A Numerical Study on the Effect of the Particle Surface Coverage on the Quartz Crystal Microbalance Response

Jurriaan J. J. Gillissen†‡, Joshua A. Jackman†‡, Seyed R. Tabaei†‡, Nam-Joon Cho*†‡§

†School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
‡Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive 637553, Singapore
§School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive 637459, Singapore

*E-mail: njcho@ntu.edu.sg

Abstract

The quartz crystal microbalance (QCM) is a surface-sensitive measurement technique to characterize adsorption processes at solid-fluid interfaces. While QCM measurements are routinely applied to study homogenous thin films, characterizing heterogeneous films of adsorbed particles remains challenging because QCM is sensitive to not only the mass of adsorbed particles but also that of hydrodynamically-coupled fluid. To extract information about adsorbed particles, it is necessary to model these complex hydrodynamic effects, however, current QCM models are restricted to the limit of either a very low surface coverage or to the extrapolated limit of saturation coverage. Herein, we investigated QCM measurement responses in the intermediate surface coverage regime, by conducting lattice Boltzmann simulations of monodisperse, spherical particles that are attached to an oscillating surface. From the simulations, we relate the overtone-dependent QCM frequency and bandwidth shifts to particle size, interparticle distance, and the relevant hydrodynamic length scale. The corresponding results are in qualitative agreement with experimental QCM data for sub-100 nm, gel-phase liposomes. Furthermore, the data provide a theoretical basis for extracting particle sizes from QCM data in the high surface coverage limit.
Introduction

The quartz crystal microbalance (QCM) is a widely used, surface-sensitive measurement technique to characterize adsorption events at solid-fluid interfaces.\(^1,2\) QCM measurements involve tracking the resonance behavior of shear-thickness oscillations of a piezoelectric quartz crystal at its fundamental frequency and odd overtones thereof.\(^3,4\) The presence of an adsorbate on the QCM sensor surface influences this resonance behavior, and corresponding shifts can be monitored in order to obtain information about physical properties of the adsorbate.\(^5,6\)

The QCM detects not only the adlayer but also the fluid that is coupled to the oscillating adlayer.\(^7,8\) As a result, translating QCM data to adlayer properties requires so-called ‘QCM models’, which are based on hydrodynamic analysis. Analytical QCM models have been developed to extract the mass and viscoelastic properties of homogenous, thin-film adsorbates.\(^9-12\) On the other hand, layers of adsorbed particles are governed by heterogeneous hydrodynamic coupling between the adlayer and surrounding fluid.\(^3,12-20\) These complex hydrodynamic effects have hindered the development of corresponding QCM models that relate QCM measurement responses, via the hydrodynamic force, to the properties of adsorbed particles, e.g., surface coverage, size, and shape. As a result, current QCM models are restricted to the limit of either a very low surface coverage\(^21,22\) or to the extrapolated limit of saturation coverage.\(^23,24\) Specifically, this latter model extrapolates QCM data to a hypothetical scenario, where the adsorbed particles behave as a rigid, densely-packed layer. The thickness of the corresponding adlayer is determined by using a simple analytical model, which is valid for homogenous films.\(^9\) In some cases, the resulting adlayer thickness agreed well with the known size of adsorbed particles.\(^23-27\) However, a theoretical basis for this ‘extrapolation method’ remains to be established.

Constructing such theory requires analyzing the hydrodynamic force acting on a collection of particles attached to an oscillating surface. Previously, we combined numerical simulation with dimensional analysis to study the corresponding problem for a single spherical\(^21\) or ellipsoidal\(^22\) particle. From those analyses, we derived QCM models for extracting the size and shape of adsorbed
particles at low QCM surface coverages.21,22 Herein, we extend this methodology and investigate the hydrodynamics of adsorbed particles, not only for a low surface coverage but also for higher surface coverages where hydrodynamic interactions between adsorbed particles are important. By systematically varying the independent, dimensionless parameters in the simulation, we provide a comprehensive description of the hydrodynamic interaction between monodisperse, spherical particles adsorbed on the QCM sensor surface, as a function of particle size and surface coverage. Guided by the simulation outcome, we also provide a theoretical basis for the aforementioned extrapolation method to determine the size of adsorbed particles from QCM data at high surface coverages.

Theoretical Considerations

We consider the QCM measurement response that occurs due to the adsorption of \(N\) solid, spherical particles of radius \(a\). The surface area of the quartz crystal is \(A_Q\) and the distance between the adsorbed particles is \(L = (A_Q/N)^{1/2}\), which corresponds to a surface coverage of \(\phi = \pi (a/L)^2\). We assume that the particles are rigidly adhered to the substrate and remain spherical in the adsorbed state. \(\Delta \tilde{F}\) denotes the complex-valued amplitude of the force oscillation, which is exerted on the quartz crystal due to the adsorption of one particle, and the hat \(^\wedge\) signifies a complex number. The force amplitude, \(\Delta \tilde{F}\), has an inertial (real) component, which is in phase with the quartz acceleration and responsible for the frequency shift, \(\Delta \tilde{f}\), and a dissipative (imaginary) component, which is in phase with the quartz velocity and responsible for the bandwidth shift, \(\Delta \Gamma = f \Delta D/\pi\). The bandwidth shift is equivalent to the dissipation shift, \(\Delta D\), where \(f = f_0 n = \omega/2\pi\) is the (overtone) frequency, \(n\) is the overtone number, \(f_0\) is the fundamental frequency, and \(\omega\) is the (overtone) angular frequency of the quartz. In this work, the QCM data is presented in terms of the frequency and bandwidth shifts (\(\Delta \tilde{f}, \Delta \Gamma\)). Since \(\Delta \Gamma\) is dimensionally equivalent to \(\Delta \tilde{f}\), this representation offers a seamless comparison between the two quantities. It also allows us to compare our theoretical approach with the extrapolation method, which was described in the Introduction and is henceforth referred to as the \(\Delta \Gamma/\Delta \tilde{f}\) extrapolation method. Specifically, the \(\Delta \Gamma/\Delta \tilde{f}\) extrapolation method involves plotting the \(-\Delta \Gamma/\Delta \tilde{f}\) ratio \textit{versus} \(-\Delta \tilde{f}/n\) at
multiple overtones in order to determine the adlayer height.23,24

Based on the above definitions, the QCM frequency shift, Δf, and bandwidth shift, $\Delta \Gamma$, can be expressed as follows:3,4

$$-\Delta f + i \Delta \Gamma = \frac{f_{\text{NA}} \delta}{\omega U m_Q}.$$ \hfill (1)

where $m_Q = A_Q l_Q q_Q$ is the mass, l_Q is the thickness, q_Q is the mass density of the quartz crystal, and $i = \sqrt{-1}$ is the imaginary unit. The force per adsorbed particle $\Delta F = \Delta F_H + m_p U$ is the sum of the hydrodynamic force, ΔF_H, and the inertia, $m_p U$, of one adsorbed particle, where U is the (real-valued) quartz velocity amplitude and $m_p = q_v (4\pi/3) a^3$ is the mass of one particle, and it is assumed that the particle mass density equals the fluid mass density, q_v. The hydrodynamic force per particle, ΔF_H, is the force acting on the combined system of N particles and the substrate minus the force acting on the substrate without the particles, divided by N.

We use dimensional analysis to derive the general form of the governing relation between ΔF_H and the operating conditions. The number of variables in the problem is seven, i.e., ΔF_H, U, ω, a, ϕ, ρ_F, and the fluid kinematic viscosity, ν_F. According to the Buckingham-Pi theorem,28 one can combine seven variables (with three units being length, time, and mass) into $7 - 3 = 4$ independent dimensionless parameters such that $\Pi_i = \Delta F_H U^\beta \omega^\gamma a^\alpha \phi^\phi \nu_F^\nu \rho_F^\rho$, where $i = 1, 2, 3$ or 4 and $\alpha, \beta, \gamma, \delta, \epsilon, \zeta$ and η are determined by requiring that Π_i be dimensionless. This procedure results in the dimensionless force $\Pi_1 = \Delta F_H / (\rho_F a^3 \omega U)$, the dimensionless size $\Pi_2 = a / \omega^{1/2} \nu_F^{-1/2}$, the surface coverage $\Pi_3 = \phi$, and the dimensionless velocity $\Pi_4 = U a / \nu_F$. The parameter Π_4 is known as the Reynolds number, Re, which is estimated to be $Re = 10^{-2}$ based on $U = 10^{-1}$ m s$^{-1}$, $a = 10^{-7}$ m, and $\nu_F = 10^{-6}$ m2s$^{-1}$. Since Re is small compared to unity, the problem is independent of Re, and the dimensionless force Π_1 is therefore a dimensionless, complex-valued function of only two dimensionless variables: Π_2 and Π_3, i.e. $\Pi_1 = \Pi_1 (\Pi_2, \Pi_3)$. Expressing the dimensionless size as $\Pi_2 = a / \delta$ where the penetration depth is given by $\delta = (2 \nu_F / \omega)^{1/2}$, the governing relation is written as:

$$\Delta F_H = \rho_F a^3 \omega U \Pi_1 \left(\frac{\delta}{a}, \phi \right).$$ \hfill (2)
As described below, $\tilde{\Pi}_1(\delta/a, \phi)$ is determined by using numerical simulation.

Materials and Methods

Numerical Simulation. A lattice Boltzmann (LB) method was employed to compute the hydrodynamics of a single spherical particle, with radius a, which is attached to an oscillating surface. The specific details of the LB method are provided in the Supporting Information. The geometry and coordinate system of the simulation setup are presented in **Fig. 1a**. The surface has its normal in the z direction and oscillates in the x direction. The y direction is normal to the x and z directions. The domain sizes are L in the horizontal (x and y) directions and L_z in the vertical (z) direction. In the horizontal directions, periodic boundary conditions are employed. This means that the system represents a periodic array of spheres, with an interparticle separation distance of L. Thus, by varying the horizontal domain size L, we can modulate the particle surface fraction, $\phi=\pi(a/L)^2$.

The numerical method to solve the hydrodynamics problem is based on a three-dimensional staircase approximation of the spherical particle shape, as shown in **Fig. 1b**. The fluid kinematic viscosity was fixed at $\nu = \Delta x^2/(6 \Delta t)$, where Δx and Δt are the lattice spacing and computational time step, respectively. The simulations were conducted using a range of values for the horizontal and vertical domain sizes, L and L_z, particle radius a, and oscillation frequency f, which resulted in a surface coverage between $\phi \approx 0.01$ and 0.8 and a scaled, viscous penetration depth that varied between $\delta/a \approx 0.6$ and 4.6. All simulation parameters are listed in **Supporting Table S1**.

Figure 1. (a) Computational domain of the lattice Boltzmann (LB) simulation. (b) Staircase approximation of a spherical particle in the LB simulation, where the particle radius spans ten lattice spacings.
Liposome Preparation. Liposomes (lipid vesicles), which are in the gel phase at room temperature, were prepared by the extrusion method.\(^{30}\) A dried film of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC, Avanti Polar Lipids, Alabaster, AL, USA) lipids was hydrated in an aqueous buffer solution (10 mM Tris [pH 7.5] with 150 mM NaCl) at a lipid concentration of 5 mg/mL, using Milli-Q-treated water with a minimum resistivity of 18.2 MΩ·cm (Millipore, Billerica, MA, USA).

After vortexing the sample, the liposomes were extruded through a track-etched polycarbonate membrane with a 50-nm diameter nominal pore size. As the fluid-to-gel phase transition temperature of the DPPC lipid is around 41 °C, the liposome suspension was heated to ~60 °C during the extrusion process, so that there was efficient sizing of the DPPC liposomes in the fluid-phase state.\(^{31}\) After the extrusion process was completed, the DPPC liposome suspension was cooled down to room temperature, and the liposomes returned to the gel-phase state. The mean and standard deviation of the liposome radius was measured by dynamic light scattering (DLS, Brookhaven Instruments, Holtsville, NY, USA), and was determined to be \(a = 38 \pm 7\) nm. The corresponding size distribution is given in Supporting Figure S1. Immediately before QCM experiments, the liposomes were diluted to a 0.05 mg/mL lipid concentration in 10 mM Tris buffer [pH 7.5] with 250 mM NaCl. The selected ionic strength promotes a strong adhesion force by shielding electrostatic repulsion between the TiO\(_2\)-coated substrate and DPPC liposomes,\(^{32}\) while it should be noted that the adsorbed, gel-phase DPPC liposomes remain spherical and do not deform appreciably, under these conditions.\(^{33}\)

QCM Experiments. Liposome adsorption was measured by using the Q-Sense E4 QCM instrument (Biolin Scientific AB, Stockholm, Sweden). We used quartz crystal sensor chips, which had a sputter-coated, 50-nm thick layer of TiO\(_2\) (model no. QSX 310, Biolin Scientific AB) and a fundamental frequency of \(f_0 = 5\) MHz, thickness of \(l_Q = 0.3\) mm, and mass density of \(\rho_Q = 2.65\) g/mL. A peristaltic pump (Reglo Digital, Ismatec, Glattbrugg, Switzerland) was used to inject liquid sample into the measurement chamber at a flow rate of 50 µL/min. The temperature in the measurement chamber was maintained at 25.0 ± 0.5 °C. The experimental data were collected at the 3\(^{rd}\) to 11\(^{th}\) odd overtones using the QSoft software program (Biolin Scientific AB). Baseline signals in aqueous buffer solution
(without liposomes) were recorded for 7 min prior to liposome injection under continuous flow conditions.

Results

Flow Field Visualizations

Fig. 2 shows the simulated x-component of the fluid velocity in the (x, z)-plane for four different values of ϕ at a fixed value of $\delta/a \approx 0.6$. These visualizations illustrate the physical mechanism that is responsible for the overtone- and time-dependent frequency and bandwidth shifts, which are typically observed during particle adsorption. Below, we analyze these dependencies in detail, through both simulation and experiment.

Figure 2. Simulated x-component of the fluid velocity field around spherical particles attached to an oscillating surface at different surface coverages: (a) $\phi \approx 0.01$, (b) $\phi \approx 0.05$, (c) $\phi \approx 0.2$, and (d) $\phi \approx 0.8$. The snapshots are taken at the instant in the oscillation, when the velocity at the surface equals zero. For all cases, the viscous penetration depth scaled to the particle radius is $\delta/a \approx 0.6$.
FIG 3. (a) Simulated real part of the QCM force $\Delta \Re(\tilde{F})$ (corresponding to frequency shift) per particle versus scaled viscous, penetration depth δa for various surface coverages ϕ. (b) Simulated imaginary part of QCM force $\Delta \Im(\tilde{F})$ (corresponding to dissipation shift) per particle versus scaled penetration depth δa for various surface coverages ϕ. The simulated force $\Delta \tilde{F}$ is scaled with $a^3 \rho_F \omega U$, where a is the particle radius, ρ_F is the fluid mass density, ω is the QCM (overtone) angular frequency, and U is the QCM (overtone) velocity amplitude. (c) Measured, negative QCM frequency shift per overtone $-\Delta f/n$ versus scaled penetration depth δa for various time points t. (d) Measured QCM bandwidth shift per overtone $\Delta \Gamma/n$ per particle versus scaled penetration depth δa for various time points t. In order to compare the experimental data in (c, d) to the simulation data in (a, b), we divided $-\Delta f/n$ and $\Delta \Gamma/n$ by the adsorption time t, which is, prior to saturation, assumed to be proportional to the number of adsorbed particles.

QCM Response as a Function of Overtone Number

In Figs. 3a and 3b, we investigate the simulated QCM force per particle, $\Delta \tilde{F}$, as a function of the scaled penetration depth, δa, for various fixed values of ϕ. As mentioned above, $\Delta \tilde{F}$ is a complex-valued force amplitude, and the real and imaginary parts correspond to the QCM frequency and bandwidth shifts, respectively [cf. Eq. (1)]. Fig. 3a shows the real part $\Delta \Re(\tilde{F})$, which is the sum of the inertial force of the particle and that of the coupled fluid. The results indicate that, for large $\phi \approx 0.8$, $\Delta \Re(\tilde{F})$ is independent of the penetration depth. In this regime, $\Delta \Re(\tilde{F})$ consists solely of particle
inertia, while there is no contribution from the coupled fluid, \(i.e.,\) the coupled fluid resembles that of a flat surface, which can be seen from the visualization as presented in Fig. 2d. On the other hand, at low \(\phi \approx 0.01,\) \(\Delta \Re (\hat{F})\) contains the particle inertia (constant component as a function of \(\delta a\)) as well as the inertia of the coupled fluid, which is reflected by an increase of \(\Delta \Re (\hat{F})\) as a function of \(\delta a.\)

However, it is observed that \(\Delta \Re (\hat{F})\) does not continually increase as \(\delta a\) becomes larger. At large \(\delta a,\) \(\Delta \Re (\hat{F})\) levels off, which reflects the hydrodynamic interactions between neighboring particles, \(i.e.,\) the overlap of the coupled fluid of neighboring particles. With increasing \(\phi,\) the distance between neighboring particles decreases, and the hydrodynamic coupling is therefore observed to set in at smaller \(\delta a.\)

Fig. 3b shows the imaginary part of the force per particle, \(\Delta \Im (\hat{F}),\) which measures the frictional force of the coupled fluid that is exerted at the solid-fluid interface. For \(\phi \approx 0.8,\) the particles form a densely packed layer (cf. Fig. 2d) and the friction resembles that occurring on a flat surface, \(i.e.,\)
\[\Delta \Im (\hat{F}) = 0.\]

On the other hand, for smaller \(\phi,\) \(\Delta \Im (\hat{F})\) shows non-monotonic behavior as a function of \(\delta a, \) \(i.e.,\) as a function of \(\delta a,\) \(\Delta \Im (\hat{F})\) first increases and then decreases towards zero, due to the overlap of the coupled fluid of the neighboring particles.

Figs. 3c and 3d show the experimentally measured force per particle as a function of \(\delta a,\) which corresponds to various overtones \(n,\) and for various \(\phi,\) which corresponds to various time points \(t.\) The relative penetration depth, \(\delta a,\) is related to the overtone, \(n,\) by \(\delta a = (v_F / \pi f_0 n)^{1/2}.\) The real and imaginary parts of the force are represented by the (negative) frequency shift per overtone number, \(-\Delta f/n,\) and by the bandwidth shift per overtone number, \(\Delta \Gamma / n.\) These quantities correspond to the force induced by all adsorbed particles. In order to obtain quantities that are proportional to the force per adsorbed particle, we need to divide \(-\Delta f/n\) and \(\Delta \Gamma / n\) by the (areal) number (density) of adsorbed particles. Since the number density of adsorbed liposomes is not directly available, we take into account that the liposome adsorption process is diffusion-limited,\(^{34}\) which implies that the number density is proportional to the adsorption time \(t.\) For this reason, we divide the frequency and
bandwidth shifts (per overtone number) in Figs. 3c and 3d by t. Under diffusion-limited adsorption conditions, the resulting quantities, $\Delta f/nt$ and $\Delta \Gamma/nt$, are equal to the force per particle, up to an unknown proportionality constant. We do not further consider this constant for the present purpose, which is focused on comparing the simulated and measured QCM force dependencies on δa and ϕ. The experimental data in Figs. 3c and 3d compare well with the simulated data in Figs. 3a and 3b, in terms of the aforementioned dependencies on δa and ϕ.

QCM Response as a Function of Time

We now turn our attention to the time dependence of the frequency and bandwidth shifts due to the entire ensemble of adsorbed particles. For this purpose, we multiply the real and imaginary parts of the simulated force per particle (cf. Figs. 3a and 3b) by the surface coverage, ϕ. In Figs. 4a and 4b, we plot the resulting $\phi \Delta \Re(\vec{F})$ and $\phi \Delta \Im(\vec{F})$ as functions of ϕ, for various δa. Experimentally, this representation corresponds (up to an unknown proportionality constant) to the frequency and bandwidth shifts as functions of time for the various overtones, which are shown for comparison in Figs. 4c and 4d.

The simulated inertial force on the QCM response increases monotonically with ϕ and with δa (Fig. 4a), and these trends agree well with the experimental data (Fig. 4c). At saturation coverage, the different overtones collapse, *i.e.*, the saturated layer of regularly distributed particles behaves as a uniform film. In the experiment, one nuance is that the different overtones do not collapse at saturation, which reflects that the saturated layer of adsorbed liposomes does not fully behave as a uniform film. This might reflect, the irregular, spatial particle arrangement, with gaps between the particles, as opposed to the regular, and closed packed particle arrangement in the simulation.

The simulated frictional force on the QCM response is a non-monotonic function of ϕ, which increases at low ϕ and decreases towards zero at high ϕ (Fig. 4b). These trends are also observed in the experimental data, albeit the decrease at higher ϕ does not continue to zero but instead saturates at a finite value (Fig. 4d). This again indicates, that the saturated layer is not closed packed.
FIG 4. (a) Simulated real part of QCM force per πa^2 surface area ϕ $\Delta \Re (F)$ (corresponding to frequency shift), as a function of surface coverage ϕ, for various scaled penetration depths δa. (b) Simulated imaginary part of QCM force per πa^2 surface area ϕ $\Delta \Im (F)$ (corresponding to dissipation shift), as a function of surface coverage ϕ, for various scaled penetration depths δa. (c) Measured QCM frequency shift per overtone $-\Delta f/n$ as a function of time for various overtones n, corresponding to various scaled penetration depths δa. (d) Measured QCM bandwidth shift per overtone $\Delta \Gamma/n$ as a function of time for various overtones n, corresponding to various scaled penetration depths δa.

It is noted that the transient maximum in the bandwidth shift (cf. Figs. 4b and 4d) has been observed previously for globular proteins and virus particles, in which cases it was attributed to the softness of the linkers between the particles and substrate. Interestingly, the present results support that similar transient maxima occur in purely rigid systems, originating from the hydrodynamic interactions between particles and hence providing a physical mechanism to explain past experimental observations with adsorbed liposomes as well.

Onset of Hydrodynamic Coupling

We continue by studying the relation between the hydrodynamic force per particle and the average distance between the particles, $L = a(\pi \phi)^{1/2}$, or equivalently the surface coverage ϕ. To this end,
FIG 5. (a) Simulated real part of the QCM force per particle $\Delta R(\bar{F})$ as a function of the surface coverage ϕ for various values of the scaled penetration depth δa. (b) Simulated imaginary part of the QCM force per particle $\Delta \Im(\bar{F})$ as a function of the surface coverage ϕ for various values of the scaled penetration depth δa. (c) Simulated real part of the QCM force per particle $\Delta R(\bar{F})$ as a function of the scaled interaction length $(a^2\delta/L^3)^{1/3}$ for various values of the scaled penetration depth δa. (d) Simulated imaginary part of the QCM force per particle $\Delta \Im(\bar{F})$ as a function of the scaled interaction length $(a^2\delta/L^3)^{1/3}$ for various values of the scaled penetration depth δa.

for various fixed values of δa, the simulated inertial force $\Delta R(\bar{F})$ and frictional force $\Delta \Im(\bar{F})$ per particle are presented as functions of ϕ in Figs. 5a and 5b, respectively. For small ϕ (or large L), there is no hydrodynamic coupling between the particles, and hence the forces are independent of ϕ. With increasing ϕ, the separation between adsorbed particles decreases and hydrodynamic coupling sets in above a critical ϕ^*, as reflected by decreases in $\Delta R(\bar{F})$ and $\Delta \Im(\bar{F})$ as functions of ϕ. Since the volume of the coupled fluid per particle increases with increasing δ (cf. Fig. 3a), the critical ϕ^*, which marks the onset of hydrodynamic coupling, decreases with increasing δa (cf. Figs. 5a and 5b). As the volume of the coupled fluid scales as $a^2\delta$ (cf. Fig. 3a), we define the interaction length scale as $\ell \sim (a^2\delta)^{1/3}$, and equating this length scale with the interparticle distance, $L \sim a\phi^{1/2}$, provides an onset
condition for hydrodynamic coupling, \(\phi^* \sim (a/\delta)^{2/3} \). To test this scaling hypothesis, plots of \(\Delta \Re(\vec{F}) \) and \(\Delta \Im(\vec{F}) \) are presented in Figs 5c and 5d, respectively, as functions of \(\ell/L \sim (a^2 \delta L^3)^{1/3} \) for various \(\delta/a \). Hydrodynamic coupling is evident from the decreases in \(\Delta \Re(\vec{F}) \) and \(\Delta \Im(\vec{F}) \) that occur beyond \((a^2 \delta L^3)^{1/3} \approx 0.25 \), and this value is independent of \(\delta/a \), which validates the proposed scaling, \(\ell \sim (a^2 \delta)^{1/3} \).

Theoretical Basis for the \(\Delta f/\Delta f \) Extrapolation Method

It is noted that the present simulation is based on the assumption of a regular spatial distribution of particles, and the corresponding hydrodynamic interactions are weaker than in the more realistic case of a random distribution, see, e.g., Refs. [16,20]. However, the qualitative behavior of the hydrodynamic interaction does not depend on the details of the spatial distribution, as demonstrated by the agreement between simulation and experiment in Figs. 3 and 4.

This agreement supports the significance of the simulations for QCM data analysis. Consequently, we now analyze the asymptotic behavior of the simulations when \(\phi \) approaches the saturation density, \(\phi_S \), and provide a theoretical basis for the \(\Delta f/\Delta f \) extrapolation method to extract particle sizes from QCM data at high surface coverage. We start by recalling that the frequency and bandwidth shifts are proportional to the real and imaginary components, respectively, of the force density, \(\phi \Delta \vec{F} \), which is the force per \(\pi a^2 \) surface area of the QCM response. Using \(N = A_Q \phi/\pi a^2 \), Eq. (1) can be rewritten as:

\[
-Df + i\Gamma = \frac{f\phi\Delta F}{\pi a^2 Q \rho Q U_0}.
\]

In Fig. 6a, it is seen that for \(\phi \rightarrow \phi_S \), the real part of \(\phi \Delta \Re(\vec{F}) \) approaches a constant that is independent of \(\delta/a \), i.e., \(\phi \Delta \Re(\vec{F}) \rightarrow \chi_R \phi \rho_F \omega U a^3 \). This situation resembles the rigid oscillation of a homogeneous film (cf. Fig. 2d). Fig. 6b shows that the imaginary part of the force density \(\phi \Delta \Im(\vec{F}) \rightarrow 0 \), when \(\phi \rightarrow \phi_S \). If we choose \(\phi_S \approx 0.7 \), then the relation between \(\phi \Delta \Im(\vec{F}) \) and the void fraction \(\phi' = \phi_S - \phi \) is linear for small \(\phi' \), i.e., \(\phi \Delta \Im(\vec{F}) \rightarrow \chi_I \rho_F \omega U a^3 \phi' \), which is shown by the straight lines in Fig. 6b. Here the proportionality constant \(\chi_I \) is seen to depend on \(\delta/a \). It is noted that the saturation surface coverage,
φs, beyond which the adlayer behaves as a uniform

FIG 6. (a) Simulated real part of QCM force per πa² surface area ϕΔℜ(François) (corresponding to frequency shift), as a function of the void fraction ϕ′ = ϕs - ϕ, for various scaled penetration depths δ/α. (b) Simulated imaginary part of QCM force per πa² surface area ϕΔℑ(François) (corresponding to dissipation shift), as a function of the void fraction ϕ′ = ϕs - ϕ, for various scaled penetration depths δ/α. The data are fitted by linear functions that intercept the origin when choosing ϕs ≈ 0.7. (c) Simulated ratio of imaginary and real parts of the QCM force as a function of the real part of the force density. In agreement with Eq. (7), the data for different δ/α follow linear trends that intercept the horizontal at the same point. (d) Experimental ratio of bandwidth shift ΔΓ and negative frequency shift -Δf as a function of negative frequency shift per overtone -Δf/n for various overtones (corresponding to various δ/α). The data for the different overtones follow linear trajectories, which intercept the horizontal axis at a frequency shift that, according to Eqs. (8) and (9), corresponds to a saturation surface coverage of ϕs ≈ 0.6.

and rigid film, is slightly smaller than the value at close packing of the current system, ϕs ≈ 0.8.

Furthermore, it is expected that the value for ϕs varies under different experimental conditions, including the size distribution and spatial distribution of adsorbed particles. Inserting the above-mentioned scaling relations for the real and imaginary parts of ϕFrançois into Eq. (3), we find:

\[-\frac{Δf}{n} \approx χ_R \frac{f_0 ρ_{p_a}}{πp_{Q_y_q}} (ϕ_S - ϕ'),\]

and
\[\frac{\Delta f}{\pi} \approx \chi f \left(\frac{\rho \phi a}{\pi \rho_q l_q} \right) \phi' . \] \hspace{1cm} (5)

Dividing Eq. (5) by Eq. (4) and Taylor expanding the result up to the first order in \(\phi' \):

\[- \frac{\Delta \Gamma}{\Delta f} \approx \frac{\chi f \phi'}{\chi_R \phi_S} , \] \hspace{1cm} (6)

and combining Eqs. (4) and (6) yields:

\[- \frac{\Delta \Gamma}{\Delta f} \approx \frac{\chi f}{\chi_R} \left(1 + \frac{\Delta f \pi \rho_q l_q}{\pi f \Delta \chi_R \phi_S \phi' a} \right) , \] \hspace{1cm} (7)

i.e., on \(-\Delta f/\pi,-\Delta \Gamma/\Delta f\) coordinates, the QCM data appear as a straight line that intercepts the horizontal at:

\[- \frac{\Delta f}{\pi} = \frac{f_0 \rho_P h}{\rho_q l_q} , \] \hspace{1cm} (8)

and corresponds to the frequency shift for a uniform layer with a thickness of:

\[h = \frac{\alpha \chi_R \phi_S}{\pi} . \] \hspace{1cm} (9)

Importantly, this result provides a theoretical basis for the \(-\Delta \Gamma/\Delta f\) extrapolation method in order to determine the particle size from QCM data at high surface coverages.23,24

Fig. 6c shows numerical data on \(\left[\frac{\phi' \Delta \chi (\phi)}{\rho a \phi' \omega} \Delta \chi (\phi) \right] \) coordinates, which are equivalent (up to some proportionality constants) to the \(-\Delta f/\pi,-\Delta \Gamma/\Delta f\) coordinates. On these equivalent coordinates, the numerical data for the different overtones (different \(\phi' \) values) are observed to follow linear trajectories, which agree well with Eq. (7) and intercept the horizontal at the same point. Interestingly, while the linear relation [Eq. (7)] was derived by assuming \(\phi' \ll 1 \), the numerical data in Fig. 6c follow a linear relationship for nearly the entire domain, especially for relatively large \(\phi' a \geq 2 \).

The same is observed in the experimental data in Fig. 6d, where according to Eq. (7), the intercept at \(-\Delta f/\pi \approx 300 \text{ Hz}\) corresponds to a saturation density of \(\phi_S \approx 0.6 \) for the case we have used of \(a = 38 \text{ nm} \) and \(\chi_R = 7.1 \).

Effect of Particle Polydispersity

Let us finally comment on the effect of particle polydispersity. Olsson et al. used the \(\Delta \Gamma/\Delta f \) extrapolation method to measures the effective film height \([h \text{ in Eq. (8)}]\) of a bimodal mixture of
spheres, with radii of $a_1 = 13$ nm and $a_2 = 55$ nm, using various sphere number ratios N_1/N_2. Their measured, effective particle radius $a_{\text{eff}} = h/2$ is well captured by:

$$a_{\text{eff}} = \frac{N_1 a_1^3 + N_2 a_2^3}{N_1 a_1^3 + N_2 a_2^3},$$

(10)

which corresponds to the frequency shift, that one would get in vacuum, i.e. proportional to particle volume (numerator) per area (denominator). We generalize Eq. (10) to the case of a continuous particle size distribution $N(a)$:

$$a_{\text{eff}} = \int \frac{N(a)a^3da}{\int N(a)a^2da},$$

(11)

and estimate the effect of polydispersity on the effective particle radius, obtained by the $\Delta f/\Delta f$ extrapolation method, applied to our QCM-D data. The particle radius in our experiment has a mean value of $\bar{a} = 58$ nm and a standard deviation of $a' = 7$ nm. The particle size distribution (measured by DLS) is log-normal (Supporting Fig. S1). However, when $(a'/\bar{a})^2 \ll 1$, the log-normal is well approximated by the Gaussian:

$$N(a) \sim \exp \left[-\frac{(a-\bar{a})^2}{2a'^2}\right].$$

(12)

Using that $(a'/\bar{a})^2 \approx 0.04 \ll 1$, Eqs. (11) and (12) give an effective particle radius of $a_{\text{eff}} \approx \bar{a}[1 + 2(a'/\bar{a})^2]$, which is estimated to be 8% larger, than the mean value \bar{a}.

It is finally noted, that the particle flux J from the bulk solution to the QCM-D surface is limited by diffusion, and according to boundary layer theory: $J \sim a^{2/3}$. Therefore, the size distribution on the surface $N_s(a)$ differs from that in the bulk $N(a)$:

$$N_s(a) \sim N(a) a^{-2/3}.$$

(13)

Combining Eqs. (12) and (13), and dropping the (irrelevant) constant terms in the exponent gives:

$$N_s(a) \sim \exp \left[-\frac{(a-\bar{a}[1 - \frac{2}{3}(a'/\bar{a})^2])^2}{2a'^2}\right].$$

(14)

This means that the surface size distribution has a mean value of: $\bar{a}_s \approx \bar{a}(1 - \frac{2}{3}(a'/\bar{a})^2)$, which is 3% smaller than in bulk. Since this effect is small and counteracting the first (~10%) effect, we
conclude, that in the present QCM-D experiment, effects of polydispersity have a minor effect on the effective particle height obtained from the $\Delta \Gamma / \Delta f$ extrapolation method.

Conclusion

We have conducted numerical simulations of the hydrodynamics of spherical particles that are attached to an oscillating surface across a range of surface coverage values, ϕ, and scaled penetration depths, δa. The simulations compare well to experimental QCM data of adsorbed gel-phase liposomes (38-nm mean radius), offering a quantitative framework to understand how hydrodynamic coupling between adsorbed particles influences QCM measurement responses. In particular, the numerical data show that hydrodynamic coupling sets in beyond a critical surface coverage, $\phi^* \sim (a/\delta)^{2/3}$. The effect of the coupling is a decrease in the contribution per particle to both the frequency and bandwidth shifts. Guided by the simulation outcome, and by expanding the frequency and bandwidth shifts in the void fraction (gaps between particles), we derived a theoretical basis for the $\Delta \Gamma / \Delta f$ extrapolation method, further validating its utility for extracting particle size from QCM data collected at high surface coverages.

Associated Content

Supporting Information

Supporting Information contains additional details about the lattice Boltzmann simulations, including simulation parameters.

Notes

The authors declare no competing financial interest.

Acknowledgements

This work was supported by the National Research Foundation (NRF2015NRF-POC001-019).

References

(4) Johannsmann, D. *The Quartz Crystal Microbalance in Soft Matter Research: Fundamentals and