtis dissimilarities was calculated using the adonis function from the vegan v2.4.1
package in R (Oksanen, P016), which performs a permutational analysis of variance of
distance matrices (Anderson, 2001). I used n = 9,999 permutations with the following

order of variables,

plate+Gender+samplingAge+MDS1+MDS2+MDS3+MDS4+MDS5+ (environment)

where (environment) was either city, household, or city+household. When in-
cluding both city and household, permutations were stratified by city to avoid permuting

mixing the nested hierarchical levels by permuting households across cities.

2.3 Results

2.3.1 Description of cohort

The families analysed in this study have been already described in detail by Levine et al.
(20716). All individuals sampled were from the ultra-orthodox Jewish community. Family
A comprised over 800 individuals living in at least eight cities in four countries. Family
B comprised over 200 individuals living in at least four cities in three countries. The

unrelated controls were sampled from the same community as the two families. In total,

51



Chapter 2

data were generated from 133 individuals in Family A, 18 individuals in Family B, and
27 controls.

There were 271 phylotypes in the total dataset, all of which were present when consid-
ering just Family A. 49 of these phylotypes were present in >95% of individuals within
Family A, with the Firmicutes the most abundant phyla (Figure C3a) as observed in pre-
vious oral microbiome studies (Stahringer et al., 20T72; Dewhirst et al., Z0T0). The most
abundant genera were Streptococcus (30.4%), Rothia (18.5%), Neisseria (17.1%), and
Prevotella (17.1%). Composition of samples was similar between the two families (A
and B) and the unrelated controls (Figure Z3b). These groupings had a small but sig-
nificant effect in an analysis of variance (R?> = 0.015, p < 0.01) but this is typical of
comparisons between such large groups that may differ in an unknown number of con-
founded variables (e.g. diet, genetics, lifestyle). I concluded that Family A was at the
very least a representative sample capturing the majority of the variation present in the
wider Ashkenazi Jewish population, if not also non-Ashkenazi-Jewish individuals. This
cohort was originally collected for a study of the genetics of Crohn’s disease (Levine
et al., 2016), and 28 individuals had a diagnosis of the disease at the time of saliva sam-
ple acquisition. I found no significant effect of Crohn’s disease on salivary microbiome
composition with an exploratory analysis of variance (R*> = 0.009, p = 0.101, n = 148)
accounting for other variables. It was therefore not included as a covariate in further

analysis.

2.3.2 Host genetic similarity and microbiome similarity

I performed an exploratory analysis on individuals in Family A with both genetic and
microbiome data available (n = 111), and found that genetic kinship was weakly but sig-
nificantly associated with salivary microbiome dissimilarity computed using Bray-Curtis
dissimilarities (Figure ZTla; Mantel test r = 0.065, p = 0.001). This analysis does not
take into account confounding by shared environment, and therefore sets a probable upper
bound on the variation that can be attributed to host genetics. An exploratory analysis of
microbiome variation across a subfamily within Family A (n = 44) showed that individu-
als from the same household had a more similar microbiome composition as measured by
Bray-Curtis dissimilarity (mean =+ s.d, 0.623 +0.088) compared with individuals from
different households (0.652 4+-0.084), and this difference was significant (two-sided 7-test,
p < 0.001). An exploratory visual representation of this variation showed some possible
clustering by household, with large overlap between households in a two-dimensional
NMDS plot (Figure 24). However, such an analysis is insufficient; household is ob-
viously correlated with variation in host genetics (Figure %) because parents tend to
live with their children. This emphasizes the need for a quantitative approach looking
at the effect of both household and genetics simultaneously as well as other potential
confounders.

The approach I chose to use was adonis, which performs a permutational analysis of
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Figure 2.4: Oral microbiome composition is possibly associated with household. Oral microbiome samples weakly cluster by household (colours), shown by (a) a non-metric

multidimensional scaling based on Bray-Curtis dissimilarities between samples from (b) n = 44 individuals in a particular subfamily within Family A. This figure includes individuals

who are currently living together (filled circles), those who had moved out of their childhood home (empty circles), and those for whom data was missing (faint circles). This weak
qualitative clustering could be due to shared environment or also due to shared genetics, suggesting a quantitative analysis is required.
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variance in community composition using a sequential sum-of-squares approach (Ander-
son, 200T). I used Bray-Curtis dissimilarities to quantify differences in salivary micro-
biome composition between individuals. The following sections present a combination
of analyses attempting to quantify the effects of shared environment and genetics. The
analysis groups were as follows: Ayg (n = 26 individuals co-habiting with at least one
other; Table D22a), Ag; (n = 61 individuals who had co-habited with at least one other,
either at time of sampling or beforehand; Table Z2b), Ag, (n = 82 individuals across four
different cities who were not necessarily co-habiting with another; Table 3), and A
(n =111 individuals with host genetic information available; Table Z4)).

These groups are nested within each otheri.e. Ay € Ag; € Agr € Aq11. The magnitude
of the effect of a variable is given by the amount of variance explained (R? in tables).

2.3.3 Shared household affects salivary microbiome composition

I performed a permutational analysis of variance on the salivary microbiome dissimilar-
ities for Ay (26 individuals within Family A, each of whom lived in a household with
at least one other individual in the cohort). At the time of sampling, these co-habiting
individuals lived across a total of 16 households in four cities (I, II, III, IV). Host genetics
was controlled for by using kK = 5 axes from a MDS of pairwise genetic distances between
individuals (see Section Z27273).

There was no significant effect of any of the MDS axes of host genetics, suggesting
that host genetics in closely-related individuals does not significantly affect microbiome
composition. I investigated the effect of environment using two levels of geography: city
and household (Table 2). A city-only model showed no significant effect of environ-
ment (R2 =0.08, p = 0.4), whereas a household-only model showed a significant effect
(R>=0.30, p =0.001). This was reproduced in a model containing both geographic vari-
ables, with permutations stratified by city, where household was still a significant effect
(R?> =0.22, p=0.001), suggesting that differences at the level of household are more im-
portant than at larger geographical scales. I confirmed that city-level effects were small
by extending the sample to Ag, (n = 82 individuals across the four cities who were not
necessarily cohabiting with others; I: 48, II: 13, III: 12, IV: 9), and found that city still
had a small effect, although it was significant (R*> = 0.053, p < 0.01). In this analysis I
also found no significant effect of genetics, but age was significant (R* = 0.028, p =0.01)
(Table I3).

2.3.4 Spouses share taxa at the sub-genus level

Restricting the analysis to only married couples within Family A (n = 16, eight couples),
shared household explained even more of the variance (R* =0.591, p = 0.001). Subtle
variations in the relative abundance of phylotypes within the same genus between house-
holds were observable, even within the same city location. For example, Leptotrichia

phylotypes qualitatively varied consistently between spouse pairs and these patterns were
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(a) Ay City only Household only City and household"
R? p R? p R? p
Sequencing plate 0.048 0.19  0.048 0.075 0.048 0.458
Gender 0.032 0.724 0.032 0.4 0.032 0.467
Age 0.069 0.017 0.069 0.004 0.069 0.013
MDSI1 0.031 0.757 0.031 0.537 0.031 0.727
MDS2 0.05 0.142 0.05 0.052 0.05  0.099
MDS3 0.03 0.807 0.03 0.585 0.03 0.862
MDS4 0.049 0.162 0.049 0.054 0.049 0.097
MDS5 0.029 0.824 0.029 0.614 0.029 0.791
City 0.08 04 0.08 0.178
Household 0.3 0.001 0.22  0.001
Residuals 0.582 0.362 0.362
Total 1 1 1
(b) Ag City only Household only  City and household"
R? p R? p R? p
Sequencing plate 0.029 0.018 0.029 0.012 0.029 0.013
Gender 0.018 0.258 0.018 0.219 0.018 0.257
Age 0.038 0.002 0.038 0.001 0.038 0.002
MDS1 0.014 0.668 0.014 0.607 0.014 0.74
MDS2 0.017 0.362 0.017 0.305 0.017 0.44
MDS3 0.02 0.173 0.02 0.141 0.02  0.263
MDS4 0.02 0.15 0.02 0.118 0.02 0.147
MDS5 0.012 0.783 0.012 0.744 0.012 0.943
City 0.056 0.149 0.056 0.934
Household 0.239 0.021 0.183 0.044
Residuals 0.777 0.594 0.594
Total 1 1 1

Table 2.2: Permutational analysis of variance (adonis) results for co-habiting individuals. (a) Ays: 26
individuals who lived in the same household as at least one other individual. (b) Ag;: 61 individuals who
had at least co-habited at some point. Household is always significant and explains the most variance of
any variable (>18%) even in a model that nests permutations within cities. The order of variables in the
model is given by their order in the table. ¥ Permutations stratified by city in this analysis
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Figure 2.5: Household-level variation within a genus, shown here with the relative abundance of
phylotypes within Leptotrichia. The relative abundance of phylotypes within seven pairs of spouses
shows clear associations with household. These patterns are to some extent recapitulated in their children.
Looking at children still living at home, MED phylotype X2772 is not observed in any individual from
household A2.4, but is found in both spouses and two children living in household A1.7. Red dots indicate
children aged 10 or under at time of sampling, who appear more similar to each other than other pairs of
children. For an indication of variation in other genera between spouses, see Figure 8.
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R2

p
Sequencing plate  0.028 0.001
Gender 0.015 0.136
Age 0.028 0.001
MDS1 0.009 0.775
MDS2 0.013 0.311
MDS3 0.015 0.141
MDS4 0.017 0.05
MDS5 0.013 0.306
City 0.053 0.005
Residuals 0.809
Total 1

Table 2.3: Permutational analysis of variance for individuals living across four cities worldwide. This
group Ag, contained 82 individuals who were not necessarily co-habiting with others. In this analysis, city
has no significant effect on salivary microbiome composition.
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Figure 2.6: Spouse pairs significantly share taxa at the sub-genus level. The difference in mean Bray-
Curtis dissimilarities (red, with 95% confidence intervals in black) for spouses vs. non-spouses at the
sub-genus level i.e. calculated using only the phylotypes within that genus. The similarity at sub-genus
level is significantly lower for spouses on average across these genera, as indicated by the red line.
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also seen in children living at home (Figure 5). MED phylotype X2772 was present in
both spouses in household A1.7, and was also present in the two youngest children within
that household (aged 10 or under). Similarly, within household A2.4 the two children
aged 10 or under were more similar in Leptotrichia phylotypes than an older child.

Quantitatively, repeating a permutational analysis of variance based only on the com-
position of phylotypes within Leptotrichia showed that spousal pair explained 68.4% of
variance, although this was not significant (R* = 0.684, p = 0.068). Extending to the
top 12 abundant genera, similar patterns were also visible (not shown). Spouses on aver-
age had a significantly more similar sub-genus phylotype composition than non-spouses
(mean =+ s.e. difference in Bray-Curtis dissimilarities for each genus: —0.048 £0.013;
Figure 6).

2.3.5 Persistence of household effects after co-habiting

There were an additional 35 individuals who had grown up in a household with at least
one other individual present, but who no longer lived together at time of sampling. To see
if the effects of household persisted, I repeated analysis of variance with these individuals
included along with the cohabiting-individuals (Ag;, Table ). The effect of household
remained significant (R?> = 0.183, p = 0.044), and no axes of human genetic variation
were significant (p > 0.05). Age had a significant effect (R> = 0.038, p < 0.01).

Other variables such as age and sequencing plate had smaller effects than household

in all the analyses of variance.

Order of variables does not change conclusions

I reasoned that the order of variables presented in this chapter for the adonis analyses
was the appropriate one for the intended purpose of testing for effects of household after
controlling for other variables (Section 2ZX4). However, it should be noted that adonis
explains variance by a sequential sum-of-squares approach, also known as a Type I sum-
of-squares (Oksanen, 2016). This means that the ordering of variables can have an effect
with an unbalanced design. To check this was not biasing the results and therefore the
conclusions about the important factors for salivary microbiome composition, I also in-
vestigated the effect of randomly permuting the order of variables in the model formula.
I ran adonis (n = 999 permutations) on 1000 permutations of the variables in the model
formula (ZZ24)) for the Ag; dataset i.e. individuals who had cohabited at some point with
at least one another. .

Some permutations (n = 498) resulted in variables dropping out of the model due to
the unbalanced design i.e. the variable added no additional information, and therefore I
did not include results from these for fairness of comparison. The remaining permuta-
tions (n = 502) gave a full model. I corrected for multiple testing using the Benjamini-
Hochberg correction (Benjamini and Hochberg, T995). Age and household were always

significant (¢ < 0.05) in all models. Sequencing run was significant in 213 out of 502
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models. Gender was never significant. Crucially, no MDS axis of genetic variation was
significant in any of the 502 models. Therefore, I concluded that household was the

dominant factor, and not host genetics, as found with the original variable order.

2.3.6 Relying on pedigree Kinships produces a genetic signal

Pedigree (kinship2) SNPs (LDAK)

R? p R? p
Sequencing plate  0.028 <0.001 0.028 <0.001
Gender 0.011 0.094 0.011 0.096
Age 0.023 <0.001 0.023 <0.001
MDSI1 0.01 0.174 0.011 0.119
MDS2 0.007 0.706 0.01 0.231
MDS3 0.012 0.063 0.011 0.131
MDS4 0.016 0.009 0.011 0.111
MDS5 0.009 0.325 0.007 0.617
Parental household 0.215 <0.001 0.217 <0.001
Residuals 0.67 0.671
Total 1 1

Table 2.4: Comparison of pedigree-based and genome-wide measures of kinship to take host genetics
into account. Shown here are results from adonis on salivary microbiome dissimilarities of n = 111
individuals. Using pedigree information to produce kinship results in a significant association with human
genetics via the fourth MDS axis (p = 0.011), which is not present using kinships calculated with LDAK
based on genome-wide SNPs.

To test whether the conclusions required using kinships estimated from genome-wide
SNP data for individuals, or whether pedigree information was sufficient, I also repeated
the analyses using pedigree kinships for A1 (Section ZZ23). Using pedigree kinships
resulted in a small but significant amount of variation in microbiome composition being
attributable to host genetics via the fourth MDS axis (R2 =0.016, p < 0.01, Table 224).

2.4 Conclusions

2.4.1 Discussion

In this chapter I have conducted the first simultaneous investigation of the role of envi-
ronment and host genetics in shaping the human salivary microbiome, using a cohort of
closely-related individuals within a large Ashkenazi Jewish family. I found a weak cor-
relation between host kinship and salivary microbiome similarity before taking shared
household into account, and an apparent small but significant effect of genetics when
using kinships based on the family pedigree as proxies for genetic similarity. However,
when using kinship estimates based on genome-wide SNPs between individuals and si-

multaneously controlling for shared household with a permutational analysis of variance,
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I found no support for any clear effect of human genetics, suggesting that shared envi-
ronment has a much larger effect than genetics and is the dominant factor affecting the
salivary microbiome. Typically shared household had an order of magnitude greater ef-
fect compared with other significant variables. For example, in the analysis where city
was also used as an environmental variable, the variance explained was as follows: house-
hold (18.3%), age (3.8%), sequencing plate (2.9%) (Table 2b).

I also found that younger children living in the same household shared subtle vari-
ations in phylotype abundance within genera with their parents (Figure 5). However,
despite a persistence of household effects it would be wrong to conclude that the sali-
vary microbiome is completely fixed once established, as it clearly has aspects that can
change over time. For example, shared household explained more variation for spousal
pairs (likely due to frequent contact between them) and phylotypes observed in younger
children and their parents were not seen in older children (likely due to less frequent
contact between them). Taken together, these observations support the view that human
genetics does not play a major role in shaping the salivary microbiome, at least not in
individuals of the same ethnicity, compared to the environment and contact with other
individuals.

These results confirm the seemingly paradoxical situation that the salivary micro-
biome is largely consistent across global geographical scales, but can show large varia-
tion between households in the same city. Previous studies have also found evidence of
small variations in salivary microbiome composition comparing samples across a global
scale (Nasidze et al., 200Y9). As noted previously, this variation could be influenced by
differences in environmental or cultural factors, in which case controlling for these differ-
ences would decrease the amount of geographical variation. All individuals in this study
followed a traditional Ashkenazi Jewish lifestyle and subsequently are thought to share
a similar diet and lifestyle regardless of geographic location (Levine, Z0T5) which may
reduce the variation attributable to city-level differences.

The establishment of the oral microbiome early in life may lead to the persistence of
a similar composition over several years. The microbial composition of sites within the
mouth has been previously observed to be persistent within individuals over periods of
months (Utter et al., P016) to a year (David et al., 2014 and I found similar strain-level
variation between spouses and their young children as observed between individuals by
Utter et al. (2016) (Figure 3). These findings indicate the persistence of household effects
in individuals no longer co-habiting, suggesting that the salivary microbiome composi-
tion established early in life via shared upbringing is able to persist for at least several
years. It has been observed that monozygotic twins do not have significantly more similar
gut microbiomes than dizygotic twins (Turnbaugh et al., 2009). Stahringer et al. (2012)
observed the same effect in the salivary microbiome, and also found that twins’ salivary
microbiomes became less similar as they grew older and ceased cohabiting, concluding

that ‘nurture trumps nature’ in the salivary microbiome. My results from a large number
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of related individuals (rather than twins) support this view including the persistence of
shared upbringing effects. Shared upbringing appears to be the dominant factor affecting
microbiome composition in both the gut and the mouth, rather than genetic similarity.
This may have implications for understanding the familial aggregation of diseases such
as inflammatory bowel disease, which has been suggested to have an environmental com-
ponent (Nunes et al., 20TT).

The salivary microbiome appears far more resilient to perturbation compared to the
gut microbiome, with a rapid return to baseline composition after a short course of an-
tibiotics (Zaura et al., 20T5). While this could be because of the pharmacokinetics of the
antibiotics involved, Zaura et al. speculate that this difference may be due to the salivary
microbial ecosystem’s higher intrinsic resilience to stress, as the mouth is subject to more
frequent perturbation (Marsh et al., 20T5). This chapter supports the dominant role of the
environment in affecting salivary microbiome composition and suggests that another im-
portant factor in long-term persistence may be the regular reseeding of the ecosystem
with bacteria from the external environment.

The fact that the conclusion on the lack of effect of genetics required kinship based
on genome-wide single nucleotide polymorphism (SNP) markers rather than pedigree
(Table D4 casts doubt on the reliability of pedigrees for calculating relatedness. There
are several possible reasons for a discrepancy between kinship estimates from pedigrees
and allele sharing (Speed and Balding, 2014)). One possibility is errors in the pedigree,
most likely due to extra-pair paternities, although this explanation can be ruled out in this
dataset. More importantly, inherent stochasticity in the Mendelian process of inheritance
means that although parents always pass on 50% of their genes to their offspring, SNPs
are inherited together in blocks (i.e. haplotypes), meaning that the relatedness between
two offspring in a family can be substantially different from 50%. Finally, and most
importantly for this closely-related population, shallow pedigrees cannot fully capture
complex inbreeding patterns. Thus, while pedigrees are a good model for host relatedness
in microbiome studies of large randomly mating populations, I recommend that they be

used with caution in closely-related families like this one.

2.4.2 Limitations

Because all individuals in the main cohort were members of the same extended Ashke-
nazi Jewish family, the genetic variation in this dataset is therefore much lower than
between individuals from a wider population. It is conceivable that host genetics be-
tween more distantly-related individuals may play a significant role in affecting salivary
microbiome composition. However, a recent study of the nasopharyngeal microbiome
among Hutterite individuals (a founder population in North America) found detectable
associations between host variation and microbial composition with a similar cohort size
(Igartua et al., 20T7), demonstrating that limited genetic variation can be associated with

the composition of other microbiomes. It may simply be that the salivary microbiome
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is relatively unaffected by such variation, perhaps because of reduced interaction with
mucosal surfaces.

Furthermore, I only looked at overall genetic similarity, assessed using community
comparison metrics based on taxa abundances. The results presented therefore do not
preclude the existence of fine-scale links between particular microbial taxa and individual
genetic loci, particularly in immune-sensing genes such as those identified in the gut
microbiome by Bonder et al. (2016) using a much larger cohort of 1,514 individuals; my
more opportunistic investigation was not designed or powered to detect such associations.

Additionally, the dataset lacked detailed information on the diet and lifestyle factors
of individuals. However, the shared cultural practices within this ultra-orthodox Ashke-
nazi Jewish family mean that it is not unreasonable to assume they share a similar lifestyle
and diet despite living in different locations around the world (Levine, 20T5).

The continued effect of shared upbringing after leaving a household could be con-
founded by the fact that individuals may continue living near to the household where
they grew up and interacting with the same individuals. If this were the case, then the
apparent persistence could instead be due to the persistence of a shared environment be-
yond the household at a level intermediate between household and city, rather than the
persistence of a stable salivary microbiome following environmental change. Finally,
these samples represent only a single cross-sectional snapshot in time. More long-term
longitudinal studies like the work of Stahringer et al. (20172) on twins are necessary to
investigate the persistence of the salivary microbiome after its establishment early in life
in a variety of relatedness settings.

2.4.3 Summary

By incorporating a measure of genetic relatedness using SNPs I have demonstrated that
the overall composition of the human salivary microbiome in a large Ashkenazi Jewish
family is largely influenced by shared environment rather than host genetics. An apparent
significant effect of host genetics using pedigree-based estimates disappears when using
genetic markers instead, which recommends caution in future microbiome research us-
ing pedigree relatedness as a proxy for host genetic similarity. Geographic structuring
occurs to a greater extent at household level within cities than between cities on differ-
ent continents. Living in the same household is associated with a more similar salivary
microbiome, and this effect persists after individuals have left the household. This is
consistent with the long-term persistence of the salivary microbiome composition estab-
lished earlier in life due to shared upbringing, although longitudinal studies with more

detailed metadata would be required to satisfactorily establish this link.
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Periodontal disease and the plaque

microbiome
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3.1 Introduction

Periodontal disease is a major public health problem, particularly in low-income settings
like those found in sub-Saharan Africa (P. E. Petersen et al., 2005). In periodontal dis-
ease, the immune system responds with inflammation to oral biofilms (Van Dyke, Z00K)
which can eventually result in the formation of periodontal pockets and loss of teeth (Sec-
tion C23). Aside from irreversible tooth loss, chronic periodontitis may also increase
the risk of adverse systemic conditions (X. Li et al., 2000) such as cardiovascular disease
(Y.-H. Yu et al., DOTS) and preterm birth, although for the latter, different studies have
reported conflicting results (Ide and Papapanou, P0173). The association between peri-
odontitis and systemic disease may be due both to increased systemic inflammation and
to translocation of bacteria into the blood stream (Hajishengallis, 2014). Despite its im-
portance, the microbial ecology of periodontal disease in different oral habitats remains
incompletely understood. Studies of the oral microbiome in periodontal disease typically
focus on small populations in developed countries with advanced dental healthcare sys-
tems, which may not be representative of the natural history of periodontal disease in the
absence of treatment (Baelum and Scheutz, 2007).

After an initial focus on identifying particular periodontal ‘pathogens’ (Socransky
et al., T99Y) it is now widely accepted that oral bacterial communities undergo a shift
into dysbiosis (Jiao et al., 2014) and that the presence of particular disease-associated
species may exacerbate the inflammatory reaction to commensal bacteria (Wade, 20T3).
In periodontitis, bacteria progress from supragingival plaque (on the gums) to subgingival
plaque (below the gums) in periodontal pockets; studies typically focus on the subgingi-
val communities. The two main features of periodontal disease are gingival inflammation
(gingivitis) and the formation of periodontal pockets (periodontitis). While it is clear that
gingivitis always precedes periodontitis (Schitzle et al., 2003), gingivitis does not always
progress to periodontitis (Batchelor, 2014) suggesting that these may not simply repre-
sent different stages of a continuous spectrum of disease. While there is some evidence
that a steady continuous progression can be expected (Jeffcoat and Reddy, T99T) most
models involve acute bursts of exacerbation and longer periods of remission (Batchelor,
20714; Mdala et al., 20T14).

Despite this knowledge, studies of oral bacteria in periodontal disease often fail to
capture the full range of periodontal conditions: from health through gingivitis to peri-
odontitis. Considering supragingival plaque in particular, comparing only healthy sub-
jects with subjects suffering from periodontitis may lead to associations being attributed
to periodontitis alone, despite the fact that they might also be present in subjects with gin-
givitis. To explain the progression of disease and identify factors uniquely attributable
to periodontitis it is necessary to compare subjects across the full range of periodon-
tal severities. In itself this is not a novel concept, with many previous studies investi-
gating bacterial associations with disease using checkerboard DNA-DNA hybridization

(Ximénez-Fyvie, Haffajee, Som, et al., 2000; Ximénez-Fyvie, Haffajee, and Socransky,
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Figure 3.1: The clinical manifestations of periodontal disease include both periodontitis and gingivi-
tis. Top. Considering periodontal disease as a continuous progression from health through gingivitis to
periodontitis ignores the fact that clinical diagnosis usually rests on two separate criteria for each form of
the disease. In this chapter, I look at associations with bleeding (used to diagnose gingivitis) and pocket
depth (used to diagnose periodontitis), in order to identify signal that differentiates periodontitis from gin-
givitis. Bottom. The two-dimensional landscape of periodontal disease I use to model assocations in this
chapter, with fourteen possible combinations of severities. The numbers in circles (and their size) indicate
the number of women with these features in the cohort.

2000; Haffajee et al., 2009). These and other earlier studies were targeted at a small num-
ber of bacterial species, typically around 40, due to the limitations of the technology. The
advent of high-throughput 16S rRNA gene amplicon sequencing has facilitated improved
analysis of the total bacterial diversity in the oral cavity (Griffen et al., ZOTT; T. Chen et
al., P0OT0) identifying around 1,000 species that may be present (Wade, 2013). Recent
studies have used such amplicon sequencing to characterize subgingival plaque across
a range of periodontal conditions, finding differences between subjects with gingivitis
and periodontitis (Park et al., 20T5; Camelo-Castillo et al., 20T5). Work on supragingival
plaque has been less common due to the fact that it does not have a direct link to inflamma-
tion and subsequent loss of attachment in periodontitis. It therefore remains ambiguous
whether, for supragingival plaque, periodontitis can be simply considered as an advanced
stage of gingivitis, or if there are detectable differences in bacterial composition.
Traditional case-control studies of the microbiome and disease that use a binary dis-
tinction and fail to take into account the continuous nature of disease are losing informa-
tion that can be used to understand this etiology (Section II2). This point is of partic-
ular relevance for periodontal disease, where the milder form (gingivitis) and the more
severe form (periodontitis) have distinct clinical manifestations defined in terms of differ-

ent variables. To address this issue, in this chapter I investigate bacterial abundances in
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supragingival plaque using quantitative modelling that takes into account both gingivitis
and periodontitis in a cross-sectional cohort of 962 Malawian women who had recently
given birth (Ashorn et al., OT5). I quantify gingivitis using bleeding-on-probing (BoP)
and periodontitis via a binary assessment (see Section B21) giving a two-dimensional
‘landscape’ of periodontal disease (Figure B1l). I model the effect of gingivitis and peri-
odontitis both separately and together in order to understand the features of the plaque
community that are linked to more severe disease, rather than merely being associated
with increased bleeding.

I use negative binomial models, originally developed for RNA-seq experiments (Love
et al., 2014), making use of absolute (i.e. un-normalized) read counts to avoid losing in-
formation — a downside of other statistical approaches applied to marker gene data like
rarefying (McMurdie and Holmes, P014). After fitting a negative binomial distribution
to count data for a given species, the mean of this distribution is then used as the out-
put of a generalized linear model with a logarithmic link using experimental variables
(e.g. disease severity) as inputs, allowing the identification of differentially abundant
species. This approach considers bacterial species as independent, but in reality oral
bacteria exist in complex polymicrobial biofilms (Teles et al., 2013; Mark Welch et al.,
2016). Therefore, I also apply co-occurrence analysis to periodontitis-associated taxa to
identify important members of the periodontal biofilm community.

In summary, here I aim to identify the effects of periodontitis on supragingival plaque
after controlling for gingivitis severity, separating and distinguishing the signals of these

two features of periodontal disease.

3.2 Materials and Methods

3.2.1 Data collection

Study population

Women analyzed in this study were participants in the iLiINS-DYAD-M trial (registration
ID: NCT01239693) (Ashorn et al., 2Z0T5). This was a randomized controlled trial into
the effects of three nutritional supplements on birth outcomes: lipid-based nutritional
supplement (LNS), mixed micro-nutrients (MMN) or iron folate (IFA). Women were
eligible for enrolment in the trial if they were <20 weeks pregnant, >14 years old, had
no chronic illnesses requiring frequent medical care, no allergies, no evident pregnancy
complications (edema, blood hemoglobin < 50 g/1, systolic blood pressure > 160 mmHg
or diastolic > 100 mmHg), no earlier participation in the same trial and no concurrent
participation in any other.

1,391 pregnant women were enrolled between February 2011 and August 2012 at
antenatal clinics at two hospitals (Mangochi and Malindi) and two health centers (Lung-

wena and Namwera) in Mangochi district, Malawi. All women were self-reported non-
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BoP Periodontitis N Age (yrs) Positive HIV test Malaria® BMI Education (yrs)
0 No 140 23.4(5.8) 27 (19.3%) 37 (26.6%) 22.7(3.2) 5.6 (3.6)
1 No 72 239(5.9) 7(9.7%) 16 (22.2%) 22,6 (3.4) 5.1 (3.8)

Yes 11 31.6 (6.1) 1(9.1%) 1(9.1%) 22.7(2.4) 4.4(3.3)
2 No 95 24.7 (6.2) 11 (11.6%) 22 (23.2%) 22.1(2.6) 4.4 (3.6)
Yes 23 27.5(6.2) 5(21.7%) 5(21.7%) 21.7 (2.0 2.7(3.3)
3 No 111 244 (5.4) 11 (9.9%) 32 (28.8%) 21.7(23) 43(33)
Yes 27 26.5(5.7) 4 (14.8%) 3(11.1%) 222(2.7) 3.6 (3.0)
4 No 72 25.0 (6.4) 9 (12.5%) 16 (22.2%) 21.7 (2.2) 3.4(3.0)
Yes 51 26.9 (5.4) 8 (15.7%) 11 (21.6%) 21.8 (2.7) 3.3(3.1)
5 No 63 249 (5.2) 7(11.1%) 12 (19.0%) 21.6 2.4) 4.0 (3.6)
Yes 50 26.6 (5.9) 5(10.0%) 7 (14.0%) 21.8 (3.1) 2.4(2.8)
6 No 102 24.5(5.5) 10 (9.8%) 18 (17.0%) 21.9(23) 3.5(3.0)
Yes 145 28.3 (7.0) 30 (20.7%) 28 (19.3%) 22.1(2.5) 2.9(3.0)
BoP Periodontitis Anemia® socioeconomic status® Site? Nutritional intervention® Sequencing run/
0 No 36 (25.7%) 0.38 (1.22) 36/37/18/49 43 /53744 47/49/41/3
1 No 12 (16.7%) 0.19 (1.11) 25197171721 32/19/21 34/26/12/0
Yes 3(27.3%) -0.35 (0.62) 6/2/1/2 8/0/3 3/5/3/0
2 No 19 (20.0%) 0.10 (1.10) 39/19/13/24 38/34/23 31/41/23/0
Yes 4 (17.4%) -0.16 (0.91) 13/1/4/5 5/11/7 9/7/7/0
3 No 21 (18.9%) -0.12 (0.84) 41/22722/26 40/34737 36/34/39/2
Yes 6 (22.2%) -0.20 (0.91) 11/6/3/7 11/4/12 11/6/10/0
4 No 11 (15.3%) -0.16 (0.80) 28/16/10/18 16726730 26/28/18/0
Yes 7 (13.7%) -0.17 (0.81) 271317/14 14/19/18 23/7/21/0
5 No 15 (23.8%) -0.16 (0.81) 22711791721 22/23/18 26/13/24/0
Yes 5(10.0%) -0.36 (0.61) 18/11/7/14 16/15/19 21/12/17/0
6 No 26 (25.7%) -0.20 (0.81) 36/24/16/26 33/41/28 18/46/36/2
Yes 32 (22.1%) -0.27 (0.74) 66/28/17/34 45/48152 59/43/41/2

Table 3.1: Demographic characteristics broken down by severity of periodontal disease.

a. Malaria was diagnosed with a rapid diagnostic test obtained from a finger prick. . Anemia was defined
as a haemoglobin count Hb < 110 g/l. ¢. A proxy for socioeconomic status was created from principal
components analysis by combining information on the building material of the house, main source of
water and electricity, sanitary facilities, and main type of cooking fuel used. d. Women were enrolled
at four sites: Lungwena / Malindi / Namwera / Mangochi. e. Women received one of three nutritional
interventions: IFA / MMN / LNS. f. Supragingival samples were run on one of four sequencing runs on
[lumina MiSeq.

smokers, and were given two courses of preventive malaria treatment with sulfadoxine-
pyrimethamine (three tablets of 500 mg sulfadoxine and 25 mg pyrimethamine orally):
one at enrolment and one between the 28th and 34th gestational week. After giving birth,
1229 women completed an oral health examination, consisting of a clinical examination
and a panoramic X-ray of the jaws conducted by Ulla Harjunmaa or colleagues under her
supervision. 1024 women had this examination within six weeks of delivery of a single
infant (mothers of twins were excluded) and were included in further analysis. After ex-
cluding women without a supragingival sample (n = 59) and those with unknown HIV
status (n = 3) our cross-sectional dataset included 962 women. Demographic character-
istics are given in Table Bl — for more information on how these were collected, see
Ashorn et al. (2015).

Classification of periodontal disease

Gingivitis was measured by the number of dental arch sextants with BoP out of six,
with three sextants on each jaw (left, middle, and right). For periodontitis classification,
each tooth was examined for evidence of deepened dental pockets both clinically and
radiologically. A tooth was defined as having periodontitis if either a > 4 mm pocket
was measured in clinical examination or a vertical bony pocket was identified at least

at the cervical root level radiologically. A woman was defined as having periodontitis
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Total n =962 Gingivitis (BoP score)
0 1 2 3 4 5 6

No periodontitis 137 72 95 111 72 63 102
Periodontitis 4 11 23 27 51 50 145

Table 3.2: Breakdown of all women by severity of periodontal disease.

if she had at least three teeth with periodontitis or at least one dental arch sextant with
horizontal bone loss (at least at cervical level). The measurements forming the basis
for periodontitis were on a per tooth basis, and involved converting a continuous variable
into a binary one for each tooth, then converting a continuous count into a binary variable.
The examination and classification methods are explained in more detail in Harjunmaa
et al. (2Z015). The number of women with each possible combination of gingivitis and
periodontitis defined in this way is given in Table B2 (for graphical representation see
Figure BT).

While initially I wanted to use a continuous scale for both gingivitis and periodontitis,
it was not clear what this scale should be for periodontitis. It was clear that a simple
linear scale would be inappropriate for two reasons: firstly, the number of teeth with
periodontitis had a long tail (Figure [A“f]), and secondly, there was no way of controlling
for the total number of teeth already lost to periodontitis or otherwise. Therefore, a binary
classification based on clinical standards used by dentists seemed most appropriate in
order to investigate the features of the bacterial community that were associated with

periodontitis at multiple levels of gingivitis.

Sample collection

Supragingival dental plaque samples were collected by swabbing the gingival margin
of each tooth with a sterile plastic swab stick with a nylon fiber tip (microRheologics
no. 552, Coban, Brescia, Italy). Only one swab was used per woman meaning that
each sample represents a homogenized mixture of multiple locations in the mouth. After
transfer in a cold box with ice packs to a laboratory, swabs were stored in cryovials at
—20°C before being transferred to —80°C.

3.2.2 Sample extraction

DNA extraction and sequencing

The V5-V7 region of the 16S rRNA gene was amplified with 785F/1175R Illumina-
compatible primers (see Section B23) (Bonder et al., Z017) to generate a sequencing li-
brary (R. M. Doyle et al., 2014). Each sample was amplified with dual indexes on the for-
ward and reverse primer. All barcodes and adapter sequences used have been previously
published (Caporaso et al., 2017). Each reaction was set up with 1 X MolzymPCRBuffer
(Molzym), 200 uM of dNTPs (Bioline), 0.4 uM of forward and reverse primer with bar-
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Criteria Reads remaining
Maximum expected errors < 1 14,466,591
Minimum length (350 bases) 14,466,222
Maximum length (380 bases) 14,458,493

Samples <1,000 reads discarded 14,449,794

Table 3.3: Filtering of reads prior to MED analysis. The number of reads remaining at each point in the
filtering pipeline.

code attached, 0.025 uM of Moltaq (Molzym), 5 ul of template DNA and PCR grade
water (Bioline) to make a final reaction volume of 25 ul. Cycling parameters were as
follows: 94°C x 3 min, 30 cycles of —94°C x 30 sec, —60°C x 40 sec, —72°C x 90 sec
and one final extension at —72°C x 10 min.

Samples were purified and pooled into an equimolar solution using SequalPrep Nor-
malization Plate Kit (Life Technologies) and further cleaned using AMPure XP beads
(Beckman Coulter), both as per manufacturer’s instructions. After quantification using
the Qubit 2.0 (Life Technologies), the library was diluted and loaded into the MiSeq
reagent cartridge at 10 pM. MiSeq runs were set to generated 250bp paired-end reads
and two 12bp index reads for each sample. Reads were deposited in the European Nu-

cleotide Archive under project accession PRJEB15035.

3.2.3 Analysis methods

Taxonomic classification

Sequenced reads were merged, demultiplexed, and quality filtered (minimum average
Phred score > 25) using QIIME v1.8.0 (Caporaso et al., 2010). Closed-reference OTUs
were picked at 98.5% similarity against HOMD v13.2 (T. Chen et al., 20T0) using USE-
ARCH v6.1.544 (Edgar, 20T0) in QIME v1.8.0 (Caporaso et al., POI0) with
parallel_pick_0TUs_usearch_61.py. I used 98.5% sequence similarity because this
is the threshold used to define taxa in HOMD, as it approximately corresponds to species
level clusters for most oral bacteria (T. Chen et al., P0T0). This approach identified 664
bacterial OTUs corresponding to 13,049,932 reads. The mean number of reads per sam-
ple was 13,565 + 6,833.

Closed-reference OTU picking suffers from a number of issues, including sensitivity
to the order of reference sequences when sequences are identical over the region con-
sidered (Westcott and Schloss, 2015). This is a particular problem when sequences are
similar; as discussed earlier there exist oral bacteria that have >99% sequence similarity
in given regions of the 16S rRNA gene but occupy separate oral habitats (Section [-2T).
For this reason, I also performed MED on reads to define ecological units at higher reso-
lution (Section [CT3).

After the merging of overlapping reads, the average sequence length was 369 bases.
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I filtered sequences with an expected error greater than 1 using fastq_filter in
VSEARCH vl1.11.1 (Rognes et al., 2016). I then discarded all sequences shorter than
350 or longer than 380 bases, but performed no other quality filtering (e.g. length trunca-
tion) because MED assumes that length variation is biologically meaningful. Table
gives the sequences remaining at each stage of the filtering process. I ran MED v2.1 on
14,449,794 sequences. Because I wanted to be able to detect rare sequences, I set the min-
imum substantive abundance parameter (M) to 1444 (0.1% of the total number of reads)
and the maximum variation allowed within a node (V) to 3. All other parameters were
set to their default values. I assigned taxonomy to MED phylotypes using GAST (Huse
et al., 2008) with VSEARCH v1.11.1 replacing the closed-source software USEARCH
(Edgar, 2010) which has shown to be a satisfactory replacment (Westcott and Schloss,
2015).

Primer mismatch and its effect on phylotype detection

The protocol for amplification of the V5-V7 region of the 16S rRNA gene was chosen by
Ronan Doyle from a comparison between primer sets conducted as part of his doctoral
thesis (R. Doyle, P0T6). However, the protocol was optimized for classifying larger
numbers of OTUs across multiple body sites in order that samples from iLiNS-DYAD
could be analyzed consistently, and was not designed specifically for oral periodontal
pathogens. It is well established that different primer pairs can differentially amplify
DNA from different taxa, biasing detection and subsequent analysis (Morales and Holben,
2009; Kumar et al., POTT; Cai et al., 20T3). Therefore, one must always be cautious in
interpreting marker gene data obtained using this approach: most importantly, absence
of evidence is not the same as evidence of absence.

The standard 785F/1175R primer pair that was used for amplification has several

degenerate positions, indicated here in bold:

785F: GGATTAGATACCCBRGTAGTC

1175R: ACGTCRTCCCCDDCCTTCCTC

The degeneracy symbols have the following meanings:

=

—AorG

=

—C,G,orT

IS

—A,G,orT

To identify phylotypes that one would a priori expect to be less efficiently amplified by
the primers, I screened all possible versions of the primers (2 ‘R’ options x 3 ‘B or D’
options = 6 possibilities for each primer) against the HOMD v13.2 database (T. Chen
et al., 20T0) with blastn v2.2.31 (Camacho et al., 2009) to identify HOMD sequences
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that had mismatches with the primers. While most sequences had full-length matches
at 100% similarity with possible primers for 785F and 1175R, there were eight and 51
HOMD sequences respectively that did not (Table A-T).

Of course, this in silico approach does not rule out differential amplification even for
those sequences which have a full-length match to a primer pair, as other reasons for
differential amplification exist (Edgar, 2017). But it conversely does provide a power-
ful prior that those phylotypes without a perfect primer pair match may well be absent
(or detected at misleadlingly low levels) using this protocol, even if they were present
in the original sample. In particular, the list of phylotypes with a mismatch to 1175R
includes the well-established periodontal pathogens Porphyromonas gingivalis (human
oral taxon (HOT) 619), Tannerella forsythia (HOT 601), and Treponema denticola (HOT
584) (Socransky et al., T99R8). The absence of any of the taxa in this list from the dataset
should not be interpreted as proof that they are not associated with periodontal disease in

Malawian women.

3.2.4 Statistical analyses
(i) Diversity

I fitted a multivariate linear regression model to predict two measures of diversity (Table
1) — species richness (observed number of species) and Shannon index (a measure of
richness and evenness) — using gingivitis, periodontitis, and the variables listed in Table
BT for 811 out of 962 samples with complete data and >5,000 reads. Richness and Shan-
non index were averaged over 100 iterations of rarefying to 5,000 reads per sample. I
used backwards stepwise reduction using Akaike information criterion (AIC) (Akaike,
1974)) to select the final model.

(ii) Differential abundances

I used negative binomial models to identify taxa that were significantly associated with
disease using the DESeq?2 package v1.6.3 (Love et al., 2014) as recommended by McMur-
die and Holmes (2014) to avoid losing statistical information. DESeq2 fits generalized
linear models to the count Kj; of taxa i in sample j using a negative binomial distribution

NB with mean (;; and dispersion parameter ¢; :

Kij ~ NB(Uij, o) G3.1)
log,(gij) = x;P; (3.2)

The coefficients f3; give the log2-fold changes for each taxa i for each column of the
specified model matrix. The reason for the choice of a negative binomial model is that

in ecology it is common for organisms to aggregate together, meaning that count data
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follows an overdispersed Poisson distribution instead of a standard Poisson distribution
where the variance is equal to the mean. The parameter ¢; governs the strength of this
aggregation. Gingivitis was included as a continuous variable (BoP ranging from O to 6)
and periodontitis as a binary factor. The model also contained terms controlling for po-
tential confounders (study site, nutritional intervention, HIV status, and sequencing run).
I corrected for multiple testing using the Benjamini-Hochberg procedure to control the
false discovery rate at ¢ = 0.05 (Benjamini and Hochberg, 1995). Full DESeq?2 results
for gingivitis and periodontitis are available for download from the associated publication
as Data Sef 8’7 (Shaw et al., 2OT6).

(iii) Co-occurrence networks

Beyond the identification of individual taxa associated with disease, co-occurrence anal-
ysis can allow the identification of important members of bacterial communities (Faust
and Raes, 2017). To facilitate a higher resolution analysis of the network of periodontitis-
associated bacteria, I selected all MED phylotypes that had representative sequences with
>98.5% sequence similarity to periodontitis-associated HOMD OTUs. Calculating cor-
relations from compositional data has long been known to be problematic because it
can result in spurious correlations (Pearson, T897). Fortunately, methods to deal with
these problems have been developed; one such method specifically for marker gene data
is SparCC, which uses log-ratio transformed abundances and pseudocounts to deal with
zero values (Friedman and Alm, 2017?). I calculated pairwise Spearman correlation coeffi-
cients between these MED phylotypes across samples using the SparCC procedure with
default parameters (20 inference iterations and a correlation strength exclusion thresh-
old of 0.1). To calculate pseudo-p values (two-sided ¢ test), I shuffled the data sets for
each group 100 times and repeated the procedure, removing correlations that were not
significant (p < 0.05, no multiple testing correction). Networks of strong correlations,
defined as being outside of the 95% confidence interval (CI) for the mean correlation be-
tween nodes (mean + 1.96 x standard deviation) were visualized as networks with qgraph
v1.3.1 (Epskamp et al., 2Z012) using the Fruchterman-Reingold algorithm for node place-
ment (Fruchterman and Reingold, 199T).

The betweenness centrality was originally defined for social networks, and gives a
measure of how central a point is in terms of the flow of information across a graph
(Freeman, T977). For a given point py in a graph with n points, this can be defined by a
sum over all other pairs of points (i # j # k). Let g;; be the total number of geodesics
(shortest paths) between i and j, and g;;(px) be the number of geodesics between i and j

that pass through p;. Then the normalized betweenness centrality CII9 (pr) is defined by:

/ 22;1<j Zn gij(.l?k)
Colpe) = — 75— (33)
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(a) Gingivitis Estimate (standard error) Pr(>|t|)
(Intercept) 3.428 (0.616) <0.001
Age (yrs) 0.056 (0.011) <0.001
Malaria -0.32 (0.163) 0.05
BMI -0.046 (0.026) 0.077
Education -0.097 (0.022) <0.001
Socioeconomic status -0.337 (0.081) <0.001
(b) Periodontitis Estimate (standard error) Pr(>|z|)
(Intercept) -4.714 (0.454) <0.001
Age (yrs) 0.083 (0.014) <0.001
Education (yrs) -0.056 (0.028) 0.043
Socioeconomic status  -0.163 (0.11) 0.136
BoP 0.516 (0.047) <0.001

Table 3.4: Final regression models to predict (a) gingivitis and (b) periodontitis. Full models started
with all demographic variables in Table BTl and were then subject to stepwise reduction by AIC.

To understand this measure intuitively, consider the following example from Freeman
(T977): a ‘wheel’ graph with a central point and spokes radiating out with points on the
end. The central point will have Cg(p;) = 1 and all other points will have Cy(py) =
0. Thus, the measure gives us a way of ranking points in a graph by how central they
are. In the context of a correlation network of bacterial phylotypes believed to have
some association (with disease) it identifies candidates for those taxa that are important

members of that community.

3.3 Results

3.3.1 Demographics and initial modelling

Description of cohort

The cohort included 962 Malawian women with a mean age of 25.4+6.2 years, of whom
140 (14.6%) had no periodontal disease, 822 (85.4%) had gingivitis (BoP > 1), and 307
(32.0%) had periodontitis (Table B2). Gingivitis and periodontitis were significantly
correlated (Spearman’s p = 0.44) with the majority of women with periodontitis having

high levels of gingivitis.

Demographic characteristics are predictive of periodontal disease

I fitted a linear regression model to predict gingivitis severity using selected demographic
variables (Table B1) for 946 out of 962 women without any missing data. After back-
wards stepwise elimination of variables using AIC as a criterion for model selection
(Akaike, T974), the final model indicated that gingivitis was more severe in older women
(OR 1.06 per year; 95% CI 1.03-1.08) with lower BMI (0.96; 0.91-1.00), fewer years
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(a) Gingivitis Estimate (standard error) Pr(>[t|)
(Intercept) 2.885 (0.674) <0.001
Age (yrs) 0.053 (0.011) <0.001
BMI -0.045 (0.027) 0.098

Education (yrs) -0.093 (0.024) <0.001
Socioeconomic status -0.313 (0.088) <0.001
Richness 0.011 (0.002) <0.001
(b) Periodontitis Estimate (standard error) Pr(>|z|)
(Intercept) -4.798 (0.494) <0.001
BoP 0.495 (0.05) <0.001
Age (yrs) 0.075 (0.015) <0.001
Education (yrs) -0.097 (0.028) <0.001

Table 3.5: Final regression models to predict (a) gingivitis and (b) periodontitis. Full models started
with all demographic variables in Table Bl and richness, and were then subject to stepwise reduction by
AlC.

of education (0.91 per year; 0.87-0.95), a lower socioeconomic status (0.71; 0.61-0.84),
and no malaria (0.73; 0.53-1.00) (Table Bdla). HIV was not included in the best model,
in agreement with previous research that found no association with periodontal disease
(John et al., P0T3; Khammissa et al., ZOT2). I also applied the same procedure to predict
(binary) periodontitis using a logistic regression model that included gingivitis severity.
The final model showed that periodontitis was more likely in women with more severe
gingivitis (OR 1.68 per BoP; 1.53-1.84) who were older (1.09 per year; 1.06-1.12), had
fewer years of education (0.95 per year; 0.90-1.00) and a lower socioeconomic status
(0.85; 0.68-1.05) (Table B-4b).

I wanted to see if adding information on the diversity of supragingival plaque bacterial
communities improved the models, so I also added in the calculated richness to the full
model to predict gingivitis and periodontitis for 811/962 women with >5,000 reads and
no missing data, then again performed stepwise reduction according to AIC. Evenness
of microbial communities was not included in the model due to high collinearity with
richness (Spearman’s p = (0.88). Richness was retained in the final model for gingivitis
(Table BSa) but not periodontitis (Table B3b).

In summary, periodontal disease was more common in women who were older, had
lower socioeconomic status, and fewer years of education, in line with previous research
highlighting it as a sociopolitical public health problem (Batchelor, 20T4). My prelim-
inary analysis confirmed that the supragingival plaque community contained some in-
formation on periodontal disease after taking these factors into account, with richness
retained in a final model for predicting gingivitis severity but not periodontitis. This sug-
gested that a more sophisticated analysis than just considering community richness was

required to identify signals unique to periodontitis.

75



Chapter 3

Plaque richness and diversity are higher in more severe gingivitis and periodontitis
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Figure 3.2: The principal coordinates analysis (PCoA) ordination of supragingival plaque samples
shows an approximate trend with gingivitis severity that is robust to analysis methods. PCoA ordi-
nations based on Bray-Curtis dissimilarities between samples for 626 HOMD OTUs (a, b) and 502 MED
phylotypes (c, d). Filled ellipses show mean values for each gingivitis severity, ranging from 0 (yellow) to
6 (dark red). In both cases, an approximate trend is visible in the mean ellipses for each group, despite the
noisiness of the data set. Before plotting, samples were rarefied to 5,000 reads to minimize the impact of
sequencing depth.

Initial exploratory analysis with PCoA ordinations showed that although there was large
variability in community composition across supragingival plaque samples, there was
also a clear trend related to gingivitis severity that was robust to the analysis method
used: HOMD OTUs or MED phylotypes (Figure B2). Stratifying by periodontitis in the
same way did not indicate visually clear differences.

Quantitative analysis of diversity reflected this trend. Gingivitis was associated with
higher microbial community richness (Figure B3a) and Shannon index (Figure B3b).
Bacterial communities did not markedly differ between healthy women and those with
low levels of gingivitis. Both gingivitis and periodontitis were associated with higher
supragingival plaque richness in a linear regression controlling for demographic variables
(Table A2a). Interestingly, the site at which samples were collected was also associated

with richness, perhaps because of local environmental effects similar to those I found
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Figure 3.3: Both (a) richness and (b) Shannon index of the supragingival microbiome increase with
gingivitis severity. Estimates for each sample were calculated by sampling with replacement at a rarefac-
tion depth of 5,000 sequences per sample and averaging over 100 iterations. The fitted line shows a local
polynomial regression fit calculated using loess in R, with the grey region indicating the 95% CI. 138 out
of 962 samples were excluded due to having fewer than 5,000 sequences. Changing the rarefaction depth
did not affect the conclusion that gingivitis severity was associated with an increase in both measures of
diversity.
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in the Ashkenazi cohort (Chapter [). In the final model predicting Shannon index, peri-
odontitis was not retained although gingivitis was (Table A7Jb), in line with the earlier
reversed analysis using demographic characteristics to predict disease, where richness

was retained in the final model for gingivitis but not for periodontitis (Table B3).

3.3.2 Bacterial taxa associated with periodontal disease

Differences in bacterial abundances with gingivitis

Differential abundance analysis with DESeq2 (Section B2-4)) identified 118 OTUs that
were significantly (¢ < 0.05) associated with greater severity of gingivitis, making up
16.6% of the dataset in terms of reads. Conversely, 47 OTUs were associated with lower
severity (18.7% of the dataset). Figures B-4la and B-4b show the cumulative abundances
of health- and gingivitis-associated OTUs respectively, showing the progressive nature
of changes with the amount of bleeding. Most of the pairwise comparisons of summed
abundances of health- and gingivitis-associated OTUs were not significantly different
between women with and without periodontitis (Kruskal-Wallis test, p > 0.05). How-
ever, for women with periodontitis, severity of gingivitis was important, as there were
microbial differences between women with and without periodontitis for both moderate
gingivitis (BoP of 3; p = 0.014) and severe gingivitis (BoP of 6; p = 0.011).The most sig-
nificantly gingivitis-associated OTU was Peptostreptococcus stomatis, which was present
in over 75% of samples across severity categories and was an average of 1.45-fold more
abundant (95% CI 1.37-1.54) with a unit increase in BoP.

Differences in bacterial abundances with periodontitis

While gingivitis had a stronger association with supragingival microbiota, there were
also differences in microbial community composition with periodontitis (Figures B-dc
and B-4d), with 71 OTUs significantly (¢ < 0.05) more abundant in women with peri-
odontitis, making up 4.4% of the dataset in terms of reads. A smaller number of OTUs
were significantly more abundant in the absence of periodontitis (13 OTUs), making up
3.6% of the dataset by reads. These health-associated OTUs were Lautropia mirabilis,
Rothia aeria, Streptococcus pyogenes, Streptococcus mutans and seven members of Acti-
nomyces.

At the genus level for periodontitis-associated OTUs, Prevotella (14 OTUs) and Tre-
ponema (10 OTUs) were the most represented. Only one member of the pathogenic red
complex (Socransky et al., T998) was significantly associated with periodontitis: 7. den-
ticola. The other two members (P. gingivalis and T. forsythia) were additionally not iden-
tified as MED phylotypes in the dataset, probably due to primer mismatch (see Section
B23). Eubacterium nodatum, previously identified as clustering with the red complex in
supragingival plaque (Haffajee et al., 2008), was significantly associated with periodonti-

tis.
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Figure 3.4: Summed percentage abundances of OTUs associated with (a) decreased gingivitis, (b)
increased gingivitis, (c) absence of periodontitis, and (d) presence of periodontitis for each periodon-
tal disease category. Colours indicate groups without (white) and with (red) periodontitis. For plotting
purposes, samples were rarefied to 10,000 reads per sample, resulting in the removal of 269 out of 962
samples; this rarefaction was not used in the selection of the OTUs, which was performed using DESeq2
on the whole dataset (Section BZ4). One outlier and two outliers in (c) and (d) respectively are not shown
due to trimming the y-axis at a relative abundance of 30%.
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Differences in bacterial abundances unique to periodontitis

Forty out of seventy-one periodontitis-associated OTUs (56%) were not associated with
gingivitis. These taxa were rare: their mean cumulative abundance was 2.2%, with only
six OTUs having mean relative abundances > 0.1%. The most represented genera were
Prevotella (nine OTUs), Treponema (five OTUs) and Selenomonas (four OTUs). The
presence or absence of periodontitis was not a significant determinant of cumulative abun-
dances of these OTUs for women with the same levels of gingivitis (Kruskal-Wallis test,
p > 0.05), except for women with a BoP of 4 (p = 0.026).

3.3.3 The co-occurrence network of periodontitis-associated taxa

The above analysis treats each OTU as independent but in reality oral bacteria exist in
complex multi-species biofilms where interactions are extremely important (Teles et al.,
20173). I therefore analyzed the co-occurence networks of periodontitis-associated bacte-
ria across all periodontal severities.

In a preliminary analysis, co-occurrence network analysis using HOMD OTUs associ-
ated with periodontitis showed more connections in the network in women with periodon-
titis across gingivitis severities (Figure [A71). However, I wanted to verify this result with
MED analysis to ensure co-occurrence patterns were not due to the limited resolution of
the OTU picking process, which used a closed algorithm against HOMD with a 98.5%
sequence similarity cutoff. Therefore, I selected all 81 MED phylotypes with >98.5%
sequence similarity to a periodontitis-associated HOMD OTU. This selection included
19 members of Streptococcus, despite the fact that only Streptococcus oligofermentans
(HOT 886) was associated with periodontitis, due to the high sequence similarity of this
genus in the V5-V7 region. When plotted as a co-occurrence network, these phylotypes
clearly clustered away from the periodontitis-associated phylotypes and had negative cor-
relations with the rest of the network. I therefore removed them when preparing Figure
B3.

The strongly-connected co-occurrence network in women with severe gingivitis (BoP
of 6) and periodontitis showed several genus-level clusters, including Selenomonas, Pep-
tostreptococcus, and Prevotella (Figure B3a). Notably, these clusters were connected
by a small group of central bacteria including Filifactor alocis (phylotype 158) and sev-
eral members of Fusobacterium nucleatum with phylotypes classified taxonomically as
subspecies vincentii (phylotypes 3163 and 622) and polymorphum (phylotypes 618 and
619), suggesting their roles in co-aggregation of periodontal biofilms. Ranking phylo-
types in the strongly-connected network according to their betweenness centrality, which
measures potential for influence on information transfer in a network (Freeman, 1977),
the most connected phylotype was F. nucleatum subsp. vincentii (phylotype 3163) (Table
B6). T. denticola was not present in this network, but when MED analysis was repeated
with the minimum substantive abundance parameter reduced by a factor of 10 to 0.01%

it was placed in the network in a central position.
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Phylotype Taxonomic classification Centrality
3163 Fusobacterium nucleatum ss. vincentii (HOT 200) 0.519
5947 Prevotella melaninogenica (HOT 469) 0.501
619 Fusobacterium nucleatum ss. polymorphum (HOT 202) 0.445
1669 Prevotella melaninogenica (HOT 469) 0.288
10228 Porphyromonas sp. (HOT 284) 0.259
9255 Neisseria flava (HOT 609) 0.196
6002 Prevotella veroralis (HOT 572) 0.159
6364 Leptotrichia sp. (HOT 215) 0.125
10295 Leptotrichia wadei (HOT 222) 0.085
6601 Selenomonas sputigena (HOT 151) 0.063
3998 Neisseria subflava (HOT 476) 0.045
6320 Porphyromonas sp. (HOT 284) 0.045
6322 Porphyromonas sp. (HOT 275) 0.043
11119 Peptostreptococcus stomatis (HOT 112) 0.043
3162 Fusobacterium sp. (HOT 205) 0.031
6602 Selenomonas sputigena (HOT 151) 0.021
6287 Porphyromonas sp. (HOT 275) 0.003
6362 Leptotrichia sp. (HOT 215) 0.003

Table 3.6: Ranking of MED phylotypes in strongly-connected co-occurrence network by their nor-
malized betweenness centrality score. Betweenness centrality scores for the network of significant strong
correlations (Figure BESa) were calculated using the betweenness function in igraph v1.1.2 (Csardi and Ne-
pusz, 2006). Only non-zero scores are shown. Phylotype ID is assigned randomly by MED.

To confirm that this altered community structure was a distinguishing feature of
supragingival plaque between women with and without periodontitis, I clustered the ma-
trices of SparCC correlations based on Mantel distances for each category of periodontal
disease (Figure B3b). Networks clustered by the periodontitis status of the women in the
group, confirming that the altered community structure with periodontitis was detectable
even in women with low levels of gingivitis. Within the periodontitis groupings, matrices

clustered by gingivitis severity.

3.4 Discussion

3.4.1 Conclusions

In this chapter I have investigated changes in the supragingival microbiome associated
with periodontal disease severity in a large cross-sectional cohort in Malawi, which rep-
resents the largest study of its kind to date. My main finding was that even though the
composition of supragingival plaque is primarily associated with gingivitis (as quantified
by bleeding-on-probing) rather than the presence or absence of periodontitis, the pres-
ence of periodontitis does have detectable associations with the supragingival microbiota
that distinguish it from gingivitis. In particular the differences in co-occurrence patterns

of taxa between women with and without periodontitis support a more complex etiology
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of disease than a simple progression from health through gingivitis to periodontitis.

Gingivitis and periodontitis were both associated with higher bacterial community
richness and Shannon index, and this association remained after adjustment for demo-
graphic factors including age, BMI, socioeconomic status, and local environment. This
finding is consistent with previous research (Kistler et al., 2013; H. Chen et al., 2OT5),
with higher diversity meaning that in periodontal disease the oral microbiota expands in
membership rather than existing taxa undergoing replacement. This could correspond to
primary ecological succession in a new environmental niche, as suggested by Abusleme
et al. (PO13).

Gingivitis and periodontitis are clearly linked; I found that many taxa were associated
with both. The abundance of the majority of these taxa increased with gingivitis severity,
and this pattern was not influenced by the presence of periodontitis. Furthermore, some
women with no signs of gingivitis had similar summed percentage abundances of disease-
associated taxa to women with severe gingivitis. It would appear that relative bacterial
abundances alone are insufficient to explain the presence of disease, consistent with a
requirement for other factors such as the host inflammatory response to cause disease.

Periodontitis-associated OTUs were also identified including known periodontal
pathogens like F. alocis , T. denticola, F. nucleatum, and P. stomatis, consistent with find-
ings from other populations (Teles et al., 2013). OTUs including members of Prevotella,
Treponema, and Selenomonas were not significantly associated with gingivitis severity,
supporting the idea that periodontitis is not just an advanced phase of gingivitis and in-
volves additional bacteria. However, cumulative abundances of periodontitis-associated
OTUs did not differ significantly between women with and without periodontitis who had
the same levels of gingivitis, suggesting that abundances do not fully explain the disease.

The co-occurrence analysis of periodontitis-associated taxa found different
co-occurrence patterns across disease categories, indicating the presence of a consistent
community structure in women with periodontitis across all gingivitis severities. Central
nodes in this periodontitis-associated network included F. alocis and several subspecies of
F. nucleatum, which acted as hubs connecting different clusters (Figure B3a). Network
analysis using betweenness centrality ranked F. nucleatum subsp. vincentii (phylotype
3163) as the most central phylotype in the strongly-connected co-occurrence network
in women with severe gingivitis and periodontitis (Table B-f). These findings are con-
sistent with its proposed role as one of the ‘bridging bacteria’ which contribute to the
co-aggregation of periodontal biofilms (Aruni et al., P0T5). F. nucleatum has been shown
experimentally to “facilitate the survival of obligate anaerobes in aerated environments”
(Bradshaw et al., T99R), and has been identified as one of the important precursors for
the growth of biofilms in vitro (Foster and Kolenbrander, 2004)). Of relevance for this
cohort, strains of F. nucleatum present in periodontal pockets have also been identified in
isolates from amniotic fluid swallowed by babies born preterm, suggesting it may also be

involved with pregnancy complications (Gonzales-Marin et al., 2013). However, a fur-
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ther study on this cohort that I was involved in found no direct association between oral
bacteria and preterm birth, suggesting that oral infection may primarily affect birth out-
comes via systemic inflammation (Harjunmaa et al., POTR). The other central species F.
alocis has also been experimentally linked to the co-aggregation of periodontal biofilms
(Schlafer et al., 2010; Fine et al., 2Z0173) and correlates with greater inflammation in pe-
riodontitis (Camelo-Castillo et al., 2Z015). H. Chen et al. (2015) also identified a similar
F. alocis-centered co-occurrence group of taxa that was enriched in multiple oral habitats

during periodontitis compared with healthy controls.

3.4.2 Limitations

A great strength of this study was the inclusion of large numbers of women with dif-
ferent severities and combinations of periodontal disease, thanks to the access to the
iLiNS-DYAD-M cohort. However, due to the difficulty of collecting such a large num-
ber of samples from a cohort in a resource-limited setting only supragingival plaque
was sampled, meaning that my findings about periodontitis only apply to supragingival
plaque. Previous work has shown that sampling supragingival plaque still allows the
detection of bacteria associated with periodontitis while being minimally invasive and
simple to perform (Galimanas et al., 2014). Similarly, I found changes in abundances of
rare taxa known to be associated with the subgingival plaque of periodontitis. For exam-
ple, Fretibacterium fastidiosum (HOMD ID: 360BH017) which accounted for a mean of
just 0.009% of reads was still significantly more abundant (2.5-fold) in women with pe-
riodontitis, consistent with a recent finding of a higher abundance in subgingival plaque
when periodontitis was compared to gingivitis (Park et al., Z0TY).

Another limitation was that samples were collected from across the mouth instead
of localizing sampling to sites of specific interest. The distribution of bacterial species
across the mouth is known to be heterogeneous, with supragingival plaque at sites adja-
cent to deepened periodontal pockets showing significantly higher counts of periodontitis-
associated species (Haffajee et al., Z008). Again, due to the size of the cohort sampling
used a single swab, which was probably at least partially responsible for the large amount
of variability in our dataset when visualized in ordinations (Figure B2), and effectively
pooled all supragingival sites. This precluded any investigation of heterogeneity between
sites, but detectable associations with both gingivitis and periodontitis were still present
even with this approach.

I treated gingivitis as a continuous variable but periodontitis as binary. In reality peri-
odontitis is a complex disease with a problematic classification (Mdala et al., 2(014), and
it is likely that my simple treatment of periodontitis obscures this complexity. This could
cause bacterial co-occurrence patterns in women with periodontitis to appear stronger,
as women with more severe disease may have greater abundances of associated bacte-
rial species. The effect of host genetics was also not investigated. It is known that a

hyper-responsive immune phenotype can affect the risk of certain forms of periodontitis
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(Shaddox et al., 2ZO010) and this has been linked to the oral microbiome (Fine et al., 20T3).
A simultaneous analysis of genetic differences and microbiome differences would be
interesting to unpick possible causation.

This study is the largest to be conducted so far in a sub-Saharan population and the
results appear consistent for the most part with previous work on bacterial associations
with periodontal disease (Ximénez-Fyvie, Haffajee, and Socransky, 2000; Teles et al.,
00173; Haffajee et al., 200&; H. Chen et al., 2015; Haffajee and Socransky, 1994)). How-
ever, it should be pointed out that the population under study was additionally notable in
two respects. Firstly, all participants were women who had recently given birth. Preg-
nancy, particularly in its early to mid stages, is known to be linked to periodontal disease
and potential changes in the oral microbiome (Fujiwara et al., 2015). Pregnant women
have an increased susceptibility to gingivitis (Giirsoy et al., 2010) although subgingival
levels of known periodontal pathogens may remain unchanged (Adriaens et al., 2009).
Qualitative differences between periodontal pathogens found during pregnancy and post-
partum have also been observed (Carrillo-de-Albornoz et al., 2OT0). It is not clear for
how long after pregnancy the oral microbiome remains altered, but evidence that sig-
nificant changes are mainly detectable in early pregnancy (Fujiwara et al., 2O15) and
the consistency of my results with other studies suggests that effects remaining after six
weeks postpartum are small. Secondly, all women in the study were intermittently given
sulfadoxine-pyrimethamine (SP) at enrolment and between the 28th and 34th gestational
week for malaria prevention. Since systemic antibiotics can be given as a treatment for
aggressive periodontitis (Rabelo et al., P(1T5), patients who have received antibiotic treat-
ment in the previous 6 months are often excluded from studies of periodontitis. However,
the salivary microbiome has been shown to be robust to disturbance by a week-long
course of antibiotics (Zaura et al., Z0T5). Given that SP treatment was intermittent, in-
volved antibiotics not targeted at periodontal bacteria, and took place around two months
before the oral sampling, I believe that it is unlikely to have played an important role, but

have no direct evidence to support this claim.

3.4.3 Summary

I have conducted the largest study to date investigating associations between supragin-
gival plaque composition and varying severities of periodontal disease, in a low-income
sub-Saharan population with limited oral hygiene. I modelled periodontal disease using
two variables, allowing the identification of distinct signals associated with gingivitis
and periodontitis in supragingival plaque. Network analysis of observed co-occurrence
patterns and network analysis was consistent with the role of bridging bacteria like F.
nucleatum and F. alocis in the co-aggregation of periodontal biofilms prior to penetrance
into subgingival regions. Although some periodontitis-associated bacteria were also as-
sociated with gingivitis, the major change with periodontitis is in the network of co-

occurrences. Viewed this way, gingivitis could set the stage for periodontitis to develop
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by providing an environment where periodontitis-associated taxa can increase in abun-
dance and co-aggregate into pathogenic biofilms that may then penetrate to subgingival
regions. More quantitative modelling of associations between oral bacteria and various
clinical features of disease will be necessary to understand these complex relationships

and explore the microbial ecology of periodontitis.
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Chapter 4

4.1 Introduction

The human gut microbiome is a complex ecosystem and, as such, can be thought of in
ecological terms. The relative stability of the gut microbiome in the absence of large
perturbations has been suggested to indicate the presence of restoring forces within a
dynamical system (Relman, 2012). While stability appears to be the norm, disturbances
to this ecosystem are also important when considering the impact of the gut microbiome
on human health. One example of a major perturbation is a course of antibiotics, which
typically leads to a marked reduction in species diversity before subsequent recovery
(Modi et al., 2014). Even a brief course of antibiotics can result in long-term effects
on microbial community composition, with species diversity remaining lower than its
baseline value up to a year afterwards (Zaura et al., PZ0T5). However, the nature of the
reconstitution of the gut microbiome remains an active area of research.

Artificial perturbation experiments are widely used to explore the underlying dynam-
ics of macro-ecological systems (Wootton, 2010). In the context of the gut microbiome,
the response after antibiotics has been extensively investigated (Section [3-1]). However,
despite interest in the application of ecological theory to the gut microbiome (Pepper and
Rosenfeld, P017?) it is still challenging to develop and fit quantitative models of this time
response for the whole community due to the large number of species involved. Further-
more, while responses can appear individualized (Dethlefsen and Relman, 2OTT), this
does not preclude the possibility of generalized models that are applicable at the popula-
tion level. Additionally, recent work suggests that alterations due to specific antibiotics
are predictable and reproducible (Raymond, Ouameur, et al., 2OT6).

Applying mathematical models to other ecological systems subject to perturbation
has a long tradition of giving useful insight into their behaviour (May, 1973; Scheffer
et al., 200T; Skellam, T95T). Crucially, it allows the comparison of different models
based on different hypotheses about the subsequent behaviour of the system. Developing
a consistent mathematical framework for quantifying the long-term effects of antibiotic
use would facilitate comparisons between different antibiotics and different regimens,
with the potential to inform antibiotic stewardship (Doron and Davidson, 2011)). Some
previous work has attempted to model species interactions in the context of antibiotics
using Lotka-Volterra models (Stein et al., 2013), but such models require dense temporal
sampling and restriction to a small number of species to make meaningful inference, lim-
iting their applicability to broader ecological questions. Furthermore, it has recently been
shown that pairwise microbial interactions in different scenarios cannot be captured by
a single equation, suggesting that pairwise modelling will often fail to predict microbial
dynamics (Momeni et al., 2017).

Holling (TY73) introduced a now widely-used conceptual framework for thinking
about ecosystem resilience, where ecosystems exist within a stability landscape analo-
gous to a fitness landscape in evolutionary biology. This classical ecology framework

has been used in several articles to visualise the state of the gut microbiome as a ball sit-
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Figure 4.1: An impulse response model of antibiotic perturbation to the gut microbiome. The gut
microbiome is represented as a unit mass on a stability landscape, where height corresponds to phyloge-
netic diversity. (A) The healthy human microbiome can be conceptualized as resting in the equilibrium of a
stability landscape of all possible states of the microbiome. Perturbations can displace it from this equilib-
rium value into alternative states (adapted from Lloyd-Price et al. (2016)). (B) Choosing to parameterize
this stability landscape using diversity, I assume that there are just two states: the healthy baseline state
and an alternative stable state. (C) Perturbation to the microbiome (e.g. by antibiotics) is then modelled as
an impulse, which assumes the duration of the perturbation is short relative to the overall timescale of the
experiment. I consider the form of the diversity time-response under two scenarios: a return to the baseline
diversity; and a transition to a different value of a diversity (i.e. an alternative stable state).

Perturbation (e.g. antibiotics)

displacément

ting in a simple landscape (Lemon et al., 20T2; Relman, 20T7; Lloyd-Price et al., PO16).
Perturbations can be thought of either as forces acting on the ball to displace it from its
equilibrium position (Lloyd-Price et al., POT6), or alterations of the stability landscape
(Costello et al., 20172). While this image is usually provided only as a conceptual model
to aid thinking about the complexity of the ecosystem, I use it to derive a mathematical
model to investigate whether it could provide mechanistic insight.

The model I outline here, based on simple ecological concepts, allows quantitative
hypotheses about the effect of antibiotics on the gut microbiome to be tested. I model
the effect of a brief course of antibiotics on the microbial community’s phylogenetic di-
versity as the impulse response of an overdamped harmonic oscillator (Figure &), and
compare parameters for two widely-used antibiotics by fitting to empirical data previ-
ously published by Zaura et al. (2015). I find that a variant of the model with an extra
parameter accounting for the possibility of an altered equilibrium value of diversity is
better supported, providing evidence from a sparse dataset that antibiotics can produce
transitions to alternative stable states.
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4.2 Materials and methods

4.2.1 Ecological assumptions

I represent the state of the gut microbiome as a unit mass resting in a stability land-
scape (Figure E-TA). Choosing to mathematically model the state of the gut microbiome
in this way also requires choosing a mathematical representation with reference to an
equilibrium value. While earlier studies sought to identify a core set of ‘healthy’ mi-
crobes, the disturbance of which would indicate displacement from equilibrium, it has
become apparent that this is not a practical definition due to high inter-individual vari-
ability in taxonomic composition (Lloyd-Price et al., 2016). More recent concepts of a
healthy ‘functional core’ appear more promising, but characterization is challenging, par-
ticularly as many gut microbiome studies use 16S rRNA marker gene sequencing rather
than whole-genome shotgun sequencing.

Therefore, I choose to use a metric that offers a proxy for the general functional po-
tential of the gut microbiome: phylogenetic diversity (Lloyd-Price et al., 20Té). Higher
diversity has previously been associated with health (Turnbaugh et al., 2007) and tempo-
ral stability (Flores et al., 2014). For these reasons, I assume the equilibrium position
to have higher diversity than the points immediately surrounding it, forming a potential
well (Figure 1B). However, there may be alternative stable states that represent possi-
ble dysbiotic’ states (Figure B-1IB), which are of interest when considering the effect of

perturbations (Figure E1C).

4.2.2 The model

I treat the local stability landscape as a harmonic potential, with a ‘restoring’ force pro-
portional to the displacement x from the equilibrium position (—kx). I also assume the
presence of a ‘frictional’ force acting against the direction of motion (—bx). This sys-
tem is equivalent to a damped harmonic oscillator (Riley et al., T997) with the following
equation of motion:
%%—bi—f%—kxzo 4.1)

Additional forces acting on the system now appear on the right-hand side of this equa-
tion as perturbations. Consider a course of antibiotics of duration 7. If we are interested
in the behaviour of the system at timescales 7 > 7, we can assume for simplicity that
this perturbation is of infinitesimal duration and model it as an impulse of magnitude D
acting at time ¢ = O:

d’x  dx

d_t2+ba+kx:D6(t) 4.2)

To solve this second order differential equation, let us assume that b > 4k (the over-
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damped’ case) based on the lack of any oscillatory behaviour previously observed in the
gut microbiome, which would imply b> < 4k (underdamping). Then, subject to the ini-
tial conditions x(0") = 0 (system at equilibrium at time ¢ = 0) and %(0") = D (a gain in
momentum given by the magnitude of the impulse at time ¢t = 0) we obtain the following

equation describing the system’s trajectory:

o (AT )
2/ (5~

Fitting the model therefore requires fitting three parameters: b (the damping on the

x(t) = (4.3)

system), k (the strength of the restoring force), and D (how strong the perturbation is).
For the purposes of fitting the model, I choose to reparameterise the model using the

following definitions:

b=ef + e (4.4)
k= et (4.5)

Resulting in the following model M; (Figure BTIC):
De¢le¢2 (e—€¢ll _ e—e¢2t>

e¢2 — e¢1

Antibiotics may lead not just to displacement from equilibrium, but also state transi-

(4.6)

xl(t =

tions to new equilibria (Modi et al., 2014). To investigate this possibility, I also consider
a model M, where the value of equilibrium diversity asymptotically tends to a new value
A (Figure E1IC).

0(t) =x1 (1) +A (1 - e*"“’”> 4.7)

4.2.3 Empirical dataset

To validate the model and test whether antibiotic perturbation caused a state transition I
fitted both models to an empirical dataset and compared the results. Zaura et al. (2015)
conducted a study on the long-term effect of antibiotics on the gut microbiome which
provides an ideal test dataset. As part of this study, 30 Swedish individuals (15 males
and 15 females, average age 26 years, range 18-45 years) were randomly assigned to
either ciprofloxacin, clindamycin, or a placebo. The antibiotics (150 mg clindamycin
four times a day, 500 mg ciprofloxacin twice a day) and placebo were administered for
7 = 10 days and longitudinal faecal samples collected until 1 year afterwards (i.e. 7 ~
0.027 < 1) at baseline, after treatment, one month, two months, four months, and one
year. Samples underwent 16S rRNA gene amplicon sequencing, targeting the V5-V7

region (SRA: SRP057504). I reanalysed this data, doing de novo clustering into OTUs
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at 97% similarity with VSEARCH v1.1.1 (Rognes et al., PO16) as described previously
(Section ZZ2). Taxonomy was assigned with RDP (Q. Wang et al., 2007).

4.2.4 Phylogenetic diversity

There are many possible diversity metrics that could be used to compute the displace-
ment from equilibrium (see Table ). Because of the assumption that phylogenetic
diversity approximates functional potential, which is itself a proxy for ecosystem ‘health’
(see Section &), I chose to use Faith’s phylogenetic diversity (Faith, T992) calculated
with the pd () function in the picante R package v1.6-2 (Kembel et al., 2010). Calculat-
ing Faith’s phylogenetic diversity requires a phylogeny, which I produced with RaxML
v8.1.15 (Stamatakis, 2014) after aligning 16S rRNA V5-V7 OTU sequences with Clustal
Omega v1.2.1 (Sievers et al., 2ZOTT). To obtain values for fitting the model, I used mean
bootstrapped values (n = 100, sampling depth r = 2000) of the phylogenetic diversity at
timepoint i for individual j: dij . These were scaled relative to the baseline phylogenetic
diversity dé for that individual, representing the displacement from equilibrium in the

model:
d =dl -af (4.8)

4.2.5 Model fitting

I used a Bayesian framework to fit models 1 and 2 (equations B-@ and B77) using Stan
(Carpenter et al., 2017) and RStan (Stan Development Team, 2017) to the three separate
groups: placebo, ciprofloxacin, and clindamycin. In brief, I used 4 chains with a burn-in
period of 10,000 iterations and 100,000 subsequent iterations, verifying that all chains
converged (R = 1) and the effective sample size for each parameter was sufficiently large
(negr > 10,000).

I used uninformative priors for the three parameters in the original model M; with-
out a state transition (equation B-6). For ciprofloxacin and clindamycin I used the same
uniformly distributed prior for D, and uniform priors for ¢, ¢. For the model M, with a
state transition (equation B77) I used the same priors, with a normal prior centred at zero
for the new equilibrium value A with a standard deviation given by the standard devia-
tion of the displacement of placebo samples from baseline after a year (¢ = 1.263), with

bounds between -2 and 2. The priors are as follows:

D ~ uniform(0, 15) 4.9)
¢1 ~ uniform(—1.99,1.99) (4.10)
¢, ~ uniform(—2,2) 4.11)
A ~normal(u = 0,0 = 1.263) (4.12)
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Group n % males % Cau- Age,yrs Weight,  Height,
casian kg cm
Placebo 10 50 100 26 (4) 74 (9) 179 (10)
Ciprofloxacin  10“ 50 80 26 (3) 69 (13) 176 (10)
Clindamycin 9% 56 100 24 (5) 67 (11) 175 (9)

Table 4.1: Summary demographic characteristics of participants in each treatment group. Age,
weight, and height are given as mean value =+ standard deviation. Adapted from Zaura et al. (20T5).

a. On reanalysis after downloading data from SRA Run Selector, I found that participant KI17 was missing
2/6 faecal samples, so they were excluded from analysis i.e. leaving n = 9 for the reanalysis of ciprofloxacin
as well as clindamycin. However, these summary statistics apply before the exclusion of KI17.

b. One female participant who was initially recruited dropped out of the study after enrolment.

The marginally different priors for ¢; and ¢ are because of the way Stan chooses
initial values. For the placebo group, I expected no perturbation response so used a

uniform prior for D centred at zero:

D ~ uniform(—35,5) (4.13)

I compared models M; and M, for each treatment group using the Bayes factor
(Aitkin, T99T; Kass and Raftery, T999) after extracting the model fits using bridge sam-
pling with the bridgesampling R package v0.2-2 (Gronau et al., Z017). A prior sensitivity
analysis showed that choice of priors did not affect the conclusion that M; outperformed
M, for the two antibiotics, although the strength of the Bayes factor varied.

Full code for fitting the models is available as Supplementary Material on biorxiv
(Shaw, Barnes, et al., 2017).

4.3 Results

4.3.1 Dataset

I fitted the model to published data from Zaura et al. (2015) where 30 individuals re-
ceived a ten-day course of either a placebo, ciprofloxacin, or clindamycin (Table BT).
Clindamycin is a lincosamide with a broad spectrum of activity against Gram-positive aer-
obes and anaerobes Gram-negative anaerobes (Guay, 2007). Ciprofloxacin is a quinolone
which targets bacterial DNA topoisomerase and DNA gyrase, making it active against a
range of Gram-positive and Gram-negative bacteria (Mustaev et al., 2014)). Faecal sam-
ples were taken at baseline (i.e. before treatment), then subsequently at ten days, one

month, two months, four months, and one year after treatment.

4.3.2 An impulse response model for the effect of antibiotics

The model (Figure B1l) assumes that a short course of antibiotics can be modelled as an

impulse on the gut microbiome. With some additional simplifying assumptions about

93



Chapter 4
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Figure 4.2: An impulse response model captures the dynamics of the effect of antibiotics on the gut
microbiome. Bayesian fits with Stan for participants taking either a placebo (n = 10), ciprofloxacin (n =9),
or clindamycin (n = 9). The mean phylogenetic diversity from 100 bootstraps for each sample (black
points) and median and 95% credible interval from the posterior distribution (bold and dashed coloured
lines, respectively). The grey line indicates the equilibrium diversity value, defined on a per-individual
basis relative to the mean baseline diversity. The biased positive skew of residuals after a year suggests the
possibility of a transition to an alternative stable state with persistently reduced diversity.

the form of the stability landscape (see Section B2T)), I derive an analytical form for this
overdamped impulse response in terms of the phylogenetic diversity of the gut micro-
biome (M7; equation E6).

The model M, appeared to adequately describe the initial response to antibiotics (Fig-
ure B7), where diversity decreases (i.e. displacement from equilibrium increases) be-
fore returning gradually towards equilibrium. Despite large variability between samples
from the same treatment group, reassuringly the placebo group clearly did not warrant
an impulse response model whereas data from individuals receiving ciprofloxacin and
clindamycin was qualitatively in agreement with the model.

However, the residuals suggested that diversity after a year was not well-captured by
the model, with a substantially positive skew of samples in Figure &7. In their analysis,
Zaura et al. (2015) noted significantly (p < 0.05) reduced Shannon diversity when com-
paring samples a year after receiving ten days’ ciprofloxacin to baseline, but this could
have in principle merely been due to slow reconstitution and a return to the original equi-
librium under the dynamics I have described but with greater damping.

Fitting the impulse model to the data and taking into account the whole temporal
response suggests that the lack of return to the initial equilibrium state is not due to slow
reconstitution of the initial microbiome species community. Instead, the distribution of
residuals indicates that, while the initial response fits a standard impulse response model
well, the longer-term dynamics of the system did not, as might be expected under a
scenario involving a long-term transition to an alternative community state (Figure BTI).
I therefore developed a variant of the model (equation B77) to take into account potential

shifts to alternative stable states.
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Figure 4.3: A model with a possible state transition improves the fit to empirical data. Bayesian fits
with Stan for participants taking either a placebo (n = 10), ciprofloxacin (n = 9), or clindamycin (n = 9).
The mean phylogenetic diversity from 100 bootstraps for each sample (black points) and median and
95% credible interval from the posterior distribution (bold and dashed coloured lines, respectively). The
grey line indicates the equilibrium diversity value, defined on a per-individual basis relative to the mean
baseline diversity. The biased positive skew of residuals after a year suggests the possibility of a transition
to an alternative stable state with persistently reduced diversity. @The non-zero-centred asymptote indicates
support for a state transition.

4.3.3 Support for an antibiotic-induced state transition

To test the hypothesis that the course of antibiotics could have moved individuals’ gut
microbiomes into alternative states, I fitted an extended version of the model that allowed
a potential non-zero asymptotic value (M,; equation BZ7), representing a new long-term
value of diversity. I assumed a normally distributed prior for the asymptote parameter A
centred at zero (i.e. return to original equilibrium) with a variance given by the variance
of the displacement of placebo samples from baseline after a year.

Qualitatively, this slightly more complex model gave a similar fit (Figure E3) but with
a positive displacement from equilibrium, corresponding to an alternative equilibrium
state with lower diversity. I compared models with the Bayes factor K, where K > 1
indicates support for one model over another. There was no support for M, over M
for the placebo (K = 0.96) but support for ciprofloxacin (K = 3.36) and clindamycin
(K =3.99). The posterior estimates for the asymptote parameter for ciprofloxacin and
clindamycin were substantially positively skewed (Figure B-4)), providing evidence of a

transition to a state with lower phylogenetic diversity than the baseline.

4.3.4 Comparison of parameters between antibiotics

Comparing the posterior distribution of parameters for fits of M, between treatment
groups (Figure B-4)), the strength of the perturbation parameter D was not substantially
different between antibiotics. The asymptotic equilibrium parameter A was positively
skewed for both antibiotics (median (95% CI): Acjinga = 0.66 (-0.13 — 1.41); Acjpro = 0.58
(-0.14 —1.27), strongly suggesting persistent detrimental effects on microbiome diversity

and a transition to an alternative stable state.
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Figure 4.4: Posterior parameter estimates for model with a possible transition to an alternative stable
state. The posterior distributions from Bayesian fits of M, (equation EZ7) to empirical data for ciprofloxacin
(green) and clindamycin (red). Each posterior distribution represents 400,000 iterations in total.

The parameters b and k were both greater in clindamycin compared to ciprofloxacin.
The damping ratio § = ﬁ/? summarises how perturbations decay over time, and is an
inherent property of the system independent of the perturbation itself. Therefore, if the
modelling framework and ecological assumptions were valid we would expect a consis-
tent damping ratio across both the clindamycin and ciprofloxacin groups. This is indeed
what is observed, with median (95% CI) damping ratios of {jinga = 1.07 (1.00 — 1.65)
and Ccipro = 1.07 (1.00 — 1.66), substantially different from both the prior and the pos-
terior distribution in the placebo group of Cplacebo = 1.21 (1.00 — 3.00), supporting the

view of the gut microbiome as a damped harmonic oscillator.

4.3.5 True complexity of response does not prevent modelling

While it is not my intention to repeat a comprehensive description of the precise nature
of the response for the different antibiotics, I note here some interesting qualitative ob-
servations from my reanalysis that highlight the complexity of the antibiotic response.
While modelling these interactions is far beyond the scope of this model, I wish to make
the point that the approach is unaffected by this underlying complexity. I discuss here
observations at the level of taxonomic family (Figure B3).

Despite their different mechanisms of action, both clindamycin and ciprofloxacin

96



The microbial ecology of human-associated bacterial communities

"SQI[IWE] [BLI0)oBq U9dM)Aq SUOIIOBIAUI 9[qIssod JO 90UapIAS pPue AJI[IqELIEA [ENPIAIPUI-IOUI ST 9IOY) ‘S[BNPIAIPUI SSOIOE SONIOIqIIUE USIMIA]
soueyo ur Aou9)SISU0d Swos AIdSa(] TenpIAIPUI YoBS JOJ SAUI[ PAINO[0d AQ Payul[ aIe suonealssq Jurodown pajdures yoes je panold sarjrurey [e11)oeq juepunge 1sow aA[am} doy
oy Jo (91eos-301) seouepunge 2ANE[YY *dnoas Judueas) Yoea I0j SII[IWE] JUIOUOXE) JUBPUNGe JSOUI dA[IM) d0) Y} 10J WL} IIA0 ISUOSII [BNPIAIPUL UI SIUIJJI(] :S'{ AN

Jurodeuwi Jurodeuwi Jurodeuwi

- 00k 01N o
sa | o | | |
82
6L o *— —® 92 e
7 Vet o
L0 2 et ¥ '/ / 2 2
2 811 o 2/ 2 et 2
S o 2 / 2 2
¥ B o\ { H 12 .- s
pHN ® ehx ' »
é o N o 0z o
LH o= g 21 o ~ g g
s 2 ot o :
LA W 9 M P M
PIM .- © SIM - @® o @
.
2 ~00'k [ 00’k ook
\edioneg [oeeoe|jeisou.eg] L-v2s 7 0 T Ledoneq [oesoe|eisou.eg] 7 1-v2s 7 6Ba0B|oUBSUBISLILD 7 oea0E|joUS Y 7 et [oesoe|oisouseg] 1428 7 0 7 7
o —2 B —— Juedionieq =—
- 100 > -0 -0
A -2
F ~
A N P :
// )/\”' //Vu T\bn\m/c\) 2 S 2| = ? 3 s ] -
/s || g5 a | \(//m\\/‘w. —a T e, 2 & o .w/o\(f %ﬁ
3 hd 00t =3 P == e, o —~
L 00k 00't
| ' | | ] ' | | | ] | |

: |
(6=u) uoexopoidin (01=u) ogeoe|d

97



Chapter 4

caused a dramatic decrease in the Gram-negative anaerobes Rikenellaceae, which was
most marked a month after the end of the course. However, for ciprofloxacin this decrease
had already started immediately after treatment, whereas for clindamycin the abundance
after treatment was unchanged in most participants. The different temporal nature of this
response perhaps reflects the bacteriocidal nature of ciprofloxacin (Mustaev et al., Z0T4)
compared to the bacteriostatic effect of clindamycin, although concentrations in vivo can
produce bacteriocidal effects (Spizek and Rezanka, 2004).

There were clear differences in response between antibiotics. For example, clin-
damycin caused a decrease in the anaerobic Gram-positives Ruminococcaceae after a
month, whereas ciprofloxacin had no effect. Conversely ciprofloxacin caused lower lev-
els of Barnesiellaceae which was largely unaffected by clindamycin.

Some families appeared unaffected by antibiotics: the Bacteroidaceae were largely
unaffected in most individuals. Furthermore, while overall diversity decreased, this can
still be consistent with increases in the relative abundance of certain taxa. For exam-
ple, ciprofloxacin led to increases in Erysipelotrichaceae, which were dramatic in some
individuals. Interestingly, for these individuals these increases coincided with marked
decreases in Bacteroidaceae, suggesting the relevance of inter-family microbial interac-
tions (Figure B3). The individualized nature of the ciprofloxacin response was also no-
ticeable in Lachnospiraceae — which was largely unaffected by clindamycin — as its abun-
dance dropped below detectable levels in some individuals after a month but remained
unchanged in other individuals.

Comparing relative abundances at the family level, there were few differences be-
tween community states of different treatment groups after a year. Equal phylogenetic
diversity can be produced by different community composition, and this suggests against
consistent trends in the long-term dysbiosis associated with each antibiotic. However,
I did find that Peptostreptococcaceae, a member of the order Clostridiales, was signifi-
cantly more abundant in the clindamycin group when compared to both the ciprofloxacin
group and the placebo group separately (p < 0.05, Wilcoxon rank sum test). In a clinical
setting, clindamycin is well-established to lead to an increased risk of a life-threatening
infection caused by another member of the same order: Clostridium difficile (Thomas
et al., 2003). The long-term reduction in diversity may well similarly increase the risk of

colonization and overgrowth of pathogenic species.

4.4 Discussion

4.4.1 Conclusions

Starting from a common qualitative conceptual picture of the gut microbiome as rest-
ing within a stability landscape, I have developed a simple mathematical model of its
response to perturbation. With a few simplifying ecological assumptions, most notably

that the phylogenetic diversity of the gut microbiome relative to its baseline value can
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parameterise this stability landscape, I have demonstrated that the response of the gut
microbiome to a short course of antibiotics can be modelled as an impulse acting on a
damped harmonic oscillator. Crucially, the simplifications involved appear to be justified
at some fundamental level, as this model proves to successfully capture empirical dynam-
ics from a previous study (Zaura et al., 2015). From this, I suggest that the restoring
forces that contribute to the gut microbiome’s resilience to perturbation are proportional
to displacement from equilibrium and that the system is overdamped.

This approach uses a simple conceptual model to give mechanistic insight. Zaura et
al. (2015) made the observation from their dataset that the lowest diversity was observed
after a month rather than immediately after treatment stopped. This cannot be due to a
persistence of the antibiotic effect, as clindamycin and ciprofloxacin only have short half-
lives of the order of hours (Bergan et al., T987; Leigh, T98T). Furthermore, measured
concentrations of ciprofloxacin and clindamycin in faeces were higher than the MICs of
most members of the gut microbiome, with mean concentrations of 168.5 +41.4 mg/kg
and 147.4 £126.9 mg/kg respectively (Rashid et al., 2015). The model gives us a mech-
anistic framework for thinking about this temporal delay: the full effects of the transient
impulse take time to be realized due to the overdamped nature of the system, and I found
a consistent damping ratio for both antibiotics analyzed.

I have also demonstrated how this modelling framework could be used to compare
different hypotheses about the long-term effect of antibiotic perturbation on the gut micro-
biome by fitting different models and using Bayesian model selection. This modelling
work provides an additional line of evidence that while short-term restoration obeys a
simple impulse response model, the underlying long-term community state can be fun-
damentally altered by a brief course of antibiotics, as suggested previously by others
(Dethlefsen and Relman, 20TT), raising concerns about the long-term impact of antibi-
otic use on the gut microbiome. Despite the noisiness of the dataset and use of uninfor-
mative priors, I found better support for a model with a state transition, which was not
observed in individuals taking a placebo. The transition to a new state with reduced di-
versity may increase the risk of colonization and overgrowth of pathogenic species. Even
if only marginal, when considered at a population level this may mean that antibiotics
have substantial negative health consequences that could support reductions in the length
of antibiotic courses, in addition to concerns about antibiotic resistance (Llewelyn et al.,
20T17). Modelling the long-term impact on the microbiome of different doses and courses
could help to influence the use of antibiotics in routine clinical care.

While the evidence for a long-term state transition is weak at present, I argue that we
can at the very least conclude that the restoration of diversity after a year does not seem to
obey the same underlying dynamics that govern the initial response — even if we should
perhaps remain agnostic about the most appropriate model refinement. Implicit in some
definitions of ecological resilience is the assumption that the fundamental shape of the

stability landscape remains unaltered (Gunderson, 2000), which I have assumed when
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drawing the visual aids to accompany the model. However, an alternative schematic pic-
ture could be drawn where a harmonic potential with a single equilibrium value gradually
shifts over time to a new equilibrium value. In this interpretation the landscape has been

fundamentally altered, representing an irreversible change.

4.4.2 Limitations

The sample size is small so the precise posterior estimates for parameters that I obtained
should not be over-interpreted, but comparing antibiotics using these estimates represents
another practical application of such simple models. However, these posterior estimates
for the model parameters were fairly wide, which is to be expected with a sparse and
small dataset. Hierarchical mixed effects models may offer an improved fit, particularly
if they take into account other covariates; however, here I lacked any metadata on the
participants from the original study, with only summary statistics available for each treat-
ment group (Table BT).

A single metric clearly fails to capture all the complexity of the microbial community
and its interactions. Nevertheless, the observation that treating phylogenetic diversity as
the variable underlying the stability landscape leads to a reasonable fit of a simple model
is interesting, as it supports observations of functional redundancy in the gut microbiome
(Turnbaugh et al., P007). An interesting extension of this work would be to systemati-
cally fit the model to a variety of diversity metrics and assess the model fit to see which
metric (or combination of metrics) is most appropriately interpreted as the state variable
parameterizing the stability landscape. Such an analysis could use the Hill diversity 7D to
assess model fit as ¢ was varied (Table [Tl). A possible complementary approach could
consider the diversity of the gut resistome, which is the collection of antibiotic resistance
genes harboured in the gut microbiome (Schaik, 2015).

I would not expect the behavior with longer or repeated courses of antibiotics to
be well-described by an impulse response model, but it would be possible to use the
mathematical framework given here to obtain an analytic form for the possible system
response by convolving any given perturbation function with the impulse response. It
remains to be seen whether this simple model would break down in such circumstances.

The detailed nature of the gut microbiome’s response to clindamycin and ciprofloxacin
was individualized in the dataset, as others have also observed with shotgun sequencing
of samples from healthy participants given a second-generation cephalosporin (Raymond,
Déraspe, et al., 2016). I believe it would be a mistake to react to this complexity by assum-
ing that no simplified model can capture general details of the ecosystem. At this stage
of our understanding, creating a comprehensive inter-species model of the hundreds of
members of the gut microbiome appears intractable. My recommendation is that micro-
biome research instead starts with ecologically-informed simple models and believe there
is a place for both ‘bottom-up’ models using pairwise interactions for systems of reduced

complexity (like bioreactors) and ‘top-down’ models using general ecological principles,
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as I have attempted to demonstrate here.

4.4.3 Summary

I have shown that comparing different hypotheses about the response of the gut micro-
biome to antibiotics is possible by using a simple model derived from minimal assump-
tions about the nature of its equilibrium diversity and response to perturbation. Future
mathematical models of the gut microbiome, in conjunction with carefully designed lon-
gitudinal studies, will offer many more opportunities to rigorously test ecological hy-

potheses.
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The global distribution and spread of

an antibiotic resistance gene
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5.1 Introduction

This chapter delves in far greater detail into the bacterial genetics of antibiotic resistance,
focusing on a single gene that confers resistance to colistin: mcr-1. 1 demonstrate how
using a combination of publicly available data and novel data allows the identification
of a consistent unit across hundreds of sequences from within the human microbiome
and beyond. Colistin resistance is particularly interesting because it is emblematic of
the growing problems of antimicrobial resistance worldwide, which represent a major
concern for future human health (Section T32). Colistin was largely abandoned as a
treatment for bacterial infections in the 1970s due to its high toxicity and low renal clear-
ance, but has been reintroduced in recent years as an antibiotic of ‘last resort’ against
multi-drug-resistant (MDR) infections (Grégoire et al., Z0T7). It is therefore alarming
that resistance to colistin may be becoming more widespread, following the identifica-
tion of plasmid-mediated colistin resistance in late 2015 (Liu et al., ZOT#).

Up until 2015, resistance to colistin had only been linked to mutational and regula-
tory changes mediated by chromosomal genes (Olaitan et al., 20T4; Lee et al., Z016). The
mobilized colistin gene mcr-1 was first described in a plasmid from Enterobacteriaceae
isolated in China in April 2011 (Liu et al., Z0T6). The presence of colistin resistance on
mobile genetic elements poses a significant public health risk, as these can spread rapidly
by horizontal transfer, and may entail a lower fitness cost (Carattoli, 20173). At the time
of writing, mcr-1 has been identified in numerous countries across five continents. Sig-
nificantly, mcr-1 has also been observed on plasmids containing other antimicrobial resis-
tance genes such as carbapenemases (Poirel et al., 2016; Du et al., 2016; Yao et al., 2O16)
and extended-spectrum f3-lactamases (ESBL) (X.-F. Zhang et al., 2016; Falgenhauer et
al., 20T6; Haenni et al., 20T6).

The mcr-1 element has been characterized in a variety of genomic backgrounds (Y.
Wang, R. Zhang, et al., 20T7; R. Li et al., 2017; Matamoros et al., 2017; Zhou et al.,
2017), consistent with the gene being mobilized by a transposon. To date, mcr-1 has
been observed on a wide variety of plasmid types, including IncI2, IncHI2, and IncX4
(Matamoros et al., 2017). Intensive screening efforts for mcr-1 have found it to be highly
prevalent in a number of environmental settings, including the Haihe River in China (D.
Yang et al., P(O0T7), recreational water at public urban beaches in Brazil (Fernandes et al.,
2017), faecal samples from otherwise healthy individuals in China (Y. Wang, Tian, et al.,
2017), and Dutch travellers who had recently visited Southern Asia (Wintersdorff et al.,
2016). While both Brazil and China have now banned the use of colistin in agriculture,
this evidence that mcr-1 can spread within hospital environments — even in the absence of
colistin use (Y. Wang, Tian, et al., 20177) — as well as in the community (Wintersdorff et al.,
2016) raises the possibility that the spread of mcr-1 will not be contained by these bans.
The spread of mcr-1 across multiple bacterial communities worldwide, including into the
human microbiome, demonstrate the reality of the wider environmental meta-community

of human-associated bacterial communities. The human microbiome can both acquire
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antibiotic resistance genes from the wider community and serve as a reservoir of those
genes (Section [37).

The global distribution of mcr-1 over at least five continents is well documented,
and an evolutionary model for its mobilization has been proposed. Snesrud et al. (20T16)
analyzed a collection of 77 mcr-1-containing sequences and identified a common 2,607-
bp sequence flanked at one or both ends by the insertion sequence ISApl/. They proposed
that this composite ISAplI-mcr-1-PAP2- ISApl1 transposon has mobilized the mcr-1 gene
(Figure 872). However, little is known about the origin, acquisition, emergence, and
spread of mcr-1; in principle, these issues can be addressed by identifying the composite
transposon (the ecological unit) and conducting phylogenetic analysis to understand its
evolutionary past.

In this chapter, I extend the work of Snesrud et al. (20016) and report investigations
into these fundamental issues. I use a combination of sources to build a global dataset:
whole genome sequencing data from 110 novel mcr-1-positive isolates from China, and
an extensive collection of publicly available sequence data sourced from the NCBI Ref-
Seq database and Short Read Archive (SRA). This dataset and our analyses support an
initial single mobilization event of mcr-1 by an ISAplI-mcr-1-PAP2- ISAplI transposon
around 2006. The transposon was immobilized on several plasmid backgrounds follow-
ing the loss of the flanking ISApl/ elements, and spread through plasmid transfer. The
current distribution of mcr-1 points to a possible origin in Chinese livestock. These re-
sults illustrate the complex dynamics of antibiotic resistance genes across multiple em-
bedded genetic levels (transposons, plasmids, bacterial lineages and bacterial species),
previously described for another resistance gene as a nested ‘Russian doll’ model of ge-

netic mobility (Sheppard et al., ZOTH).

5.2 Materials and methods

5.2.1 Compilation of genomic dataset

I blasted for mcr-1 in all NCBI GenBank assemblies (as of 16th March 2017, n =90,759)
using a 98% identity cut off. 195 records (0.21%; 121 assemblies, 73 complete plasmids,
1 complete chromosome) contained at least one contig with a full-length hit to mcr-1
(1,626 bases). 1 only included samples with a single copy of mcr-1. The only isolate
with multiple copies was a previously published isolate with three chromosomal copies
of mcr-1 and seven copies of ISAplI (C. Y. Yu et al., 2016).

Our collaborators Phelim Bradley and Zam Igbal also searched a snapshot of all
whole-genome sequenced bacterial raw read datasets in the NCBI SRA (December 2016),
looking for samples containing mcr-1 by using a k-mer index (k = 31) which they had pre-
viously constructed (Bradley et al. (2017), https://github.com/phelimb/cbg). This snap-
shot consisted of 455,632 samples, of which 7,799 were excluded as they exceeded an

arbitrary threshold of 10 million kmers after error-cleaning with McCortex (Turner et al.,
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2017), and identified 184 datasets that contained at least 70% of the 31-mers in mcr-1.
After removing duplicates (i.e. those with a draft assembly available) we could assemble
contigs with mcr-1 for 153 of these.

The final combined dataset comprised 457 isolates from six genera across 31 different
countries, ranging in date from 2008 to 2017. Where only a year was provided as the date
of isolate collection the date was set to the midpoint of that year.

Whenever identified isolates did not comprise previously assembled genomes or com-
plete plasmids, Lucy van Dorp built assemblies using a pipeline I had originally written
and she had further adapted. In brief, raw fastq files were first inspected using FastQC
and trimmed and filtered on a case by case basis. De novo assembly was then conducted
using Plasmid SPADES 3.10.0 using the —~careful switch and otherwise default parame-
ters (Antipov et al., PZOT6). For those isolates sequenced using PacBio a different pipeline
was employed, which Lucy van Dorp wrote. Correction, trimming and assembly of raw
reads was performed using Canu (Koren et al., 20017) and assembled reads were corrected
and trimmed using the tool Circlator (Hunt et al., 2Z0T5). The quality of resultant assem-
blies was assessed using infoseq. In both cases I identified mcr-1 carrying contigs from
these assemblies using blastn v2.2.31 (Camacho et al., 2009).

I also investigated the wider genomic context of mcr-1 beyond the transposon. Lucy
van Dorp ran Plasmid Finder 1.348 (Carattoli et al., 2014) with 95% identity to identify
plasmid replicons on the mcr-1-carrying contigs. 182 unique contigs could be assigned a
plasmid type using this method.

Assembling this large dataset was a collaborative effort primarily between Lucy van
Dorp and me. We attempted wherever possible to combine information from multiple
sources (across NCBI databases) to add metadata to the isolates. In several instances
this identified duplicate records that were not apparent from checking accessions. We
still lacked information on some isolates. At the time we finished assembling it this
dataset represented all publicly available sequences with (to the best of our knowledge)
all publicly available metadata. I took the responsibility for curating the final dataset and

identifying duplicate records.

5.2.2 Novel samples from China

Hui Wang and her group selected 110 mcr-1-positive isolates from China for whole
genome sequencing from a larger survey effort of both clinical and livestock isolates.
Non-repetitive clinical isolates, including 1,637 Escherichia coli and 1,187 Klebsiella
pneumoniae, were collected from 15 provinces of mainland China from 2011 to 2016.
72 isolates were resistant to polymyxin B, comprising 40 E. coli and four K. pneumoniae
carrying mcr-1. Livestock samples were collected from four provinces of China in 2013
and 2016. One broiler farm of the Shandong province provided chicken anal swabs, liver,
heart and wastewater isolated in 2013. In 2016, samples including faeces, wastewater,

anal swabs, and internal organs of sick livestock were collected from swine farms, cattle
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farms and broiler farms in four provinces (Jilin, Shandong, Henan and Guangzhou). A
total of 601 E. coli and 126 K. pneumoniae were isolated, of which 167 (137 E. coli and
30 K. pneumoniae) were resistant to polymyxin B. They detected mcr-1 in 135 E. coli
and two K. pneumoniae, as well as in eight E. coli isolated from environmental samples,
which were collected from influents and effluents of four tertiary care teaching hospitals.

All of the isolates were sent to the microbiology laboratory of Peking University
People’s Hospital and were confirmed with routine biochemical tests, the Vitek system
(bioMérieux, Hazelwood, MO) and/or MALDI-TOF (Bruker Daltonics, Bremen, Ger-
many). The minimal inhibitory concentrations (MICs) of polymyxin B were determined
using the broth dilution method. The breakpoints of polymyxin B for Enterobacteriaceae
were interpreted with the EUCAST guidelines (EUCAST, 2017). Colistin-resistant iso-
lates (defined as having an MIC of > 2 ug/ml) were screened for mcr-1 by PCR and
sequencing as described previously (X. Wang et al., 2OT7).

5.2.3 Identification and alignment of mcr-1 transposon

I searched for the mcr-1 carrying transposon across isolates by blasting for its major
components: ISApll (Actinobacillus pleuropneumoniae reference sequence: EF407820),
mcr-1 (from E. coli plasmid pHNSHP45: KP347127.1), and short sequences represent-
ing the sequences immediately upstream and downstream of mcr-1 (from KP347127.1)
using blastn-short. I aligned contiguous sequences containing mcr-1 with Clustal
Omega (Sievers et al., 2OT1)) and then manually curated and amended this alignment
to correct misaligned sequences using jalview v2.10.3 (Waterhouse et al., 2009), result-
ing in a 3,679bp alignment containing the common 2,600bp identified by Snesrud et al.
(2016). The downstream copy of ISAp/l was more often fragmented or inverted. 28 iso-
lates which were all assemblies from the same study in Vietnam had a 1.7kb insertion

downstream of mcr-1 (Figure B3e) before the downstream [SApl/ element.

5.2.4 Phylogenetic analyses

For constructing the transposon phylogeny, I excluded the downstream ISApl/ and the
insertion sequence observed in a small number of samples, as well as regions identified
as having signals of recombination with ClonalFrameML (Didelot and Wilson, 20T5), re-
sulting in a 3,522bp alignment. I removed two homoplastic sites (requiring >1 change on
the phylogeny), before constructing a maximum parsimony neighbor-joining tree based
on the Hamming distance between sequences. I calculated branch lengths using non-
negative least squares with nnls.phylo in phangorn v2.2.0 (Schliep, 2011) and visualized

phylogenies with ggtree v1.8.1 (G. Yu et al., 20T7).
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5.2.5 Phylogenetic dating

Recombination can conceal clonal phylogenetic signal. Therefore, Lucy van Dorp also
applied ClonalFrameML (Didelot and Wilson, 20T5) to identify regions of high recombi-
nation in a subset of IncI2 and IncX4 plasmid background alignments that I had selected.
Where recombination hotspots were identified, they were removed from the alignment.
In the IncI2 alignment this resulted in removing 1,281 positions. No regions of high
recombination were detected in the IncX4 alignment. We applied root-to-tip correla-
tions to test for a temporal signal in the data using TempEST (Rambaut et al., DOTEH)
and found a significantly positive slope for all three alignments. Lucy van Dorp applied
BEAUTi and BEAST v2.4.7 (Drummond et al., 2012; Bouckaert et al., 2014) to estimate
a timed phylogeny from an alignment of IncI2 plasmids (7,161 sites, 110 isolates) and
IncX4 plasmids (34,761 sites, 8 isolates). Sequences were annotated using their known
sampling times expressed in years. For both plasmid alignments, the HKY substitution
model was selected based on evaluation of all possible substitution models in bModel Test.
Beast analyses were then applied under both a coalescent population model (the coales-
cent Bayesian skyline implementation) and an exponential growth model (Coalescent
Exponential population implementation). Additionally, a strict clock, with a lognormal
prior, and a relaxed clock (both lognormal and exponential) were tested. MCMC was
run for 50,000,000 iterations sampling every 2,000 steps and convergence was checked
by inspecting the effective sample sizes (ESS) and parameter value traces in the software
Tracer v1.6.0. Analyses were repeated three times to ensure consistency between the ob-
tained posterior distributions. Posterior trees for the best-fitting model were combined in
TreeAnnotator after a 10% burn-in to provide an annotated Maximum Clade Credibility
(MCC) tree. MCC trees were plotted using ggtree v1.8.2 (G. Yu et al., 20T7) for both
backgrounds: Incl2 (Figure A~T0a) and IncX4 (Figure [A_T0b). The model fit across anal-
yses was compared using the Akaikes information criteria model (AICM) through 100
boot-strap resamples as described in Baele et al. (2012) and implemented in Tracer v1.6.

Phylogenetic dating on the transposon was performed using an alignment of 364 iso-
lates, which included only those with information on isolation date, across 3,522 sites.
As before BEAST analyses were applied under both a coalescent population model (coa-
lescent Bayesian skyline implementation) and an exponential growth model (coalescent
exponential population implementation). Additionally, a strict clock, with a lognormal
prior, and a relaxed clock (both lognormal and exponential) were tested. Analyses were
run under a HKY substitution model for 600 million iterations sampling every 5,000
steps. Only analyses using a strict clock model reached convergence after 600 million it-
erations. The resultant set of trees were thinned by sampling every 10 trees and excluding
a 10% burn-in and combined using TreeAnnotator to produce a MCC tree. MCC trees
were plotted using ggTree (G. Yu et al., 20T7). As before the model fit was evaluated

using AICMs implemented in Tracer v1.6.
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5.2.6 Environmental distribution

For the purpose of testing the distribution of sequences containing some trace of ISApl],
I classed isolates into broad categories as either environmental (n = 39; bird, cat, dog, fly,
food, penguin, reptile, vegetables), agricultural (n = 213; chicken, cow, pig, poultry feed,
sheep, turkey), or human (n = 108). I did not correct for study site with subsampling
as we found great diversity within sites, consistent with a recent study showing multi-
ple diverse mcr-1-positive strains within a single hospital sewage sample (F. Zhao et al.,
D017).

The human-associated samples demonstrated the presence of mcr-1-positive bacteria
in multiple environmental niches within the human body. The largest group was blood
cultures (n = 30), followed by faeces or rectal swabs (n = 12), urine (n = 10), wounds
(n =15), abdominal fluid (n = 5), and sputum (n = 3). The dataset also contained samples
from wastewater influent and effluent (n = 8), with most other human-associated samples

having missing information.

5.3 Results

5.3.1 Dataset

I compiled a global dataset of 457 mcr-1-positive isolates (Figure BTA), including 110
new whole genome sequences from China, of which 105 were sequenced with Illumina
short reads and five with PacBio long read technology. 195 isolates were sourced from
publicly available assemblies in the NCBI sequence repository (73 completed plasmids, 1
complete chromosome, 121 assemblies). A further 153 sequences were sourced from the
Short Read Archive (NCBI-SRA), after being identified as mcr-1-positive using a k-mer
index of a snapshot of the SRA as of December 2016 (see Methods). The whole dataset
consists of 256 short-read datasets, 6 long-read PacBio WGS, 121 draft assemblies, and
74 completed assemblies.

Isolates carrying mcr-1 were identified from 31 countries (Figure B11A). The coun-
tries with the largest numbers of mcr-1-positive samples are China (212), Vietnam (58)
and Germany (25). Within China, nearly half (45%) of positive isolates stem from Shan-
dong province (Figure B1B). The vast majority of mcr-1-positive isolates belong to E.
coli (n =411), but the dataset also comprises mcr-1-positive isolates from another seven
bacterial species: Salmonella enterica (n = 29), K. pneumoniae (n = 8), Escherichia fer-
gusonii (n = 2), Kluyvera ascorbata (n = 2), Citrobacter braakii (n = 2), Cronobacter
sakazakii (n = 1) and Klebsiella aerogenes (n = 1) (Figure BI1A). The majority of iso-
lates for which sampling dates were available (80%), were collected between 2012 and
2016, with the oldest available isolates dating back to 2008 (Figure 51IC).

The large number of mcr-1-positive isolates from China, and the high incidence in

Shandong province can be largely ascribed to the inclusion of our 110 newly sequenced
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Figure 5.1: Overview of the mcr-1-positive isolates in the global dataset compiled for this work. (a)
Isolates displayed on a per-country basis, with pie charts showing the proportion of isolates from six genera.
(b) Map of novel Chinese isolates sequenced for this study. (c¢) Histogram of sampling dates of the isolates.
Lucy van Dorp prepared this figure and I am grateful for her permission to include it.

isolates including 49 from Shandong and to another 37 isolates from a previous large
sequencing effort (Y. Wang, R. Zhang, et al., 2(017). However, even after discounting the
isolates from these two sources, China remains one of the two countries with the highest

number of sequenced mcr-1-positive isolates, the other being Vietnam.

5.3.2 Evolutionary model

It has been proposed that mcr-1 is mobilized by a composite transposon formed of a
2,600bp region containing mcr-1 (1,626bp) and a putative open reading frame encoding
a PAP2 superfamily protein (765bp), flanked by two ISApl/ insertion sequences (Snesrud

et al., POT6). ISApll is a member of the IS30 family of insertion sequences, which utilize
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Figure 5.2: Schematic representation of the evolutionary model for the steps in the spread of the mcr-
1 gene. (1) The formation of the original composite transposon, followed by (2) transposition between
plasmid backgrounds and (3) stabilisation via loss of ISApl/ elements before (4) plasmid-mediated spread.

a ‘copy-out, paste-in’ mechanism with a targeted transposition pathway requiring the for-
mation of a synaptic complex between an inverted repeat (IR) in the transposon circle and
an IR-like sequence in the target. Snesrud et al. (2016) hypothesized that after the initial
formation of such a composite transposon, these insertion sequences would have been
lost over time, leading to the stabilization of mcr-1 in a diverse range of plasmid back-
grounds (Figure B2). With this dataset, we sought to test this model by performing an
explicit phylogenetic analysis of the region surrounding mcr-1 using our comprehensive

global dataset.
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5.3.3 Immediate genomic background of mcr-1

If there had been a unique formation event for the composite transposon, followed by
progressive transposition and loss of insertion sequences, one would expect to be able to
identify a common immediate background region for mcr-1 in all samples. Indeed, I was
able to identify and align a shared region or remnants of it in all 457 sequences surround-
ing mcr-1 (Section B273), supporting a single common origin for all mcr-1 elements
sequenced to date (Figure 53a). The majority of the sequences contained no trace of
ISAplI (n = 260) indicating that the mcr-1 transposon had been completely stabilized in
their genomic background. 42 sequences contained indication of the presence of ISApl/
both upstream and downstream, either in full copies (n = 16), a full copy upstream and
a partial copy downstream (n = 7), a partial copy upstream and a full copy downstream
(n=1), or partial copies upstream and downstream (n = 18). Some sequences only had
ISAplI present upstream as a complete (n = 55) or partial (n = 99) sequence, and one se-
quence had only a partial downstream [SApl] element. The downstream copy of ISApl]
was inverted in some sequences (n = 3) and some sequences had full copies of ISApll
present elsewhere on the same contig (n = 7), consistent with its high observed activity
in transposition (Snesrud et al., POT7).

Further inspection of the transposon alignment revealed that the 186bp region be-
tween the 3’ end of the upstream ISApl/ and mcr-1 contained IR-like sequences similar
to the IRR and IRL of ISAplI (respectively: 93-142bp, 23/50 identity; and 125-175bp,
21/50 identity). The most variable positions in this 186bp region were at 177bp and
142bp, approximately coinciding with the end of the alignment with the IRs and were
more variable in sequences lacking ISApll, suggesting possible loss of function of the
transposition pathway associated with ISApl/ (Figure 83d). Some of these SNPs oc-
curred in a stretch previously identified as the promoter region for mcr-1 (Poirel et al.,
2016), and this region showed strong signals of recombination. A small number of se-
quences (3%) had SNPs present in mcr-1 itself. These tended to be at the upstream or 5’
end of the sequence, particularly in the first three positions. A subset of the sequences
from Vietnam (n = 28) include a secondary 1.7kb insertion downstream of mcr-1 contain-
ing a putative transposase, indicating subsequent rearrangements involving this region
after initial mobilization of the transposon (Figure 63e).

To reconstruct the phylogenetic history of the composite mcr-1 transposon, I created a
sequence alignment for 457 sequences (Figure B3c) with recombinant regions identified
with ClonalFrameML removed by Lucy van Dorp, including the region immediately up-
stream of mcr-1 between positions 1,212-1,247 (Figure 53d). The midpoint-rooted max-
imum parsimony phylogeny I constructed showed that there was a dominant sequence
type with subsequent diversification, likely indicating the ancestral form of the compos-
ite transposon (Figure 54). There was no discernible clustering of isolates by sample
source (Figure B3a) or bacterial species (Figure B3b), suggesting the composite transpo-

son does not evolve differently in these different backgrounds.
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(b) Bacterial species
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Figure 5.5: There is no clustering of (a) sample source or (b) bacterial species on the composite transposon phylogeny. Maximum parsimony tree (homoplastic sites removed,

mid-point rooted, as in Figure B4). Size of points indicates the number of identical sequences, with a representative sequence for each shown next to each tip.
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Figure 5.6: The distribution of plasmid types shown on the transposon phylogeny. Maximum parsi-
mony tree (homoplastic sites removed, mid-point rooted, as in Figure 54) based on the composite trans-
poson alignment for 172 sequences containing a plasmid replicon on the same contig i.e. those with an
assigned plasmid type (color). IncI2 and IncX4 are the most common plasmid types. An example sequence
ID is shown for each unique sequence.

Lucy van Dorp applied a Bayesian dating approach (BEAST) to infer a timed phy-
logeny of the maximal alignable region of the mcr-1 carrying transposon (Section 525).
Based on this 3,522 site alignment we inferred a common ancestor for 364 dated isolates
in 2006 (Figure A°R; 2002-2008 95% HPD strict clock, coalescent model) with a muta-
tion rate around 7.51 x 107> substitutions per site per year. There was no clear overall

geographic clustering in the maximum clade credibility tree (Figure A-9).

5.3.4 Wider genomic background of mcr-1

The dataset also allowed the exploration of the wider genomic background upstream and
downstream of the conserved transposon alignment. There were sufficiently long assem-
bled contigs for 182 isolates to identify plasmid types based on co-occurrence with plas-
mid replicons (Section B2T]) and identified mcr-1 in 13 different plasmid backgrounds.
IncI2 and IncX4 were the dominant plasmid types, accounting for 51% and 38% of the
isolates, respectively (Figure 5.6) similar to the proportions observed by Matamoros et al.
(20177). One isolate in the dataset was definitively located on a complete chromosome,
although we cannot rule out the presence of a few other chromosomal copies of mcr-1
located on short contigs.

The distribution of transposons carrying one or two copies of ISAp// was highly het-
erogeneous across these plasmid types. For example, sequences with one or two copies
of ISApll were found on six and four types, respectively, which supports their mobility
compared to those without ISApll, which were found in five plasmid types. Of the con-
tigs carrying one copy of ISApll, 61% were found in IncI2 plasmids, and 50% of contigs
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carrying two copies of ISApll belonged to IncHI2 plasmids. Conversely, the common
IncX4 plasmids carried only two transposons with two copies of ISApl] and none with a
single copy of the element.

I identified two extended plasmid backbone sequences that could be aligned. The
first such alignment encompassed a shared sequence of 7,161bp between 108 plasmid
backgrounds and has been previously referred to as “Type A’ (Y. Wang, R. Zhang, et al.,
2017). These sequences contain 54 sequences co-occurring with an IncI2 replicon, with
54 of unknown plasmid type, and encompass a large fraction of the genetic diversity
found in the mcr-1 transposon, although a large proportion (nine out of 108) belonged to
the dominant sequence type. The second alignment was 34,761 bp long and was common
to nine IncX4 plasmids and partly overlaps with a background previously defined as
‘Type D’ (Y. Wang, R. Zhang, et al., POT7).

Lucy van Dorp then applied BEAST to infer a timed phylogeny for each of these
alignable regions after removal of SNPs showing evidence of recombination, and we
jointly analyzed the results. For the IncI2 background we could infer that a common
ancestor to all 108 isolates existed in 2006 (1998-2010 95% ClI relaxed exponential clock
model) assuming a constant population size model. For the IncX4 backgrounds we dated
the common ancestor of the eight isolates to 2011 (2010-2013 95% CI relaxed expo-
nential clock model) assuming a constant population size model. Posterior density dis-
tributions of root dating for these two alignments under different population and clock
models are shown in Figure AT0. The difference in dating inferred for these two plas-
mid backgrounds and the recent date obtained for IncX4 highlight the dynamic nature
of the integration of the mcr-1 carrying transposon, even if in the IncX4 phylogeny iso-
lates from East Asia and Europe and the Americas cluster together. The inferred mutation
rates obtained for the IncI2 and IncX4 backgrounds consistently lie around 5 — 10 x 107>

substitutions per site per year, as did the rate for the composite transposon (Table A73).

5.3.5 Environmental distribution of the composite transposon

It has been suggested that agricultural use of colistin — widespread in China since the early
1980s — caused the initial emergence and spread of mcr-1 (Poirel et al., POT6G; Schwarz
and Johnson, 2016). According to the evolutionary model in Figure B2, the ancestral
mobilizable state is represented by the transposon carrying both its ISApl/ elements. The
transposon is thought to lose its capability for mobilization after the loss of both ISApl/
elements (Snesrud et al., 2016), although a single copy is reportedly sufficient to keep
some ability to mobilize, with the upstream copy being functionally more important. I
compared human (n = 108) and non-human (n = 252) isolates and found significantly
more sequences with some trace of the insertion sequence ISApl/ both upstream and
downstream in non-human isolates (32 out of 220 vs. 5 out of 108, xz test, p = 0.033).
This comparison held when only comparing agricultural isolates to human isolates (n =
213) (28 out of 213 vs. 5 out of 108, xz test, p = 0.029). Furthermore, of the 42 isolates
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that had ISAplI fragments both upstream and downstream, the majority were from Asia
(n = 30) with only a quarter from Europe (n = 10) (xz test, p = 0.12). This result was
not driven by an over-representation of agricultural isolates from Asia in the dataset (>
test, p = 0.38)

5.4 Discussion

5.4.1 Conclusions

In this chapter, I have described how I assembled a global dataset of 457 mcr-1-positive
sequenced isolates and used this as the basis for a set of analyses to gain insight about
the origins of mcr-1. This collaborative effort shows that there was a single integration
event of mcr-1 into an ISApll composite transposon, followed by its subsequent spread
between multiple genomic backgrounds. Our phylogenetic analyses suggest an age of
insertion of mcr-1 into the gene transposon shared across our isolates in the mid 2000s
(2002-2008 95% HPD). We could identify the likely sequence of the ancestral transposon
type and show the pattern of diversity supports a single mobilization with subsequent
diversification during global spread.

Despite the limited number of whole genome sequences for samples before 2012,
with the oldest sequence available from 2008 (Figure B1IC), our estimate is consistent
with the majority of available evidence from retrospective surveillance data (Poirel et
al., 20T6) which has found the presence of mcr-1 in samples dating back to 2005 in
Europe (Haenni et al., 2Z0T6). One retrospective study of Chinese isolates from 1970-
2014 reported three mcr-1-positive E. coli dating from the 1980s (Shen et al., 2016),
although mecr-1 then did not reappear until 2004. This observation seems surprising in
light of our results, which clearly exclude such an early spread of mcr-1, at least on this
ISAplI transposon background. A constant population size model gave a better fit than an
exponential model, suggesting the dramatic increase in reports of the presence of mcr-1
across the past two years may not reflect a sudden global spread after its initial discovery
(Liu et al., 2016) and highlighting the difficulty of interpreting novel surveillance data
from previously unknown resistance elements.

Our estimates of the age of spread of the representative IncI2 and IncX4 plasmid
backgrounds are more recent, dating to around 2008 and 2013, respectively, but are both
consistent with the age of the transposon mobilization event. We did not constrain the
evolutionary rates in any of our phylogenetic analyses. It is thus encouraging that the
different rates are highly consistent between the mcr-1 transposon and the two plasmid
backgrounds. While this points to high internal consistency between our estimates, I was
unable to find any previously published estimates for the evolutionary rate of bacterial
plasmids to compare them to.

The current distribution and observed genetic patterns are in line with a centre of

origin in China. This is the place where we observe the highest proportion of isolates
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carrying intact or partial copies of the ISAp// flanking elements. Transposon sequences
carrying ISApll elements were also overrepresented in environmental and agriculture
isolates, relative to those collected form humans. This pattern is in line with agricultural
settings acting as the source of mcr-1 within bacteria isolated from humans (Y. Wang,
Tian, et al., 20T7). The current global distribution has been achieved through multiple
translocations, and is illustrated by the interspersed geographic origins in our phyloge-
netic reconstructions. A likely driver for the global spread is trade, in particular food
animals (Grami et al., Z0T6) and meat, although direct global movement by colonized
or infected humans (Wintersdorff et al., Z0T6) is also likely to have played a role in the
current distribution.

The origin of mcr-1 prior to its mobilization remains elusive. Despite an exhaustive
search of sequence repositories, including the SRA, I did not find a single mcr-1 sequence
outside the ISAplI transposon background. ISAp/] was first identified in the pig pathogen
Actinobacillus pleuropneumoniae (Tegetmeyer et al., PZ00R) suggesting that it may also
have been an ancestral host for mcr-1, although to our knowledge no mcr-I-positive A.
pleuropneumoniae isolates have been described. The phosphoethanolamine transferase
(EptA) from Paenibacillus sophorae has also been proposed as a possible candidate (Gao
et al., POT6). However, this seems most unlikely as Paenibacili are Gram positive and
are thus intrinsically resistant to polymixins (Di Conza et al., 2017). Moreover, while
the two sequences share functional similarities, this should be interpreted as a case of
possible parallel evolution rather than direct filiation (Di Conza et al., 20T7). Moraxella
has been suggested as being the source of mcr-1 (Kieffer et al., 2017), following the
identification of genes in Moraxella with limited homology to mcr-1 ( 60% nucleotide
sequence identity). However, this sequence identity seems too low for Moraxella to
be considered as true candidates for the origin of mcr-1. Until a sequence with high
homology to mcr-1 is identified outside of the ISApl/l sequence background, the search

for its initial source remains open.”

5.4.2 Limitations

I aimed to assemble a comprehensive dataset for this work. However, since this work
was completed many more sequences have been deposited in public databases. It would
be a simple extension to use these sequences in a further analysis. A more difficult
issue to circumvent is that the dataset is likely affected by complex sampling biases, with
an overrepresentation of samples from places with active surveillance and well-funded
research communities.

I investigated a single mobilized colistin resistance gene, the eponymous mcr-1 that

I Since the original paper was published, a recent paper identified the likely origin of mcr-1 as a
novel species of Moraxella (Snesrud et al., POIX), based on the publication of an isolate containing a
chromosomal region sharing >96% identity with the canonical cassette sequence (AbuOun et al., POT7).
Thus, the event that is dated in this chapter is likely the original copy-out of this region and the integration
into the composite transposon.
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was first observed only two years ago. However, there are in fact several mobilized genes
that have now been confirmed to confer colistin resistance, with mcr-2 reported less than
a year after mcr-1 was initially described (Xavier et al., 2016) and more recently the phy-
logenetically distant mcr-3 (Yin et al., 2017), mcr-4 (Carattoli et al., 2017), and mcr-5
(Borowiak et al., 20T7) have also been described. There appear to be commonalities be-
tween the mechanisms of the mcr genes, despite their different sequences and location
near to different insertion sequences. For example, mcr-2 has 76.7% nucleotide iden-
tity to mcr-1 and was found in colistin-resistant isolates that did not contain mcr-1, and
appeared to be mobilized on a IS1595 transposon (Xavier et al., 2016). Despite the differ-
ent insertion sequences, intriguingly, this mobile element also contained a similar protein
downstream of the mcr gene. Indeed, in mcr-1, -2 and -3, the mcr gene has a downstream
open reading frame (ORF) encoding, respectively, a putative PAP2 protein (Snesrud et al.,
2016), a PAP2 membrane-associated lipid phosphatase (Xavier et al., 20T6), and a dia-
cylglycerol kinase (Yin et al., 2017), all of which have transmembrane domains and are
involved in the phosphatidic acid pathway (Athenstaedt and Daum, T999; Epand et al.,
2016). While the PAP2-like ORF in mcr-1 has been shown to not be required for colistin
resistance (Zurfluh et al., 20T6), the presence of similar sequences downstream of other
mcr genes implies some functional role, either in the formation of the mobile element
and/or in its continued mobilization.

Finally, I did not investigate co-occurrence of other resistance genes with mcr-1, but
many isolates in the dataset were resistant to several other antibiotics (particularly those
from our Chinese collaborators). There is considerable evidence that epistasis of muta-
tions is widespread for mutations (Durdo et al., 20T5) and this seems likely to also be
true for resistance genes, both environmentally (B. Li et al., 2015) and also specifically
on mobile genetic elements. Future work investigating these co-occurrences could give

an interesting perspective on their concurrent spread.

5.4.3 Summary

I took responsibility for compiling the largest dataset to date of sequenced mcr-1-positive
isolates, using a combination of collaborative sequencing efforts and an exhaustive search
of sequences deposited on publicly available databases, including unassembled datasets
from the SRA. This allowed me to obtain a truly global dataset of 457 mcr-1-positive
isolates covering 31 countries and five continents, which formed the basis of a set of anal-
yses investigating the spread of mcr-1 on a composite transposon and plasmids. While
the complex Russian doll dynamics of the transposon, plasmids, and bacterial host made
it challenging to reach strong conclusions on some important aspects of the spread of
mcr-1, these results nevertheless demonstrate the potential for phylogenetic reconstruc-
tion of antimicrobial resistance elements at a global scale, and highlight the relevance of
a ‘one health’ perspective that makes use of all available isolates from multiple sources.

The wider meta-community of the human microbiome is crucial for human health, with
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identical sequences found in Chinese agricultural isolates and the gut microbiome of indi-
viduals in Europe. Future efforts relying on more sophisticated computational tools and
even more extensive genetic sequence data are likely to become part of the routine tool-
box in infectious disease surveillance, improving our understanding of how ecological

units can move between multiple nested genetic levels at a global scale.
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Chapter 6
Conclusion

The bacterial communities associated with the human body are ecosystems that can be
considered at multiple levels. In the introduction to this thesis I identified four challenges
in understanding the role of bacterial communities in health and disease (Section [T2)
and explained how each of the chapters addressed these challenges directly using real
datasets (Section [3). In this concluding section, I briefly summarise the contributions
this thesis makes to our knowledge of human-associated bacterial communities before
surveying the opportunities for future research. For a more detailed discussion of the
findings and limitations of each piece of work, see the conclusions of each individual

chapter.

6.1 Summary of findings

In Chapter @ I performed the first simultaneous analysis of the effects of host genetics and
shared environment on the salivary microbiome using whole-genome based measures of
host genetic distance rather than pedigrees. Over 100 closely-related Ashkenazi individu-
als in this cohort lived across four global cities but shared a common lifestyle and cultural
practices, meaning that confounding by other factors was presumed to be lower. My anal-
ysis showed conclusively that the dominant effect was from shared household rather than
overall host genetic similarity. I found no geographical structuring at the level of cities,
supporting previous claims that the core oral microbiome is conserved at a global scale.
There was a persistent effect of parental household in individuals who had moved out
of the familial home, suggesting that shared upbringing has a long-term impact on the
oral microbiome over a period of years. Fine-scale differences that were observable at
the sub-genus level between spouses suggest that regular environmental contact is impor-
tant for maintaining a similar composition. This was supported by the observation that
children under the age of ten shared phylotypes with their parents that were not seen in
older children, who presumably interact less with their parents or leave the familial house-
hold more. Intriguingly, I found that using measures of relatedness based on the known

pedigree gave a spurious signal from genetics, raising concerns about future microbiome
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studies investigating the effect of genetics in this way.

In Chapter B I used a large cross-sectional dataset of supragingival plaque samples
from Malawian women to investigate associations between bacterial communities in
supragingival plaque and periodontal disease, while controlling for demographic factors.
Unlike other studies of periodontitis, I wanted to take advantage of the cross-sectional
dataset that captured the landscape of periodontal disease, so I used a two-factor ap-
proach to investigate associations between gingivitis (bleeding), periodontitis (deepened
pockets), and the relative abundances of bacterial taxa. I showed that the signals from
these two related aspects of periodontal disease could be distinguished. Bacteria in the
mouth exist in oral biofilms. Despite a lack of explicit data on this spatial structure, I
was able to extract it in a hypothesis-free manner using correlations in the relative abun-
dances of disease-associated taxa. I used a simple measure of centrality from social
network analysis to rank taxa in this periodontitis-associated network and showed that
the results were consistent with experimental investigation of periodontal biofilms, iden-
tifying known bridging bacteria. The structure of this periodontitis-associated network
was different between women with and without periodontitis across the range of gingivi-
tis severities, showing that community structure associated with a subgingival condition
is detectable using supragingival samples.

In Chapter B I developed a new model of antibiotic perturbation for the gut micro-
biome. In contrast to complex models built up mechanistically using pairwise interac-
tions between species, I adopted a highly simplified top-down approach. I made minimal
assumptions based on a popular heuristic of the gut microbiome resting in a stability
landscape. I proved that this model could describe the time-response of the gut micro-
biome to a short course of antibiotics by reanalyzing data from Zaura et al. (2015) where
individuals took widely-used antibiotics, suggesting that viewing the gut microbiome as
a damped harmonic oscillator is a valid model with predictive power. I also introduced
a variant of the model that allowed for a transition to a different equilibrium within the
stability landscape. This model was better supported than the model without a transition,
suggesting that indeed the microbiome had been altered long-term by antibiotics.

Finally, in Chapter B I reconstructed the evolutionary history of a small transposon car-
rying a resistance gene (mcr-1) using phylogenetic approaches on a global whole genome
sequencing dataset. This work represents perhaps the first such use of phylogenetic re-
construction tools for a mobile genetic element in this way. I combined whole genome
sequences from a range of different sources and was able to identify a consistent small
genomic region of 3,500bp within every bacterial genome sequenced. This allowed an
estimate to be made for the origin of the mcr-1 composite ISAplI transposon, which we
could date to the early 2000s.
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6.2 Future approaches

The human microbiome is of great interest in its own right as an ecosystem, but the
majority of research is implicitly aimed at improving health. Understanding the role
that human-associated bacterial communities really play in health and disease requires
putting them in context, understanding the factors that govern their variation between in-
dividuals and their stability over time before identifying features that are associated with
disease (see the list of challenges I gave in Section [T2). One of the biggest obstacles
faced by current microbiome research is the lack of a well-defined understanding of what
is clinically important or useful. Ultimately, the microbiome is another factor to be in-
corporated into clinical and epidemiological models that contain as many other factors
as possible, as I have attempted in this thesis (e.g. in Chapter B). In some cases it will be
important, and in others of little consequence. Integrating microbiome information into
mathematical models containing other clinical data is required to begin to understand the
role that the microbiome plays in health. The stability landscape approach I adopted in
Chapter & is inherently flexible and could be applied to other bacterial communities. It
could also be extended in other directions. For example, fitting a perturbation model to
multiple bacterial families would allow the construction of a multidimensional vector of
parameters, and this vector could then be used to parameterise the stability landscape in
some multidimensional space.”

Rhetoric around the problem of AMR mainly focuses on antimicrobial stewardship:
coordinated approaches to reduce the prescription and use of antimicrobials. There is
little focus on public perception of antibiotics as having a possible detrimental impact on
the microbiome. Perhaps this is due to the rhetoric around antibiotics as ‘miracle drugs’,
making us reluctant to accept the possibility that antibiotics can both be life-saving in
certain situations and harmful in others. In a real sense, antibiotics do not treat the host;
they treat their associated bacterial communities, making them substantially unlike other
classes of drugs. Harm — both individual and collective — is a real possibility where
antibiotics are prescribed unnecessarily. Patients are familiar with the need to balance
necessity-concern relationships in the context of other medications, with a prevailing be-
lief that we should take as little medication as possible (Horne et al., P013). The lack
of investigation and communication of the personal costs of antibiotics has likely played
a role in the public perception of them as only having societal costs. One powerful in-
ducement to future behavioural change would be to challenge the narrative around antibi-
otics as drugs that cannot confer harm to the patient. The presentation of particular data
about antibiotics can dramatically change public perceptions and bring about behavioural
change, which brings with it a large ethical responsibility to summarise data accurately
and correctly.

The mcr-1 transposon is not a species, but it is a genomic unit that corresponds to the

IT am grateful to Sarah Walker for this suggestion.
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phenotype of colistin resistance. It is therefore in some sense the fundamental ecotype
to deal with when addressing the problem of mobilized colistin resistance. I believe it
is coherent to present phylogenetic and other analyses of small genetic elements, even
if such analsyes are more familiar when applied to whole genomes. As datasets become
more comprehensive, and searching public databases with k-mer methods becomes easier,
I'believe the type of analysis presented in Chapter B will become much more common and
an important part of the toolbox for understanding the spread of antimicrobial resistance.
Also, an ecological view of these units encourages the application of existing methods;
the wheel does not have to be re-invented. For example, correlation network approaches
like the ones I used in Chapter B could also be used to look at the co-occurrence of
mcr-1 with other resistance genes on plasmids, which could identify potential epistatic
interactions and central genes.

The portability of analysis techniques touches on a recurring theme of this thesis:
the similarity between the different levels of nested genetic diversity in bacterial com-
munities. I wish to finish with a few observations on this diversity, which is one of the
remarkable features of microbial ecology. The diversity of communities is a widely-used
summary property in ecology, with many different metrics devoted to capturing it. How-
ever, any definition of diversity depends on a definition of an ecological unit. In classical
ecology, it is usually fairly simple to determine (a) how many species are present in a
sample and (b) how many of each sort of species, because larger organisms have strict
species definitions that are observable ‘at a glance’. However, when considering bacte-
rial communities there is great debate about what constitutes a reliable ecological unit,
particularly when using sequencing approaches.

Different choices for the level of sequencing will lead to different appreciation of the
diversity: using a small region of the 16S rRNA gene to cluster bacterial species will
give a reduced estimate of the total diversity compared to sequencing the whole gene,
which will in turn give a reduced estimate compared to sequencing all genomes present
with a shotgun metagenomic approach. Thus, to speak of ‘the’ diversity of a microbial
community is usually meaningless in itself, because our choice of measuring stick has
such a large impact on the diversity we calculate. The fractality of bacterial genomes
has been noted by others (Koonin, 20172). Consider the apparently trivial question raised
by Mandelbrot (19677): “How long is the coast of Britain?” Satisfactorily answering that
question required developing a definition for the fractal dimension of a curve, allowing
meaningful discussion of its length. An interesting line of future research would be to
develop a mathematical definition of an analogous quantity to fractal dimension, in order
to talk meaningfully about the diversity of bacterial communities. If we treat them as
hierarchies of fractal structures, the analogy demonstrates the extraordinary richness
that can be progressively revealed by deeper sequencing technologies.

The future offers many exciting possibilities for investigating the remarkable nested

genetic diversity of bacterial communities, including those associated with the human
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body. In this thesis I have outlined how considering the communities involved at multiple
ecological levels can give different insights. Carl Woese, who pioneered the use of 16S
rRNA sequencing for microbial ecology (Section [CT3), wrote later in his career that
even the genome itself is “a set of one-dimensional ecosystems” (Goldenfeld and Woese,
201T). To conclude, I wish to point out that all that is needed for an ecological approach

is:
e A definition of a unit

e A method to discriminate these units into different varieties

e A method to count the varieties of units

These units are themselves made up of other smaller units, producing a self-similarity
across levels and a certain degree of self-reference (Shaw, 2018). Even clonal populations
of Escherichia coli subject to fixed environmental conditions can still give rise to complex
ecological interactions that are detectable only with whole genome sequencing (Good et
al., P0T7). In other words, long-term temporal stability can be a complex and dynamic
process. The appropriate resolution to view the system at depends on the question being
asked. One might ask: where is evolution in this ecological picture? Goldenfeld and

Woese (Z01T) write about the central aspect of evolution:

It is a process that continually expands the space in which it operates through
a dynamic that is essentially self-referential. . . self-reference arises because
the biological components of interest are emergent, and we are seeking a
description of biological phenomena in terms of these biological components

only.

In this thesis I have demonstrated that ecological approaches can be applied to human-
associated bacterial communities at multiple scales. Statistical methods that operate on
ecological units inferred from sequencing data are widely applicable, whether we choose
to treat a given bacterial community as: an interaction network of marker gene phy-
lotypes, a single metric representing displacement from equilibrium, or a collection of
genomic backgrounds for a mobile genetic element. The fascinating nested genetic com-
plexity of bacterial communities means that within the fundamental units of a particular

analysis, there is undoubtedly still more diversity to discover.
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Appendix A

Additional figures and tables

% identity with 1175R primer Taxonomic classification HOMD ID

90 Rhodobacter capsulatus HOT_857_7798
90 Desulfobulbus sp. HOT_041_R004
90 Campylobacter rectus HOT_748_4317
90 Campylobacter rectus HOT_748_6973
90 Campylobacter showae HOT_763_6974
90 Campylobacter concisus HOT_575_6977

94.74 Campylobacter curvus HOT_580_4313
95 Campylobacter gracilis HOT_623_4320
95 Campylobacter sp. HOT_044BB120
95 Campylobacter sputorum HOT_776_2768
95 Bacteroides ureolyticus HOT_842_4321
95 Prevotella micans HOT_378_1228
95 Bacteroides heparinolyticus HOT_630_6487
95 Bacteroides heparinolyticus HOT_630F0110
95 Bacteroides zoogleoformans HOT_465_6488
95 Porphyromonas endodontalis HOT_273AJ002
95 Porphyromonas endodontalis HOT_273_7054
95 Porphyromonas endodontalis HOT_273BB134
95 Porphyromonas endodontalis HOT_273_6491
95 Porphyromonas sp. HOT_395_7057
95 Porphyromonas sp. HOT_285_F016
95 Porphyromonas uenonis HOT_785F0120
95 Porphyromonas asaccharolytica HOT_547_6490
95 Porphyromonas gingivalis HOT_619_3964
95 Tannerella sp. HOT_808BU045
95 Tannerella sp. HOT_916-Wade
95 Tannerella sp. HOT_286BU063
95 Tannerella forsythia HOT_613_6495
95 Bacteroidetes_[G-3] sp. HOT_281DA065
95 Bacteroidetes_[G-3] sp. HOT_365_1206
95 Bacteroidetes_[G-3] sp. HOT_365_3626
95 Bacteroidetes_[{G-3] sp. HOT_899-Wade
95 Bacteroidetes_[G-3] sp. HOT_280DA064
95 Bacteroidetes_[G-3] sp. HOT_436_1819
95 Bacteroidetes_[G-3] sp. HOT_503_3613
95 Treponema denticola HOT_584_D011
95 Fusobacterium nucleatum ss polymorphum HOT_202BS019
95 Lachnospiraceae_[G-3] sp. HOT_100E1074
95 Oribacterium sp. HOT_102_1218
95 Lachnospiraceae_[G-5] sp. HOT_080BB124
95 Peptostreptococcaceae_[XII][G-1] sp. HOT_113DA014
95 Mycoplasma pneumoniae HOT_732_9061
95 Mycoplasma genitalium HOT_616_7334
95 Actinomyces sp. HOT_897-Wade
95 Mobiluncus mulieris HOT_830_7625
95 GNO02_[G-1] sp. HOT_871_4L02
95 GNO02_[G-1] sp. HOT_872_CN02
95 GN02_[G-2] sp. HOT_873_4Q04
95 SRI1_[G-1] sp. HOT_345_X112
95 SRI_[G-1] sp. HOT_874_4Y03
95 SRI1_[G-1] sp. HOT_875_CNO1

% identity with 785F primer

95.24 Leptothrix sp. HOT_025AV011
95.24 Prevotella sp. HOT_296AU069
95.24 Treponema sp. HOT_258_C009
95.24 Treponema sp. HOT_270DD012
95.24 Treponema sp. HOT_262AT040
95.24 Selenomonas sputigena HOT_151_K168
95.24 Solobacterium moorei HOT_678_1058

95.24 Chloroflexi_| G-1] sp. HOT_439_1414

Table A.1: HOMD OTUs with mismatches to the 785F and 1175R primers used to amplify the V5-V7
region of the 16S rRNA gene. Members of the red complex (Socransky et al., T998) are shown in red.
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Appendix A: Additional figures and tables

1. vsearch:fastq filter

Filter sequences based on maximum errors, minimum/maximum length.

2. vsearch:derep fulllength
Dereplicate sequences.

3. vsearch:sort by size

Sort by abundance and discard singletons (sequences that only appear once).

4. vsearch:cluster fast

Cluster into OTUs at defined sequence similarity e.g. 97%.

5. vsearch:uchime denovo
Filter chimeras de novo.

6. vsearch:uchime ref

Filter chimeras using ‘gold’ reference database at http://driveS.come/uchime/gold.fa

7. vsearch:usearch_global
Map original reads back to OTUs.

8. parallel assign taxonomy rdp.py
Assign taxonomy to OTUs with RDP.

Figure A.1: Steps in the standard pipeline used in this thesis for OTU picking. This pipeline uses
VSEARCH vl.1.1 (Rognes et al., 20T6). See each chapter for more details and parameters used.
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Figure A.2: Spikes added during library preparation do not have an important effect on analysis.
(a) Number of reads from spikes of fixed concentrations added to samples during library preparation was
weakly negatively correlated with the number of reads corresponding to true 16S reads. (b) Duplicated
samples with and without spikes added during library preparation showed the same qualitative differences
between households, indicating that addition of spikes did not negatively affect downstream analysis.
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(a) Richness Estimate (standard error) Pr(>|t|)
Intercept 105.58 (4.23) <0.001
Gingivitis 4.09 (0.71) <0.001
Periodontitis 492 (3.18) 0.122
Anemia -6.33 (3.37) 0.061
Malindi 15.17 (3.75) <0.001
Site (vs. Lungwena)  Namwera 16.25 (4.07) <0.001
Mangochi 18.89 (3.41) <0.001
) MMN 8.52 (3.25) 0.009
Intervention (vs. IFA) LNS 4.6 (3.32) 0200
(b) Shannon index Estimate (standard error) Pr(>|t|)
Intercept 3.00 (0.05) <0.001
Gingivitis 0.03 (0.01) <0.001
Education (yrs) -0.01 (0.01) 0.016
Anemia -0.07 (0.04) 0.098
Malindi 0.17 (0.05) <0.001
Site (vs. Lungwena)  Namwera 0.20 (0.05) <0.001
Mangochi 0.23 (0.04) <0.001
. MMN 0.08 (0.04) 0.029
Intervention (vs. IFA) LNS 0.01 (0.04) 0.808

Table A.2: Final models predicting (a) richness and (b) Shannon index of supragingival plaque com-
munities. Final models after backwards stepwise elimination according to AIC from a full model including
gingivitis, periodontitis, and demographic variables from Table Bl. Richness (observed number of species)
and Shannon index (diversity measure) were averaged over 100 iterations of rarefying to 5,000 reads per
sample, resulting in the removal of 138 out of 962 samples. A further 13 samples were removed due to
missing data.
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Figure A.3: MED and OTU picking give strongly correlated dissimilarities. Comparison of Bray-
Curtis dissimilarities between samples calculated using compositions from MED and OTUs shows a high
correlation between methods (Spearman’s p = 0.88, p < 0.001). This correlation is expected, as both
methods should identify sequences similarly to the genus level.
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Figure A.4: NMDS ordination of samples from the Ashkenazi cohort (‘“ashkenazi’’) compared to
samples from the Human Microbiome Project. Ashkenazi salivary microbiome samples were more
similar to saliva (SV) and other non-plaque sites in the human mouth. Ashkenazi samples group near but
separately from the HMP saliva samples, but we cannot distinguish whether this is due to a batch effect
or a real biological difference. Site key: buccal mucosa (BM), hard palate (HP), keratinized gingivae
(KG), palatine tonsils (PT), subgingival plaque (SUBP), supragingival plaque (SUPP), saliva (SV), tongue
dorsum (TD), throat (TH).

154



“S[ENPIAIPUI U29M)3q SOOUBISIP d130ua3 o) JO SUITedS [BUOISUSWIPH[NW Ul USIS 9q OS[B UBD YOIYMm ‘A[Iire} ay) Jo sayoueiq

n
urewr 991y} are 219y, "po[duresun 10j A213 ‘s189A G7 < I10J JYSLI PI[[Y ‘P[0 SIBIA Q] > I0J 1J9 PI[[Y I8 SpPUOWeRI(] "V A[Ie] UIyjIm S[enpIAIpUI IZBUMYSY 10J RISIPIJ :S'V In31] ht

*

gv34@w33333%ijﬁiiiiiﬁw ﬂﬁvjﬁi JaRagaRaA ﬁ%iﬁ@wﬁiwijwijiii
e ) Akv Rakan AVL L@ [
ﬁ ]

|

The microbial ecology of human-associated bacterial communities
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Figure A.6: Histogram of the numbers of teeth with pocket depth greater than 4mm. The long tail
of the distribution and lack of normalization by total number of teeth means a simple linear scale for total
periodontitis is not appropriate. The red dashed line indicates the cutoff used to define binary periodontitis.

Constant population Exponential growth
Alignment Mean Median 95% HPD Mean Median 95% HPD
IncI2 5.8 5.7 33—-89 6.6 6.5 3.9-10.2
IncX4 9.5 9.2 49—-15.6 9.8 9.5 52-159
Transposon 7.6 7.4 43-119 75 7.3 43—-11.8

Table A.3: Inferred clock rates expressed as substitutions per base pair per year for alignments
under different population models. Shown here are relative rates (all x 107> for true rate) for the IncI2
and IncX4 plasmid backgrounds, as well as for the mcr-1-carrying composite transposon alignment under
both constant population size and exponential growth models.
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Figure A.8: Posterior density distributions of root height for the composite transposon alignment.
Distributions under a constant population size model (pink) and a model of exponential population growth

(green), both estimated under a strict clock model. I am grateful to Lucy van Dorp for permission to include
this figure.
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Figure A.9: Beast inferred maximum clade credibility tree for the composite transposon alignment.
The timed phylogeny is based on a strict clock model under the coalescent, with tips coloured according to
the country of sampling. I am grateful to Lucy van Dorp for permission to include this figure.
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Figure A.10: Posterior density distributions of root heights for the (a) IncI2 and (b) IncX4 plasmid
background alignments, assuming either a constant population or exponential population growth.

Distributions clock models (colours) are shown under the Coalescent Bayesian skyline implementation. I
am grateful to Lucy van Dorp for permission to include this figure.
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