LETTER

Minimally symptomatic cerebral amyloid angiopathy-related inflammation: three descriptive case reports

INTRODUCTION

Cerebral amyloid angiopathy-related inflammation (CAA-ri) is an unusual cause of encephalopathy, seizures and focal neurological deficits.1,2 We report three cases of CAA-ri with minimal symptoms but striking and dynamically evolving brain MRI findings.

CASE 1

A 62-year-old man presented with a moderately severe non-radiating frontal headache. Brain MRI 9 months later showed multiple discrete regions of abnormal signal and mild swelling involving white matter and overlying cortex. Susceptibility-weighted imaging (SWI) demonstrated numerous cortical lobar microbleeds throughout both cerebral hemispheres. Repeat MRI another 9 months later showed resolution of many of the parenchymal abnormalities, but with several new regions containing more peripheral microbleeds. Amyloid-PET (using 18F-florbetapir) demonstrated moderate widespread amyloid deposition; CSF analysis showed reduced amyloid-beta 1–42 and high-normal total tau. Formal neuropsychological testing suggested mild compromise in frontal functioning only. The patient was treated with 5 days of intravenous methylprednisolone (1 g daily, 5 days, followed by tapering dose prednisolone); 1 month later, the parenchymal signal abnormalities had improved significantly, with no increase in the number of microbleeds.

One year after intravenous corticosteroid treatment, while still taking oral steroids, the patient developed headache and new left-sided visual disturbances. MRI showed recurrence and extension of the right-sided tempo-occipital region abnormalities, with local swelling and numerous new cortical microbleeds in the affected area.

CASE 2

A 74-year-old man presented with mild subjective memory difficulties only, with no objective neuropsychological deficits. MRI demonstrated a substantial region of abnormal signal in the right temporal and occipital white matter, with no enhancement. Repeat imaging after a few weeks showed partial regression. Over the following 4 years, three further MRIs showed multiple areas of abnormal white matter (sometimes involving cortex as well) within the temporal, parietal and occipital lobes, which largely resolved. SWI demonstrated progressive accumulation of lobar microbleeds, mainly in the affected areas. The patient remains asymptomatic with no change in his subjective cognitive symptoms, without having received immunosuppressive treatment.

CASE 3

A 54-year-old woman presented with a bright flashing light in her left visual field and a sudden onset headache. After initial CT of the brain demonstrated right-sided occipital hypoa attenuation, she was treated for ischaemic stroke and then antiepileptic drugs for presumed seizures. Approximately 6 months later, she developed worsening headache; MRI showed an area of abnormal signal and mild parenchymal swelling in the right tempo-occipital area. A diagnostic brain biopsy showed CAA-ri (Vonsattel grade 3 CAA with associated chronic inflammatory cell infiltration within and around the vessel wall, with angiodestructive and occlusive features). After a further 8 months, she was still experiencing occasional left-sided visual flickering and some subtle memory difficulties. MRI (figure 1) demonstrated progression of the right tempo-occipital abnormality, together with a new separate focus in the anterior right temporal lobe and multiple lobar microbleeds in these regions. Formal neuropsychological testing was normal. Although clinically stable, further MRI 7 weeks later showed extension of the right temporal lobe lesion. She was treated with intravenous methylprednisolone (1 g daily, 5 days, followed by tapering dose prednisolone); 1 month later, the parenchymal signal abnormalities had improved significantly, with no increase in the number of microbleeds.

One year after intravenous corticosteroid treatment, while still taking oral steroids, the patient developed headache and new left-sided visual disturbances. MRI showed recurrence and extension of the right-sided tempo-occipital region abnormalities, with local swelling and numerous new cortical microbleeds in the affected area.

Figure 1 MRI from Case 3, illustrating the incidence of different imaging features of CAA-ri. T2-weighted images obtained 9 months following initial presentation (A) demonstrate an area of parenchymal signal abnormality in the right tempo-occipital region. SWI from the same time (E) show a few cortical microbleeds. Further imaging obtained 2 months later shows progression of the right tempo-occipital abnormalities on T2-weighted sequences (B) and post-gadolinium T1-weighted images (G) show only subtle enhancement (F). The patient was then treated with corticosteroids, and T2-weighted MRI 5 weeks later shows significant improvement of the abnormalities (C), while SW1 demonstrates an increase in the number of cortical microbleeds in the affected area (H). The patient developed new visual symptoms 1 year following her corticosteroid treatment and was reimaged. T2-weighted imaging (D) showed recurrence and extension of the original right tempo-occipital parenchymal abnormalities, with the coincident development of multiple new cortical microbleeds (H). CAA-ri, cerebral amyloid angiopathy-related inflammation; SWI, susceptibility weighted images.
Pathological verification remains the gold standard for CAA-ri (only available for one of our patients) and the current clinico-radiological criteria require further validation, particularly for atypical cases, where amyloid-\textit{Positron Emission Tomography} (PET) 14 and cerebrospinal fluid (CSF) findings 14 might be helpful. Additionally, minimally symptomatic cases might differ from ‘classical’ CAA-ri; for example, the ApoE ε4 allele is associated with CAA-ri, 14 but we did not obtain ApoE information and so cannot investigate this. Although our case reports expand the clinical spectrum of CAA, further longer-term follow-up to better establish the natural history of minimally symptomatic CAA-ri is needed.

Gargi Banerjee, 1 Deblee Alvares, 2 John Bowen, 3 Matthew E Adams, 4 David J Werring

1Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK
2Department of Neurology, St. Richard’s Hospital, Western Sussex Hospitals NHS Foundation Trust, Chichester, UK
3Department of Neurology, Royal Shrewsbury Hospital, The Shrewsrey and Telford Hospital NHS Trust, Shrewsbury, UK
4Lystholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, UK

Correspondence to Dr David J Werring, UCL Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London WC1B 5EH, UK; d.werring@ucl.ac.uk

Contributors GB reviewed the literature and the cases and generated the manuscript and figure. DA and JB cared for the patients and revised the manuscript. MEA reviewed all neuroimaging, contributed to the figure and revised the manuscript. DIW cared for the patients, contributed to the study conception and design, interpretation of cases and manuscript revision.

Funding GB receives funding from the Rosetrees Trust. DIW receives research support from the Stroke Association, the British Heart Foundation and the Rosetrees Trust. This work was undertaken at UCLH/UCL which receives a proportion of funding from the Department of Health’s National Institute for Health Research (NIHR) Biomedical Research Centres funding scheme.

Competing interests None declared.

Patient consent Obtained.

Provenance and peer review Not commissioned; externally peer reviewed.

OPEN ACCESS

Open Access This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/licenses/by/4.0/

© Article author(s) (or their employer(s)) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Minimally symptomatic cerebral amyloid angiopathy-related inflammation: three descriptive case reports
Gargi Banerjee, Debie Alvares, John Bowen, Matthew E Adams and David J Werring

J Neurol Neurosurg Psychiatry published online March 13, 2018

Updated information and services can be found at:
http://jnnp.bmj.com/content/early/2018/03/13/jnnp-2017-317347

These include:

References
This article cites 14 articles, 1 of which you can access for free at:
http://jnnp.bmj.com/content/early/2018/03/13/jnnp-2017-317347#ref-list-1

Open Access
This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See:
http://creativecommons.org/licenses/by/4.0/

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Open access (285)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/