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ABSTRACT 

The magnetic separation of pathogenic compounds from body fluids is an appealing therapeutic con-

cept. Recently, removal of a diverse array of pathogens has been demonstrated using extracorporeal 

dialysis-type devices. The contact time between the fluid and the magnetic beads in such devices is 

limited to a few minutes. This poses challenges, particularly if large compounds, such as bacteria or 

cells need to be removed. Here, we report on the feasibility to remove cells from body fluids in a con-

tinuous dialysis type of setting. We assessed tumor cell removal efficiencies from physiological fluids 

with or without white blood cells using a range of different magnetic bead sizes (50 nm – 4000 nm), 

concentrations and contact times. We show that tumor cells can be quantitatively removed from body 

fluids within acceptable times (1-2 minutes) and bead concentrations (0.2 mg per mL). We further pre-

sent a mathematical model to describe the minimal bead number concentration needed to remove a 

certain number of cells, in presence of competing non-specific uptake. The present study paves the 

way for investigational studies to assess the therapeutic potential of cell removal by magnetic blood 

purification in a dialysis-like setting.   
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INTRODUCTION 

Magnetic separation offers a direct way for the removal of disease-causing factors from body fluids. 

Magnetic beads functionalized by a capturing moiety are employed to selectively bind to target com-

pounds and are then subsequently removed by magnetic separation.1-3 A variety of beads, mostly based 

on iron oxide, iron and iron carbide, have successfully been applied to capture target compounds. Re-

moval of a wide variety of different substances, including metal ions,4-5 small molecule drugs6-7 and 

proteins6 has been demonstrated in various in vitro and in vivo models. Recently, the concept has been 

extended to remove bacteria from body fluids in diagnostic,8 therapeutic9 and theranostic10 settings. A 

similar concept based on micron-sized magnetic beads has been employed for magnetic cell isolation 

in cell culture and diagnostics for decades already.11-13 While micron-sized beads work well for diag-

nostic applications, Xu and colleagues have highlighted significant drawbacks of microparticles, such 

as low surface area (and binding capacity) and slow binding.14 In the same report, they also have 

demonstrated promising separation efficiencies of tumor cells using 30 nm iron oxide beads in a batch 

type setting. The removal of tumor cells from body fluid holds some promise15 and various studies 

have been conducted on the isolation of circulating tumor cells (CTCs).1-3, 16-20 For example, McDon-

ald and colleagues have demonstrated in an early study that ovarian cancer progression in mice is 10-

fold lower when migratory tumor cells are removed by magnetic filtration from intraperitoneal 

fluids.21 Most of the reported results in the literature aim at the diagnosis1, 16-17, 20 and monitoring of 

cancer via isolation of CTCs from the blood stream of patients by microfluidic techniques.1, 3, 16-18, 20 

However, rapid therapeutic removal of cells by magnetic separation in a continuous process has not 

yet been investigated systematically, and intrinsic process limitations remain unclear.  

In a continuous extracorporeal process, similar to a dialysis setting, the contact time between 

the beads and the fluid containing the target cells is limited to a few minutes.22 While for efficient 

binding, long contact times would be beneficial, the receptor binding process is in competition with 

the uptake of particles into phagocytic cells. Additionally, long contact times compromise the overall 

process throughput. The effective removal of tumor cells relies on high particle-tumor cells collision 

frequencies and specific binding of magnetic clusters to tumor cells in presence of proteins and other 

cells, such as white blood cells. Here, we investigated the technical feasibility and limitations for the 
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therapeutic removal of cells from body fluids using a magnetic blood purification process in batch and 

continuous mode. We assessed the influence of bead size and concentration, and bead – body fluid 

contact times on tumor cell separation efficiency in presence of white blood cells, employing a combi-

nation of experimental and theoretical methods. 

 

MATERIALS AND METHODS 

Magnetic beads and antibodies. Protein A/G coated Bio-Adembeads from Ademtech (REF: 04631, 

Lot:15G022 − 1 and Lot:15L012 – 1) were used. For size and time dependence experiments, beads 

from Creative Diagnostic Absolute Mag™ were used in addition to the Adembeads. For all bead func-

tionalisations, the EpCAM antibody from Abcam (ab187372 [VU-1D9]) was used. EpCAM-FITC 

(ab112067 [VU-1D9]) was used for analysis of the EpCAM epitope on CaCo-2 cells. Transmission 

electron micrographs of beads were collected using a JEOL 100 Plus TEM. Hydrodynamic sizes of the 

particles were measured using a Dynamic Light Scattering (DLS) instrument (ZetaSizer, 90° configu-

ration).  

Bead functionalization. Bio-Adembeads were functionalized according to the manufacturer’s 

protocol for IgG cross-linking. The incubation time was increased to 1 hour. Bead pelleting was done 

in a 500 μL Eppendorf tube with a cubic Neodymium magnet, 4.6×3×1 cm, acquired from supermag-

nete.ch. Creative Diagnostics beads with a bead concentration of 10 mg per mL were functionalized by 

adding e.g. 1 μg of antibody to 10 μL of beads. The solution was then incubated for 1 hour at 1000 

rpm on the Heidolph Titramax 101 shaker. Subsequently, the tube was placed on the magnet until a 

bead pellet formed. The supernatant was discarded and the pellet was re-suspended in PBS. The wash-

ing was repeated twice. 

Cell lines. For all separation experiments the Caco-2 cell line (ACC169), acquired from 

Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH was used. Undifferentiated Caco-

2 cells were cultured in cell culture medium (Minimum Essential Medium Eagle (MEM), Sigma-

Aldrich, REF: M2279) containing 10% Fetal Calf Serum (FCS, Sigma-Aldrich, REF: F9665), 1% 

Non-Essential Amino Acids (Sigma-Aldrich, REF: M7145), 1% Penicillin-Streptomycin-Neomycin 

(Sigma-Aldrich, REF: P4083) and 1% L-Glutamine (Sigma-Aldrich, Ref. G7513). Cells were main-
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tained at 37°C and 5% CO2 in humidified atmosphere and routinely sub-cultured twice a week at 70-

80% confluence by treatment with 0.5% trypsin-EDTA (Sigma-Aldrich, REF: T3924). THP-1 cells 

(TIB-202) were acquired from American Type Culture Collection. THP-1 monocytic cells were cul-

tured in suspension in RPMI-1640 medium (Sigma-Aldrich, REF: R0883) supplemented with 10% 

FCS, 1% Penicillin-Streptomycin-Neomycin and 1% L-Glutamine and routinely sub-cultured once a 

week. 

AnnexinV/PI assay. In order to exclude acute cytotoxicity of the nanoparticles, apoptosis and 

necrosis induced were assessed. For detection of apoptotic and necrotic cells the FITC Annexin V 

Apoptosis Detection Kit I (Ref. 556547, BD Biosciences) was used. Caco-2 cells were seeded in 24 

well plates (50.000 cells/well or 2680 cells/cm2) and grown to 50-60% confluency before adding stim-

uli or nanoparticles. Cells were incubated in duplicates for 24 h with EpCAM- functionalized magnet-

ic beads in a concentration of 0.4 mg per mL (0.11 mg/cm2) and 0.04 mg per mL (0.01 mg/cm2). For 

short incubation, mimicking the therapeutic time scale, magnetic beads were spiked directly into the 

cell suspension during the staining procedure. Silica nanoparticles (Aerosil®200, Evonik) in the same 

concentrations served as a positive control for nanoparticle toxicity. Cadmium sulfate (100 μM) was 

added for 3 hrs to untreated cells as a control for necrosis while staurosporine (10 μM) was added for 4 

hrs as a control for the induction of apoptosis. After incubation with stimuli cells were harvested by 

treatment with Trypsin/EDTA and stained according to the manufacturer’s instructions. Cells were as-

sessed with the Gallios flow cytometer (10.000 events gated in forward/side scatter or 2 min max. ac-

quisition time) and the fluorescence signals of PI and AnnexinV-FITC were detected in FL4 or FL1 

respectively.  

Blood. Blood was donated in-house by healthy volunteers (n=5). Every donor signed a written 

consent approved by the ethical commission of St. Gallen (EKSG 12/111). After having obtained writ-

ten informed consent, 2-5 mL of citrated blood were withdrawn using a 20G needle. All donations 

were collected in a Vacutainer buffered with sodium citrate at 0.109 M (Belliver Industrial Estate, 

Plymouth, UK, Lot: 40340010). Only volunteers who have not taken any drugs known to affect plate-

let function for two weeks prior to donation were included. 
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Cell staining. Specific cell staining was performed to allow discrimination between the dif-

frent cell types after separation experiments in flow cytometry. The THP-1 cells were stained using 

Hoechst 33342, dissolved in PBS at a concentration of 0.5 μg per mL, incubated for 20 minutes at 

4°C. Caco-2 cells were stained with CellTracker Green CMFDA (Thermo Fisher Scientific, REF: 

C2925), dissolved in pre-warmed cell culture medium at a concentration of 60 μM, and incubated for 

15 minutes at 37°C. After incubation the cells were centrifuged at 200 ×g for 5 minutes and re-

suspended in prewarmed MEM cell culture medium.  

Cell separation experiments. Separation experiments were done in pre-warmed MEM with 

10% Fetal Calf Serum, 1% Non-Essential Amino Acids, 1% Penicillin-Streptomycin-Neomycin and 

1% L-Glutamine. Beads were functionalized according to the above described procedure. Cells were 

re-suspended in culture medium at a concentration of 100’000 cells per mL. For experiments with hu-

man leukocytes, blood was collected and part of the blood was incubated with VersaLyse buffer to 

lyse the red blood cells. Leukocytes were counted and used immediately or, when fixed leukocytes 

were required, the pellet was fixed in 4% PFA. The leukocytes were re-suspended in cell culture me-

dium, which contained 100’000 stained Caco-2 cells per mL. Then, 25μL of cell culture medium or 

25μL of beads were added to the samples and incubated at 37°C on a linear shaker. Magnetic separa-

tion was achieved by holding a cubic neodymium magnet next to the 1.5 mL Eppendorf for 1 minute. 

The entire supernatant was then aspirated. The pellet was re-suspended in cell culture medium. This 

allowed to analyze the total number of cells, on the one hand the separated residual cells and on the 

other the unseparated supernatant. Counting beads (CountBright™Absolute Counting Beads from Mo-

lecular Probes™) were then added and samples were analyzed in a flow cytometer. 

Flow cytometric analysis. A Beckmann & Coulter Gallios TM Flow Cytometer was used in 

combination with Kaluza Analysis Software. Samples that contained CellTracker Green stained cells 

were excited at 488nm and measured with a 525/540nm bandpass. Samples containing Hoechst 33342 

stained cells were excited at 405nm and measured with a 540/550nm bandpass. Counting beads were 

excited at 635nm and measured at 755nm. All samples were measured in Micronic 1.4mL tubes.  

To ensure comparable cell counts in every sample, data acquisition was stopped after 5,000 counting 

beads gated in fluorescence channel 7 (FL7).  Cells were gated according to their specific fluorescent 
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label in complex mixtures or depending on their forward and side scatter signal when only one cell 

type was involved. 

TEM sample preparation and imaging.  For electron microscopy, cells (White blood cells 

(WBC) and tumor cells (TC), incubated with particles for 10 minutes and 5 hours) were gently washed 

with pre-warmed PBS and fixed with 4% methanol-free paraformaldehyde (PFA) overnight in the 

fridge. Pellets were then washed with ddH2O (3x) and cacodylate buffer (0.1M) (2x) and stained with 

2% osmium tetroxide and 1.5% potassium ferricyanide for 1 hour. Pellets were washed with ddH2O 

and then gradually dehydrated using an ethanol gradient (40%, 50%, 60 %, 70%, 80%, 90%, 95%, 

100% (3x)). Cell pellets were then embedded in epoxy resin (EPON 812), according to procedures de-

scribed in the manufacturer’s protocol. Resin blocks were cured in the oven for 72 hours, trimmed 

with a razor blade and then sectioned in 100nm sections using an ultramicrotome. The thin sections 

were imaged in a JEOL 100 Plus TEM at 80 keV.  

Continuous experiment. A blood purification device was assembled at a scale of 1:10 of a pre-

viously constructed magnetic blood purification device.22 Two pumps (Ismatech Pump ISM 833C 

Type 335193) were used. Flow rates were set to 1.5mL per min for the main tube and beads were add-

ed at a 1:10 dilution. Functionalized beads were pumped in a PharMed®BPT orange/yellow tube into 

the main silicon TR60 2/4MM tube to reach a final bead concentration of 0.4 mg per mL. The silicon 

tube was replaced for each new sample. For experiments including a mixer, a pearl chain mixer (Fluid-

ic 658 from Microfluidic chipshop) was connected to the tubing. The volume of the entire device was 

5 mL. The volume between mixer and magnets was 3 mL, resulting in a contact time of 2 minutes. 

The beads were separated from the fluid flow by using two neodymium magnets, assembled using an 

in-house 3D-printed scaffold. Final cell concentrations were analyzed in flow cytometry by mixing 

300 μL of the cell suspension after separation with 25 μL of the counting beads. Acquisition was 

stopped after 5,000 counting beads and the residual cell number was determined for every sample.  

Mathematical Model. To quantify the time required for magnetic particles to bind to cells, and 

consequently gaining information about the time evolution of the fraction of cells with a given number 

magnetic particles bound to their surface, a mathematical model based on population balance equa-

tions has been used. This model, which is similar to the one used in our previous work,10 relies on the 
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solution of mass balances for the overall concentration of free magnetic particles, as well as for the 

concentration of cells carrying an arbitrary number i of magnetic particles bound to them. Let us call N 

the number concentration of unbound magnetic particles, and Ci the concentration of cells with i parti-

cles adsorbed. The mass balance for magnetic particles reads: 

1

0

M

i i

i

dN
N K C

dt





              (1) 

M is the maximum number of particles that can be attached on a cell. Equation (1) states that the ad-

sorption of particles onto cells is described as a bimolecular event, proportional to the concentration of 

free particles and to the concentration of cells onto which particles are going to attach. The “rate con-

stant Ki”, corresponding to the rate of particle attaching on a cell with having already i particles bound 

to its surface, is given by the following expression, valid for diffusion-limited events: 

 
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In Equation (2), RC is the radius of the cell, RMP the radius of the magnetic particles, T the absolute 

temperature, kB the Boltzmann constant and  the viscosity of the medium in which particles and cells 

move. The last term in the equation is the correction accounting for the fact that a cell with i particles 

bound to it has only a portion of its surface available for further particle attachment. When M particles 

are attached, no more particles can be attached, since the model does not foresee the possibility of 

multiple layers of particles attached to the surface of a cell. The mass balance equations for cells are: 
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        (3) 

We can write two conservation equations. The first is the conservation of cells: 

0

M

i T

i

C C


            (4) 

where CT is the total number of cells, which is equal to the initial number of cells with zero particles 

adsorbed on them. 

The second is the conservation of particles: 
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0

1

M
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i C N N

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N0 is the initial and total number concentration of magnetic particles. 

It is possible to find a solution in closed form of Equations (1)-(5), as shown in the supporting infor-

mation. The closed form solution makes the calculations of all relevant quantities (such as the time 

evolution of the average number of particles bound to a cell) very easy.  

The model can be further extended to the case of unspecific binding. In this case, it is assumed that 

there are two populations of cells: those to which magnetic particles are supposed to bind, and the sec-

ond population, to which particles bind unspecifically, and with a considerably lower rate. Equations 

(3) still holds for the cells to which magnetic particles are supposed to bind. A similar set of Equations 

can be written in the case of cells with unspecific binding. Overall, the balance equations for the two 

cell populations are: 
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Where the symbols with subscript 1 and 2 refer to cells belonging to population 1 (specific) and 2 (un-

specific), respectively. The corresponding balance for the particles becomes: 
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And the rate constants are given by: 

 

 

1, 1,

1, 1

2, 2,

2, 2

2 1 1
1

3

2 1 1
1

3

b
i C MP

C MP

b
i C MP

C MP

k T i
K R R

R R M

k T i
K R R

W R R M





  
      

  

  
      

  

      (8) 



Page 10 of 24 

 

M1 and M2 are the maximum number of particles that can bind to the two populations of cells. If the 

size of the two cells are identical, then M1 = M2. The only difference between the two rate constants is 

the presence of the W factor in the denominator of the second Equation (8). This factor, assumed to be 

W>>1, corrects for unspecific binding, which is assumed to be much slower than the specific binding. 

1/W represent the probability that a collision between a magnetic particle and a cell leads to an unspe-

cific binding event. The total cells and particles conservation equations read: 

1
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1 2
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         (9) 

The solution of Equations (6)-(9) has been done partially analytically, partially numerically, as de-

scribed in the supporting information. 

 

RESULTS & DISCUSSION 

In order to investigate the receptor mediated specific binding of magnetic particles to cells and the ef-

ficiency of the magnetic separation process, EpCAM-positive tumor cells were chosen as a model cell 

line. EpCAM is a surface marker that is widely expressed by different tumor cells and has been used 

to separate tumor cells in diagnostic settings for many years already.17, 23 EpCAM antibody functional-

ized beads were assembled using Protein A (or Protein A/G hybrid) coated magnetic clusters with 

cluster diameters of 50 nm, 200 nm, 300 nm, 1 μm and 4 μm (according to the manufacturer) (Figure 

1a). Transmission electron micrographs of the 300 nm clusters show a uniform size and shape of the 

particles (Figure 1b). Dynamic light scattering (DLS) measurements show relatively narrow size dis-

tributions and average hydrodynamic sizes of 106(±0.7)nm, 264(±5)nm, 367(±1)nm, 432(±5)nm and 

3209 (±460)nm in water (Figure 1b). Hydrodynamic sizes in cell culture medium were comparable to 

the ones in water (see Supporting Information, Figure S1). These DLS sizes differentiate considerably 

from the expected size provided by the supplier for 1 μm and 4 μm particles. However, this may be 

explained by anisotropic particle shapes and inaccuracies in the estimate of the refractive index. 
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An EpCAM-positive and an EpCAM-negative cell line were selected for initial bead-cell in-

teraction studies. The EpCAM positivity of CaCo-2 cells and the low EpCAM expression on THP-1 

cells was confirmed by flow cytometry (Figure 2a,b). Then, 300 nm beads with and without EpCAM-

antibody attached were added to a suspension of Caco-2 cells (100’000 cells per mL) at a concentra-

tion of 0.4 mg per mL. The compatibility of the beads for at least the duration of a typical experiment 

and up to 24 hrs was demonstrated in a membrane integrity assay (Figure 2c). No significant effect on 

cell viability was observed and viability remained ≥ 90% for at least 24 hrs of incubation time. The 

non-specific interaction of protein A/G coated beads (without EpCAM-antibody) with Caco-2 cells 

was investigated (Figure 2d). Less than 5% of tumor cells were separated when beads without Ep-

CAM antibody were used. For EpCAM functionalized beads, separation efficiencies of >95% were 

reached using bead concentrations of 0.4 mg per mL and contact times of 10 minutes. These results 

show that there is very little non-specific interactions between cells and beads without antibody for in-

cubation times up to 10 minutes. Additionally, an analogous experiment with (EpCAM-negative) 

THP-1 cells shows that < 10% of THP-1 cells are removed by the EpCAM-antibody functionalized 

magnetic beads. To differentiate between the competitive receptor binding and endocytosis processes, 

separation efficiencies of fixed and unfixed tumor cells were compared. When PFA-fixed Caco-2 cells 

were used, separation efficiencies were slightly reduced and reached 60% for EpCAM-antibody func-

tionalized beads. Less than 1% of PFA-fixed cells were removed when beads without antibody were 

employed. 

Then, separation efficiencies of EpCAM-positive Caco-2 cells by EpCAM-antibody-

functionalized beads were assessed in presence of EpCAM-negative cells. First, a human monocyte 

cell line (THP-1) with comparatively low phagocytic activity was used as a model system. Binding of 

EpCAM-coated magnetic beads to EpCAM-negative THP-1 cells was found to be < 10% and separa-

tion efficiencies of Caco-2 cells in presence of THP-1 cells were >95%.  

To assess the influence of magnetic bead size on tumor cell binding and uptake into phagocyt-

ic cells, different bead sizes (50 nm, 200 nm, 300 nm, 1 μm and 4 μm) were compared at the same 

mass concentration in presence and absence of EpCAM-negative white blood cells (Figure 3a). Since 

undifferentiated THP-1 cells have a relatively low phagocytic activity native white blood cells isolated 
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from fresh human whole blood were employed to mimic conditions in human blood more realistically. 

At a concentration of 0.4 mg per mL, it becomes apparent that beads with sizes between 200 nm and 1 

μm are most efficient. This is in agreement with a study on bacteria removal from Kang et al.24 The 50 

nm beads are incompletely separated from the suspension by magnetic separation due to their weaker 

magnetic moment. Also, smaller beads are readily taken up by both WBC and TC, which possibly ex-

plains the slightly reduced separation efficacy in presence of WBC for 50 nm and 200 nm. On the oth-

er hand the number of 4 μm beads is too low to reach complete separation. This is in agreement with 

findings from Xu and colleagues, who report slow and inefficient binding of tumor cells by 3-5 μm 

beads.14  

Next, the influence of bead concentration was investigated using 300 nm beads (Figure 3b). 

Experiments show that beads are in excess and that bead concentration of down to 0.2 mg per mL lead 

to separation efficiencies of  >98%. However, in presence of white blood cells, with increasing incuba-

tion time, the minimum number of required beads to achieve quantitative separation is significantly 

higher, indicative of a competitive process of bead phagocytosis and binding of beads to tumor cells.  

The influence of contact time between the beads and the cells has shown little effect of the 

contact time on TC separation efficiencies for bead concentration of > 0.2 mg per mL (Figure 3c). 

However, a striking decrease in WBC, and particularly neutrophil counts is observed with increasing 

contact times (Figure 3d). After 10 minutes of contact time, the neutrophil count drops by 50% of the 

initial count (1 million per mL). Transmission electron micrographs confirm uptake of magnetic nano-

particles, with a preferential uptake of smaller particle (i.e. 300nm) compared to 4 μm particles (Fig-

ure 4a,b). Occasionally, also 4 μm particles are found inside of the cells (Figure 4b). These findings 

indicate that blood – bead contact times should be limited to a few minutes in order to avoid uptake of 

magnetic particles into white blood cells.  

Finally, we demonstrate efficacious removal of EpCAM-positive cells in a continuous process. 

We assembled a dialysis like system in analogy to the ones reported in previous studies.9, 22, 25 The 

volume of the device was 5 mL and fluid was pumped at a flow rate of 1.5 mL per min. Beads were 

added to the fluid stream at a final bead concentration of 0.4 mg per mL. In the continuous process, 

single pass tumor separation efficiency was found to be reduced (78.8%) compared to the batch setting 
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(>95%). In order to improve contact between beads and fluid, a microfluidic pearl chain mixer was in-

troduced (Figure 5a,b). Using the mixer, separation efficiency was increased from 78.8% to >92%, 

even in presence of physiological numbers of WBC (Figure 5c). The mixing of the beads with the 

cells is indeed a critical factor affecting separation performance. 

Notably, we have used comparatively high number concentrations of tumor cells. The reason 

for that is mostly of technical nature, since such high concentrations allow reliable cell counting by 

flow cytometry. The target cell concentration in certain clinical scenarios may be much lower, espe-

cially for circulating tumour cells where concentrations of ≤ 10 cells per mL are reported,23, 26 and this 

may affect separation performance. In order to address how target cell concentration will affect the 

removal efficiency, we calculated the estimated binding times based on a mathematical model. We 

used an estimated target cell size of 10 μm×10 μm×10 μm and a bead concentration of 5 × 109 beads 

per mL. The number of target cells was varied from 10 cells per mL to 100’000 cells per mL. The 

modelling results show that beads are added in such great excess that the cell concentration only mar-

ginally affects the removal efficiency (Figure 6a,b). The number of beads per cell increases irrespec-

tive of the cell number in that case (Figure 6c,d). In particular, Figure 6d shows the time evolution of 

cells with at least 10 magnetic beads. It is estimated that this is the requirement necessary to achieve 

good separation.24 One can see how in a couple of minutes all the cells contain at least 10 beads. Be-

cause particles are much smaller than cells in that case, the relative movements of particles are much 

faster, and cells can almost be considered as stationary phase.27 The rate-determining step in the bind-

ing process is the movement and the binding of nanoparticles to the cell surface, and the cell concen-

tration thus has very little effect on the separation efficiency. However, non-specific uptake may of 

course significantly affect the separation performance. We therefore adapted the model to take into ac-

count non-specific uptake. To do so, we assumed that particles can also attach to non-target cells, at a 

rate which is  times smaller than the rate of binding to target cells. We have performed a sensitivity 

analysis varying several parameters of the model, in order to assess the effect of unspecific binding on 

the outcome of the separation. The results of such analyses are shown in Figures S2-S3. The results 

are presented in terms of average number of cells bearing at least 10 particles as a function of the  

value, for two extremely different ratios of concentrations of specific versus unspecific cells, C1/C2. 
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Figure S2 shows four cases, corresponding to four different magnetic particles concentrations. One 

can observe that, for sufficiently low values of the parameter , the separation between specific and 

unspecific cells is almost complete. Not surprisingly, at  values sufficiently close to 1, the separation 

becomes progressively poorer, until specificity is completely lost. As the particle concentration de-

creases, it appears that the number of cells with at least 10 particles that are present after 10 minutes 

decreases considerably. As rule of thumb, in order to achieve an analogous performance, a decrease in 

particles concentration by about an order of magnitude can be compensated by an increase in contact 

time by one order of magnitude, as Figure S3 shows. In fact the fraction of cells with specific binding 

shown in Figures S2c and S3a are quite similar. In the former case, a concentration of particles of 

5·107 per mL has been used for 10 minutes, while in the letter case a particle concentration of 5·106 

per mL for a time of 100 minutes has been used. Clearly the fact that the final results are not identical 

is due to the non-identical consumption of particles, which becomes a problem when their concentra-

tion becomes sufficiently small, as Figure S2b shows, where a particle concentration of 5·106 per mL 

for a time of 1000 minutes has been used. The almost complete consumption of particles in the latter 

case can be seen in Figure S3d. Taken together, this model enables estimation of the minimal particle 

concentration required to remove a certain number of cells in a given time as a function of non-

specific interactions. 

 

CONCLUSIONS 

The present article demonstrates the conceptual feasibility of cell removal from body fluids in a con-

tinuous extracorporeal dialysis-type of setting. The contact between magnetic beads and target sub-

stances is critical, and can be enhanced by introducing a pearl chain mixer. Contact times higher than 2 

minutes should be avoided in order to prevent non-specific uptake into blood cells. Also, particle sur-

face chemistry may be further optimized in order to improve specific cell binding and limit non-

specific interactions. The current setting could be easily scaled up to increase the throughput to 50-150 

mL per min, similar to the ones of currently used blood purification devices. This study paves the way 

to investigate the therapeutic benefit of magnetic cell removal in conditions such as metastatic cancer 

or leukaemia, where circulating tumor cells could be removed, or in autoimmune diseases. 
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SUPPORTING INFORMATION. 

Figure S1. Hydrodynamic size of magnetic beads in water and cell culture medium. Further descrip-

tion of the mathematical model. Figures S2 and S3. Mathematical modelling results for magnetic 

beads with a size of 300 nm. 

 

COMPETING INTERESTS 

The authors declare that they have no competing interests. 

 

AUTHOR CONTRIBUTIONS 

N.D. and N.B. performed the experimental work on cell removal, N.B. supervised the flow cytometry 

work, performed cytotoxicity assays and helped writing the manuscript, E.T. analyzed samples in 

TEM, L.G. performed dynamic light scattering measurements, K.K. helped with nanoparticle and 

TEM sample preparation, S.B. supervised TEM studies, M.L. performed the mathematical modelling, 

I.K.H. supervised the study and wrote the manuscript. All authors contributed to discussions and edit-

ed the manuscript. 

 

ACKNOWLEDGEMENT 

The authors acknowledge support from the Novartis Foundation for Medical-biological Research. 

M.L. acknowledges financial support from the Swiss National Science Foundation, with grant number 

PP00P2_159258. N.B. acknowledges funding from the NanoScreen Materials Challenge co-funded by 

the Competence Centre for Materials Science and Technology (CCMX). The authors thank Ursina 

Tobler for assistance with blood collection from healthy volunteers. 

  



Page 16 of 24 

 

REFERENCES 

1. Issadore, D.; Chung, J.; Shao, H.; Liong, M.; Ghazani, A. A.; Castro, C. M.; Weissleder, R.; 

Lee, H., Ultrasensitive Clinical Enumeration of rare Cells ex vivo using a μ-Hall Detector. Sci. Transl. 

Med. 2012, 4 (141), 141ra92-141ra92. 

2. Mohamadi, R. M.; Besant, J. D.; Mepham, A.; Green, B.; Mahmoudian, L.; Gibbs, T.; Ivanov, 

I.; Malvea, A.; Stojcic, J.; Allan, A. L.; Lowes, L. E.; Sargent, E. H.; Nam, R. K.; Kelley, S. O., 

Nanoparticle-Mediated Binning and Profiling of Heterogeneous Circulating Tumor Cell 

Subpopulations. Angew.Chem. Int. Ed. 2015, 127 (1), 141-145. 

3. Poudineh, M.; Aldridge, P. M.; Ahmed, S.; Green, B. J.; Kermanshah, L.; Nguyen, V.; Tu, C.; 

Mohamadi, R. M.; Nam, R. K.; Hansen, A.; Sridhar, S. S.; Finelli, A.; Fleshner, N. E.; Joshua, A. M.; 

Sargent, E. H.; Kelley, S. O., Tracking the Dynamics of Circulating Tumour Cell Phenotypes using 

Nanoparticle-mediated Magnetic Ranking. Nat. Nanotechnol. 2017, 12 (3), 274-281. 

4. Wang, L.; Yang, Z.; Gao, J.; Xu, K.; Gu, H.; Zhang, B.; Zhang, X.; Xu, B., A Biocompatible 

Method of Decorporation:  Bisphosphonate-Modified Magnetite Nanoparticles to Remove Uranyl Ions 

from Blood. J. Am. Chem. Soc. 2006, 128 (41), 13358-13359. 

5. Lee, H. Y.; Bae, D. R.; Park, J. C.; Song, H.; Han, W. S.; Jung, J. H., A Selective 

Fluoroionophore Based on BODIPY-functionalized Magnetic Silica Nanoparticles: Removal of Pb2+ 

from Human Blood. Angew. Chem. Int. Ed. 2009, 48 (7), 1239-1243. 

6. Herrmann, I. K.; Urner, M.; Koehler, F. M.; Hasler, M.; Roth-Z'Graggen, B.; Grass, R. N.; 

Ziegler, U.; Beck-Schimmer, B.; Stark, W. J., Blood Purification using Functionalized Core/Shell 

Nanomagnets. Small 2010, 6 (13), 1388-1392. 

7. Cai, K.; Li, J.; Luo, Z.; Hu, Y.; Hou, Y.; Ding, X., [small beta]-Cyclodextrin conjugated 

Magnetic Nanoparticles for Diazepam Removal from Blood. Chem. Commun. 2011, 47 (27), 7719-

7721. 

8. Shen, H.; Wang, J.; Liu, H.; Li, Z.; Jiang, F.; Wang, F.-B.; Yuan, Q., Rapid and Selective 

Detection of Pathogenic Bacteria in Bloodstream Infections with Aptamer-Based Recognition. ACS 

Appl. Mater. Interfaces 2016, 8 (30), 19371-19378. 

9. Kang, J. H.; Super, M.; Yung, C. W.; Cooper, R. M.; Domansky, K.; Graveline, A. R.; 

Mammoto, T.; Berthet, J. B.; Tobin, H.; Cartwright, M. J.; Watters, A. L.; Rottman, M.; Waterhouse, 

A.; Mammoto, A.; Gamini, N.; Rodas, M. J.; Kole, A.; Jiang, A.; Valentin, T. M.; Diaz, A.; 

Takahashi, K.; Ingber, D. E., An extracorporeal Blood-cleansing Device for Sepsis Therapy. Nat. Med. 

2014, 20(10):1211-1216. 

10. Lattuada, M.; Ren, Q.; Zuber, F.; Galli, M.; Bohmer, N.; Matter, M. T.; Wichser, A.; Bertazzo, 

S.; Pier, G. B.; Herrmann, I. K., Theranostic Body Fluid Cleansing: rationally designed Magnetic 

Particles enable Capturing and Detection of Bacterial Pathogens. J. Mater. Chem. B 2016, 4 (44), 

7080-7086. 

11. Molday, R. S.; Yen, S. P. S.; Rembaum, A., Application of Magnetic Microspheres in 

Labelling and Separation of Cells. Nature 1977, 268 (5619), 437-438. 

12. Miltenyi, S.; Müller, W.; Weichel, W.; Radbruch, A., High gradient Magnetic Cell Separation 

with MACS. Cytometry 1990, 11 (2), 231-238. 

13. Molday, R. S.; Mackenzie, D., Immunospecific Ferromagnetic Iron-dextran Reagents for the 

Labeling and Magnetic Separation of Cells. J. Immunol. Methods 1982, 52 (3), 353-367. 

14. Xu, H.; Aguilar, Z. P.; Yang, L.; Kuang, M.; Duan, H.; Xiong, Y.; Wei, H.; Wang, A., 

Antibody conjugated Magnetic Iron Oxide Nanoparticles for Cancer Cell Separation in fresh Whole 

Blood. Biomaterials 2011, 32 (36), 9758-9765. 

15. Green, B. J.; Saberi Safaei, T.; Mepham, A.; Labib, M.; Mohamadi, R. M.; Kelley, S. O., 

Beyond the Capture of Circulating Tumor Cells: Next-Generation Devices and Materials. Angew. 

Chem. Int. Ed. 2016, 55 (4), 1252-1265. 

16. Khoo, B. L.; Warkiani, M. E.; Tan, D. S.-W.; Bhagat, A. A. S.; Irwin, D.; Lau, D. P.; Lim, A. 

S. T.; Lim, K. H.; Krisna, S. S.; Lim, W.-T.; Yap, Y. S.; Lee, S. C.; Soo, R. A.; Han, J.; Lim, C. T., 



Page 17 of 24 

 

Clinical Validation of an Ultra High-Throughput Spiral Microfluidics for the Detection and 

Enrichment of Viable Circulating Tumor Cells. PLOS ONE 2014, 9 (7), e99409. 

17. Nagrath, S.; Sequist, L. V.; Maheswaran, S.; Bell, D. W.; Irimia, D.; Ulkus, L.; Smith, M. R.; 

Kwak, E. L.; Digumarthy, S.; Muzikansky, A.; Ryan, P.; Balis, U. J.; Tompkins, R. G.; Haber, D. A.; 

Toner, M., Isolation of Rare Circulating Tumour Cells in Cancer Patients by Microchip Technology. 

Nature 2007, 450 (7173), 1235-1239. 

18. Stott, S. L.; Hsu, C.-H.; Tsukrov, D. I.; Yu, M.; Miyamoto, D. T.; Waltman, B. A.; 

Rothenberg, S. M.; Shah, A. M.; Smas, M. E.; Korir, G. K.; Floyd, F. P.; Gilman, A. J.; Lord, J. B.; 

Winokur, D.; Springer, S.; Irimia, D.; Nagrath, S.; Sequist, L. V.; Lee, R. J.; Isselbacher, K. J.; 

Maheswaran, S.; Haber, D. A.; Toner, M., Isolation of Circulating Tumor Cells using a Microvortex-

generating Herringbone-chip. Proc. Natl. Acad. Sci. U. S. A. 2010, 107 (43), 18392-18397. 

19. Yamamoto, S.; Shimizu, K.; Fei, J.; Iwata, H.; Okochi, M.; Nakanishi, H.; Honda, H., Ex vivo 

Culture of Circulating Tumor Cells using Magnetic Force-based Coculture on a Fibroblast Feeder 

Layer. Biotechnol. J. 2016, 11 (11), 1433-1442. 

20. Yoon, Y.; Cho, S.; Kim, S.; Choi, E.; Kim, R. K.; Lee, S. J.; Sul, O.; Lee, S. B. In Separation 

and Capture of Circulating Tumor Cells from Whole Blood using a Bypass integrated Microfluidic 

Trap Array, 2014 36th Annual International Conference of the IEEE Engineering in Medicine and 

Biology Society, 26-30 Aug. 2014; 2014; pp 4431-4434. 

21. Scarberry, K. E.; Mezencev, R.; McDonald, J. F., Targeted Removal of Migratory Tumor 

Cells by Functionalized Magnetic Nanoparticles impedes Metastasis and Tumor Progression. 

Nanomedicine 2010, 6 (1), 69-78. 

22. Herrmann, I. K.; Bernabei, R. E.; Urner, M.; Grass, R. N.; Beck-Schimmer, B.; Stark, W. J., 

Device for Continuous Extracorporeal Blood Purification using Target-specific Metal Nanomagnets. 

Nephrol. Dial. Transplant. 2011, 26 (9), 2948-U1516. 

23. Allard, W. J.; Matera, J.; Miller, M. C.; Repollet, M.; Connelly, M. C.; Rao, C.; Tibbe, A. G. 

J.; Uhr, J. W.; Terstappen, L. W. M. M., Tumor Cells Circulate in the Peripheral Blood of All Major 

Carcinomas but not in Healthy Subjects or Patients With Nonmalignant Diseases. Clin. Cancer Res. 

2004, 10 (20), 6897-6904. 

24. Kang, J. H.; Um, E.; Diaz, A.; Driscoll, H.; Rodas, M. J.; Domansky, K.; Watters, A. L.; 

Super, M.; Stone, H. A.; Ingber, D. E., Optimization of Pathogen Capture in Flowing Fluids with 

Magnetic Nanoparticles. Small 2015, 11 (42), 5657-5666. 

25. Herrmann, I. K.; Schlegel, A.; Graf, R.; Schumacher, C. M.; Senn, N.; Hasler, M.; Gschwind, 

S.; Hirt, A.-M.; Guenther, D.; Clavien, P.-A.; Stark, W. J.; Beck-Schimmer, B., Nanomagnet-based 

Removal of Lead and Digoxin from Living Rats. Nanoscale 2013, 5 (18), 8718-8723. 

26. Yu, M.; Stott, S.; Toner, M.; Maheswaran, S.; Haber, D. A., Circulating Tumor Cells: 

Approaches to Isolation and Characterization. J. Cell Biol. 2011, 192 (3), 373-382. 

27. Rossier, M.; Koehler, F. M.; Athanassiou, E. K.; Grass, R. N.; Waelle, M.; Birbaum, K.; 

Günther, D.; Stark, W. J., Energy-Efficient Noble Metal Recovery by the Use of Acid-Stable 

Nanomagnets. Ind. Eng. Chem. Res. 2010, 49 (19), 9355-9362. 

 

 

  



Page 18 of 24 

 

 

Figure 1:    Protein A coated magnetic nanoparticles (or Protein A/G hybrid coated 300 nm nanopar-

ticles) where functionalized with EpCAM antibodies (a). Transmission electron micrographs of 300 

nm protein A/G hybrid coated nanoparticles (b). Dynamic light scattering measurements of nanopar-

ticle clusters of different size (c).  
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Figure 2: Cell characterization and interactions between magnetic beads and cells. EpCAM 

expression on EpCAM-positive Caco-2 cells (a) and EpCAM-negative THP-1 cells (b). Flow 

cytometry analysis of PI and Annexin stained Caco-2 cells following exposure to magnetic beads (300 

nm) for 24 hours and comparison to silica nanoparticles (Aerosil200) (n=2) (c). Tumor cell 

separation efficiency using magnetic beads functionalized with EpCAM and beads without antibodies 

and an incubation time of 10 mins (n=2) (d). 
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Figure 3: Study of the magnetic bead – cell interactions. Tumor cell separation efficiency as a func-

tion of bead size (a) in presence of tumor cells only (TC), tumor cells and white blood cells (TC and 

WBC) and tumor cells and fixed white blood cells (TC and fixed white blood cells). Separation effi-

ciency using 300 nm magnetic beads as a function of bead concentration and incubation time (1 min 

and 10 min) (b). The influence of bead-fluid contact time for particle concentrations of 0.2 mg per mL 

is shown for tumor cells in presence of white blood cells (c). The neutrophil count in the supernatant is 

shown as a function of incubation time with 300 nm magnetic beads at a concentration of 0.2 mg per 

mL (n=3) (d). 
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Figure 4: Particle Uptake. Transmission electron micrographs of tumor cells (TC) and white blood 

cells (WBC) (and red blood cells (RBC)) incubated with 300 nm and 4 μm particles for 1 minute or 5 

hours, respectively. The 300 nm particles are localized primarily on the membrane of tumor cells after 

short incubation times (a). Some 300 nm particles can be found inside both TC and WBC. Smaller 

particles are more readily internalized (black arrows). Most of the 4 μm particles are located extracel-

lularly, however, occasionally, also 4 μm particles (MP) can be found inside of cells (b, termed as in-

tracellular microparticles (iMP)).  
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Figure 5: Study of the magnetic bead fluid contact. A device for continuous operation has been as-

sembled. Two different geometries are investigated (a). Geometry A consists of a silicon tube with a 

total volume of 5 mL and a volume of 3 mL between the bead injection point and the magnetic separa-

tor. Geometry B consists out of the same type of silicon tubing but the tubing is connected to a pearl 

chain microfluidic chip mixer (a, b). The volume between the injection point and the separator again 

is 3mL. The tumor cell separation efficiencies are compared for the two geometries (n≥2) (c). 
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Figure 6: Mathematical modelling results for magnetic beads with a size of 300 nm and a number 

concentration of 5 x 109 beads per mL. Change in magnetic nanoparticle concentration as a function 

of cell number (10-105 per mL) concentration and time (a). The fraction of cells with no magnetic par-

ticles attached as a function of cell number concentration and time (b).The average number of mag-

netic particles attached to a cell (c) and the time evolution of the fraction of cells carrying at least 10 

particles (d).  
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