An exploration of factors associated with the use of glucocorticoids in the Systemic Lupus International Collaborating Clinics Inception Cohort.

1Arthritis Research UK Centre for Epidemiology, Centre for Musculoskeletal Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester; 2NIHR Manchester Musculoskeletal Biomedical Research Unit, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK; 3Division of Rheumatology, Department of Medicine and Department of Pathology, Queen Elizabeth II Health Sciences Centre and Dalhousie University, Halifax, Nova Scotia, Canada; 4Lupus Program, Centre for Prognosis Studies in The Rheumatic Disease and Krembli Research Institute, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada; 5University of Calgary, Cumming School of Medicine; 6Instituto Nacional de Ciencias Médicas y Nutrición, Mexico City, Mexico; 7Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK; 8Rheumatology department, City Hospital, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, UK; 9Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea; 10Divisions of Rheumatology and Clinical Epidemiology, McGill University Health Centre; 11Cedars-Sinai/David Geffen School of Medicine at UCLA, Los Angeles, CA, USA;
12Department of Clinical Pharmacology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; 13New York School of Medicine, New York, US; 14Centre for Rheumatology, Department of Medicine, University College London, UK; 15Department of Medicine, SUNY Downstate Medical Center, Brooklyn, NY, USA; 16Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; 17Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA; 18Division of Rheumatology, Centre Hospitalier Universitaire de Québec et Université Laval, Québec City, Canada; 19Center for Rheumatology Research, Landspitali University hospital, Reykjavik, Iceland; 20Northwestern University and Feinberg School of Medicine, Chicago, IL, USA; 21Lupus Research Unit, The Rayne Institute, St Thomas' Hospital, King's College London School of Medicine, UK, London, UK; 22Feinstein Institute for Medical Research, Manhasset, NY, USA; 23Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; 24Department of Clinical Sciences, Rheumatology, Lund University, Lund, Sweden; 25Department of Rheumatology, University Hospital Lund, Lund, Sweden; 26Lanarkshire Centre for Rheumatology, Hairmyres Hospital, East Kilbride, Scotland UK; 27Unit for Clinical Therapy Research (ClinTRID), Karolinska Institute, Stockholm, Sweden; 28Josep Font Autoimmune Diseases Laboratory, IDIBAPS, Department of Autoimmune Diseases, Hospital Clinic, Barcelona, Spain; 29Autoimmune Diseases Research Unit, Department of Internal Medicine, BioCruces Health Research Institute, Hospital Universitario Cruces, University of the Basque Country, Barakaldo, Spain; 30Emory University School of Medicine, Division of Rheumatology, Atlanta, Georgia, USA; 31UCSD School of Medicine, La Jolla, CA, USA; 32Division of Rheumatology, Department of Internal Medicine, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey; 33Medical University of South Carolina, Charleston, South Carolina, USA; 34University of Manitoba, Winnipeg, Manitoba, Canada; 35Department of Rheumatology, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen, Denmark; 36Hospital for Joint Diseases, NYU, Seligman Centre for Advanced Therapeutics, New York NY; 37Mount Sinai Hospital and University Health Network, University of Toronto, Canada.
Disclosure:

Dr. Bruce has received consulting fees, speaking fees, and/or honoraria from Eli Lilly, UCB, Roche, Merck Serono, MedImmune (less than $10,000 each) and grants from UCB, Genzyme Sanofi, and GlaxoSmithKline.

Dr Parker has received speaker and advisory board fees from UCB, Abbvie, BMS, Hospira and Pfizer (less than $10,000 each)

Dr. Fortin has received consulting fees, speaking fees, and/or honoraria from Eli Lilly, AbbVie, and GlaxoSmithKline (less than $10,000 each).

Dr. Manzi has received grants from UCB and Human Genome Sciences/GlaxoSmithKline and has received consulting fees from Exagen Diagnostics, GlaxoSmithKline, Eli Lilly, and UBC (less than $10,000 each).

Dr. Kalunian has received grants from UCB, Human Genome Sciences/GlaxoSmithKline, Takeda, Ablynx, Bristol-Myers Squibb, Pfizer, and Kyowa Hakko Kirin, and has received consulting fees from Exagen Diagnostics, Genentech, Eli Lilly, Bristol-Myers Squibb, and Anthera (less than $10,000 each).

The remainder of the authors have no disclosures.

Grant support:

Dr. Clarke holds The Arthritis Society Research Chair in Rheumatic Diseases at the University of Calgary.
Dr. Hanly’s work was supported by the Canadian Institutes of Health Research (research grant MOP-88526).

Dr. Caroline Gordon’s work was supported by Lupus UK, Sandwell and West Birmingham Hospitals NHS Trust and the NIHR /Wellcome Trust Clinical Research Facility in Birmingham.

Dr. Sang-Cheol Bae’s work was supported by the Korea Healthcare technology R & D project, Ministry for Health and Welfare, Republic of Korea (A120404). The Montreal General Hospital Lupus Clinic is partially supported by the Singer Family Fund for Lupus Research.

Dr. Rahman’s work was funded by LUPUS UK, The Rosetrees Trust and Arthritis Research UK Programme Grant 19423 and supported by the National Institute for Health Research University College London Hospitals Biomedical Research Centre.

Dr Isenberg is supported by Arthritis Research UK Grant 20164.

The Hopkins Lupus Cohort is supported by the NIH (grant AR43727).

Dr. Paul R. Fortin presently holds a tier 1 Canada Research Chair on Systemic Autoimmune Rheumatic Diseases at Université Laval, and part of this work was done while he was still holding a Distinguished Senior Investigator of The Arthritis Society.

Dr. Bruce is an NIHR Senior Investigator and is funded by Arthritis Research UK, the National Institute for Health Research Manchester Biomedical Research Unit and the NIHR/Wellcome Trust Manchester Clinical Research Facility. The views expressed in this publication are those of the author(s) and not necessarily those of the NHS, the National Institute for Health Research or the Department of Health.

Dr Parker is supported by National Institute for Health Research Manchester Biomedical Research Unit and the NIHR/Welcome Trust Manchester Clinical Research Facility.
Dr. Soren Jacobsen is supported by the Danish Rheumatism Association (A1028) and the Novo Nordisk Foundation (A05990).

Dr. Ramsey-Goldman’s work was supported by the NIH (grants 8UL1TR000150 formerly UL-1RR-025741, K24-AR-02318, and P60AR064464 formerly P60-AR-48098).

Dr. Mary Anne Dooley’s work was supported by the NIH grant RR00046.

Dr. Ruiz-Irastorza is supported by the Department of Education, Universities and Research of the Basque Government.

Acknowledgements:

The authors would like to thank UCB Pharma who provided unrestricted funding for this analysis.

Corresponding author:

Professor Ian Bruce
Arthritis Research UK Centre for Epidemiology
Centre for Musculoskeletal Research
School of Biological Sciences
Manchester Academic Health Science Centre
The University of Manchester
Oxford Road
Manchester
UK
M13 9PT
ian.bruce@manchester.ac.uk
Abstract

Objective
To describe glucocorticoid (GC) use in the Systemic Lupus International Collaborating Clinics (SLICC) inception cohort and to explore factors associated with GC use. In particular we aimed to assess temporal trends in GC use and to what extent physician-related factors may influence use.

Methods

Patients were recruited within 15 months of diagnosis of SLE from 33 centres between 1999 – 2011 and continue to be reviewed annually. Descriptive statistics were used to detail oral and parenteral GC use. Cross sectional and longitudinal analyses were performed to explore factors associated with GC use at enrolment and over time.

Results

We studied 1700 patients with a mean (SD) follow-up duration of 7.26 (3.82) years. 1365 (81.3%) patients received oral GCs at some time during the study and parenteral GCs were received between assessments in 4.26% (458/10745) of cases. GC use was strongly associated with treatment centre, age, race/ethnicity, sex, disease duration and disease activity. There was no change in the proportion of patients on GCs or the average doses of GC used over time.

Conclusions

GCs remain a cornerstone in SLE management and there have been no significant changes in their use over the last 10-15 years. Whilst patient and disease factors contribute to the variation in GC use, between centre differences suggest that physician-related factors also contribute. Evidence based treatment algorithms are needed to inform GC use in SLE.
Introduction:

Glucocorticoids (GCs) have been used in the treatment of systemic lupus erythematosus (SLE) for more than 60 years. Despite their widespread use, there are only a limited number of small scale clinical trials (1-3) and observational studies (4-9) exploring the most effective mode, dose or regimen of administration. This limited evidence, combined with the inherent heterogeneity of the disease, means that guidelines for the use of GCs in SLE cannot be very specific (10-16). As such, there is significant variation in opinion with regards to the use of GCs in SLE (17-19). Most observational studies describing GC use in SLE are limited to single centres, small cohorts or SLE disease subgroups (20-23).

A number of factors are likely to influence GC use. These include patient related factors (e.g. disease phenotype/severity, comorbidities and personal preference) and patient independent factors (e.g. health care setting and opinions of the treating physician). Two survey-based studies suggest that prescribing may be more influenced by patient independent factors, such as geographical location (17, 18).

The aims of this study were to describe GC use in detail in a large international SLE inception cohort and to explore variations in GC practice between treatment centres. Finally we aimed to explore what other patient dependent and independent factors are associated with GC use in SLE and to determine whether there was any temporal trend towards more modest GCs use over the study period.

Patients and Methods

SLICC inception cohort

The SLICC consortium includes 33 centres across North America, Europe, and Asia. Patients were recruited to the Inception Cohort between 1999 and 2011. All patients were recruited within 15 months of confirming 4 American College of Rheumatology (ACR) Classification Criteria for SLE (24). Case report forms (including demographic, disease, treatment and co-morbidity details) were completed at enrolment and annually thereafter. Disease activity was quantified using the SLE Disease Activity Index 2000 (SLEDAI-2K)(25) and the ‘classic’ British Isles Lupus Assessment Group’s (BILAG) disease activity index (26). Data were submitted to the co-ordinating centres at the University of Toronto, Toronto, Ontario, Canada and Dalhousie University, Halifax, Nova Scotia,
Canada. For this analysis, patients with a minimum of one follow up assessment (in addition to the enrolment assessment) were included.

Ethics

The study was approved by the Institutional Research Ethics Boards of participating centres in accordance with the Declaration of Helsinki’s guidelines for research in humans.

Descriptive analyses of GC use

Information on GC use was recorded at enrolment (past and current use) and at each annual assessment visit, including the dose, duration and type of oral (PO) GC courses. From this data it was possible to calculate the average daily and total cumulative PO GC doses as well as the total time/proportion of time spent on PO GCs over each follow up interval (FUI - defined as the time from one assessment to the next). PO doses were transformed into prednisolone equivalents. The number and dose of parenteral GC pulses was also recorded at baseline and at each follow up assessment but transformation to prednisolone equivalents was not possible, as specific GC type was not collected for these episodes. Descriptive statistics were used to report the proportions of patients receiving GCs at enrolment (PO and parenteral), the proportion of FUIs where GC had been given and the average doses received at enrolment and within FUIs. Average dose descriptions exclude patients/FUIs where dose was zero and are reported as median (IQR).

Cross-sectional analyses of factors associated with GC use at enrolment

Potential factors that might influence the use of GCs were defined a priori from our review of the literature: Demographic details including age, sex and race/ethnicity (grouped into Caucasian, Asian, Hispanic, African ancestry & other), disease activity (SLEDAI-2K), disease phenotype including presence or absence of active renal disease (active nephritis or any renal manifestation of the SLEDAI-2K). We also included comorbidities including diabetes mellitus, hypertension, body mass index (BMI), concomitant medications (antimalarial yes/no and/or immunosuppressant yes/no), date of diagnosis and treatment centre. Univariable analyses were performed to explore the association between each of these predictor variables the following GC outcomes:

1) Taking PO GCs at enrolment (yes/no)
2) Average daily dose of PO GC at enrolment
3) Received parenteral GCs prior to enrolment (yes/no)
4) Total dose of parenteral GC received prior to enrolment
Logistic and linear regression models were used for binary outcomes (1 & 3) and continuous outcomes (2 & 4 – log transformed data) respectively. For each outcome, predictor variables significant at univariable analysis (p<0.20) were entered into multivariable models using forwards stepwise selection to create the final models (p<0.05). Linear regression results were back transformed and converted to percentage dose changes for ease of interpretation. Tests for interactions between sex and other independent variables were performed, as was quadratic transformation of BMI to explore a possible curvilinear relationship with GC use.

To illustrative differences in GC use between centres, we defined a hypothetical ‘typical’ patient and used the weightings generated by each model to describe the probable GC use by this ‘typical’ patient at each treatment centre. The ‘typical’ patient was defined (according to the median/modal values of the predictor variables in the cohort overall) as a 33 year old Caucasian female with disease duration of 0.4 years, no active renal disease, hypertension or diabetes, a SLEDAI2K score of 4 and taking an antimalarial but no immunosuppressive treatment.

Longitudinal analysis of factors associated with GC use over time

Random effect modelling was used to explore the relationship between the same predictor variables (age, sex, race/ethnicity, diagnosis date and treatment centre were fixed, all other predictor variables were time-variant) with the following outcome descriptions of GC use over time:

1) PO GCs received during preceding FUI (yes/no)
2) Average daily PO GC dose over preceding FUI
3) Parenteral GCs received during preceding FUI (yes/no)
4) Total dose of parenteral GC received over preceding FUI

The GC outcomes were calculated over individual FUIs, therefore a patient with an enrolment and 3 follow up assessments would contribute data from three FUIs to the longitudinal analysis.

Outcomes 2 and 4 were again log transformed and final models were generated through the same process of initial univariable testing and forwards selection. Quadratic transformation of BMI was also tested, as were interaction terms. For descriptions of probable GC use in the hypothetical ‘typical patient’, the definition was adapted to a 37 year old female with disease duration of 4.7 years and SLEDAI2K score of 2, to reflect the median/modal values of these variables in the cohort over time.
Sensitivity analyses

To further explore the effect of disease activity and phenotype, sensitivity analyses were run on all final models: 1) Inclusion of the BILAG total score 2) Replacement of the total SLEDAI-2K score with individual components of the score (selected from arthritis, rash, myositis, serositis, active neurological disease, thrombocytopenia, low complement and increased dsDNA binding through univariable testing (p<0.20) and forwards stepwise selection (p<0.05)). We also examined the influence of body weight on all final models.

Missing data

Less than 5% of the data was missing for all variables apart from height and weight and blood pressure. These were replaced with the average from preceding and subsequent visits or alternatively the preceding or subsequent visit where possible. Complete case analysis was then performed, accepting the minimal remaining missing data.

Result

Patients

Of 1848 patients recruited to the SLICC Inception Cohort, 1700 (92%) had a minimum of one follow up visit and are included in these analyses. Patient characteristics are summarised in table 1. These 1700 patients provided data on 10745 FUls with a mean (SD) total time in the study of 7.26 (3.82) years. The median (IQR) length of these FUls was 372 (341, 427) days.

Descriptive analysis of GC prescribing

At enrolment, 1189 (69.98%) patients were taking PO GC at a median (IQR) daily dose of 20.0 (10.0-30.0) mg; 414 (24.4%) patients were receiving ≥30mg/day. The proportion of patients receiving PO GC decreased in later FUls. For example, by the 5th follow up assessment, 610/1076 patients (56.90%) had used PO GC over the preceding FUI, of whom 129 (12.0%) had taken GC for some, and 481 (44.7%) for all of the preceding FUI. Similarly the median (IQR) daily GC dose decreased from 10.0 (5.0-15.0) mg at follow-up 1 to 5.5 (4.6-10.0) mg at follow-up 5.

Of the 10732 (99.9%) FUls in which the proportion of time on GCs could be calculated, all of the time had been spent on PO GC in 4946 (46.1%) and none of this time had been spent on PO GC in 4265 (39.7%); in 1521 (14.2%) FUls a proportion of the period had been spent on PO GCs. Therefore, 558
(32.8%) patients spent their entire study period on PO GCs, 807 (47.5%) spent part of the entire study period on PO GC and 335 (19.7%) never received PO GC therapy.

Regarding parenteral GC, at enrolment 235 (13.8%) patients had received at least one dose at a median (IQR) total dose of 1.5 (0.7-3.0) g. Parenteral GCs were given between subsequent visits in 458 (4.26%) patients at a median (IQR) total dose of 0.5 (0.12-2.0) g. Patients who had parenteral GCs also received a median (IQR) total PO GC dose of 3.4 (0.5 -6.2) g in the same FUI. Overall more PO GC was received during those FUIs where higher doses of parenteral GC were also received (table 2). This was also true in the group who had <250mg of parenteral GC which are likely to have been intra-muscular and/or intra-articular GCs.

Factors associated with GC use at enrolment and over time

Treatment centre

There was a significant association between treatment centre and all four measures of GC use in multivariable analyses both at enrolment and over time (p <0.0001) (table 5). There were a number of centres where GC use differed significantly from the overall cohort (table 6), for example there were 11 centres where the probability of a ‘typical patient’ being on PO GCs at enrolment was significantly lower and three where this probability was significantly higher. Significant variations were also seen in the longitudinal analyses; of note there was a centre in Korea where the probability (95% CI) of a ‘typical patient’ receiving PO GC between assessments was 0.97 (0.95, 1.00) compared to 0.39 (0.33, 0.46) in the cohort overall. Variations were also noted within countries, for example in the UK the probability (95% CI) of a ‘typical patient’ being on PO GC at enrolment ranged from 0.11 (-0.03, 0.25) at one centre to 0.58 (0.43, 0.72) at another. We also observed variability in pulsed GC use, however absolute numbers receiving parenteral GC in many centres were limited.

Age, sex and race/ethnicity

We found strong inverse associations between age and PO GC use in both univariable (Tables 3 & 4) and multivariable (table 5) analyses. Older age was associated with reduced odds of receiving PO GCs and lower PO GC dose. For example, in longitudinal analyses the odds of receiving PO GCs reduced with each additional year of age (OR: 95% CI = 0.98: 0.96, 0.99) and there was a small reduction in dose used (0.66 [0.31, 1.01]%). There was also a greater odds of men receiving PO GC (OR: 95%CI = 3.90: 2.19, 6.94) and men also took higher doses (16.85 [2.79, 32.83] %) in longitudinal analysis. When we added body weight to the final longitudinal models, the dose difference between
men and women was no longer significant (13.32 (-0.64, 29.24) %) but men were still more likely to be taking PO GC steroids (OR: 95%CI = 4.02: 2.24, 7.22). Hispanics, Asians and patients of African origin all had greater odds of receiving PO GCs than Caucasians both at enrolment and over time. Race/ethnicity was also associated with PO GC dose over time, for example, Hispanics had higher odds of using PO GCs (OR: 95%CI = 2.46 (0.87, 6.95) and at higher average doses than Caucasians (36.07 [1.65, 82.15] %). There were no significant associations between age, sex or race and parenteral GC use (frequency or dose) either at enrolment or over time, nor did we find any significant interactions between sex and other independent variables.

Other factors

Longer disease duration was associated with lower GC use by most of the measures used to assess PO and parenteral use (table 5). Overall disease activity (SLEDAI-2K score) was positively associated with the frequency and dose of PO GC and the frequency (but not dose) of parenteral GC in cross-sectional and longitudinal analyses. Active renal disease was also associated with PO GC use (frequency and dose) at enrolment (not over time) but had no associations with parenteral GC use. We also found a number of positive associations between hypertension and diabetes mellitus and GC use but no associations with BMI. Antimalarial use had a negative association with a number of GC measures whereas immunosuppressant use showed positive associations with all four measures at enrolment and over time. For example the OR (95%CI) for receiving parenteral GC at enrolment if on an antimalarial was 0.63 (0.46, 0.86) and 2.06 (1.52, 2.80) if on an immunosuppressant. Sensitivity analyses incorporating BILAG score (supplementary table 2) or significant SLEDAI 2K components (results available) supported our primary models.

Diagnosis date

When we examined GC use according to year of diagnosis, there were no significant associations between date of diagnosis and any of the four GC outcomes in either cross-sectional or longitudinal analysis (tables 3 & 4).

Discussion

There is growing evidence that lower doses of GCs may be as effective for the treatment of SLE whilst incurring fewer adverse events (6-9). As such, a number of review and guidance articles have advocated more judicious use of GC (27-31). We have observed that PO GCs were used frequently in
this international SLE cohort with 32.8% of patients spending their entire observation period on GC therapy. Also, ‘high’ doses (32) were commonly used with 24.4% of patients receiving ≥30mg/day at enrolment. Of note, we found no association between date of diagnosis and any of the GC outcomes suggesting that the aspiration for more judicious use has not yet translated into changes in routine clinical practice over the past 10-15 years. It should however be noted that in this time period very few new therapies or therapeutic paradigms have gained widespread use, however recent results from a phase III trial of belimumab suggest this may have some GC-sparing effects(33).

Previous survey-based studies have found geographical variation in GC use (18) and have found associations between GC prescribing and physician-related factors such as specialty and years of experience (17). We found significant associations between all four GC measures and ‘treatment centre’ at enrolment and over time. A number of factors are likely to contribute to this between centre variability, for example the local health-care system (e.g. universal coverage vs insurance-based systems), socioeconomic status, availability of GC-sparing agents and cultural acceptance of GC use. Data on these factors was not collected therefore they were absent from our models, however even within countries or regions (e.g. Canada and Europe), where confounding from such factors should be less marked, there was still significant variation in GC use. This real-world variation between centres requires further exploration but lends support to the hypothesis that GC use is still driven by patient-independent factors to a significant degree. Such patient-independent heterogeneity in GC use will contribute to ‘noise’ in multicentre clinical trials and will increase the likelihood of type 2 errors occurring. Our observations suggest that in such multicentre trials some period of standardisation of GC use may be necessary to address such variation prior to randomisation.

There was significant race/ethnic variation in PO GC use, with higher use amongst non-Caucasians. Race/ethnicity may reflect socioeconomic status at the individual or population level and PO GC may be a favoured treatment option for uninsured individuals or in poorer countries due to its relatively low cost. There was also significantly higher frequency and dosing of GCs amongst male patients. Gender differences in the SLE phenotype are well recognised (34) e.g. lower incidence of musculoskeletal features, Raynaud’s phenomenon, alopecia and photosensitivity but more nephritis, serositis and discoid lupus in men. However, whether men experience higher disease activity, damage accrual or mortality is more contentious with inconsistent findings across several studies.
In the SLICC cohort we found no difference in disease activity between men and women (data on file) although more men had active renal disease at enrolment (OR (95% CI) (age/race adjusted logistic regression) = 1.80 (1.49, 2.90)). Our analyses adjusted for such confounding however despite this, a gender difference in GC use persisted. This may therefore reflect differences due to patient choices or physicians’ therapeutic strategies in men and women. For example, men may be less concerned about weight gain and physicians may have more concerns about osteoporosis in women. Similarly physicians may hold a perception that males with SLE require more aggressive treatment or men may choose to stay on GCs if they are working in manual occupations.

Our study has some strengths and limitations which are worth consideration. As far as we are aware, this is the first time that the use of GCs and factors associated with their use has been described in a large international SLE cohort. The large cohort size and long follow-up from early in the disease course allowed us to adjust for a range of potential confounders and also explore variations related to between and within centre differences in a real world setting for several different measures of GC use. We were limited in not being able to include factors related to socioeconomic status, as this data was not routinely collected. As such we recognise that unmeasured confounding may account for some of the inter-centre variation observed. Another major strength is the low level of missing data in the cohort although we also recognise that the annual data collection may introduce some recall bias on the part of the patient and physician when completing details of steroid courses.

We have therefore found significant between-centre variation across a range of different measures of GC use in SLE patients. Several patient-related factors such as age, gender, race/ethnicity, disease activity and renal involvement explain part of this variation however our models suggest that physician-dependent factors still have a major influence in determining GC use. We also found no major change in GC use over the past 15 years and so current standard of care remains dependent on GC use. New therapies will be needed to provide better, GC sparing/avoiding approaches to SLE management. Taken together, the challenge now will be to develop better evidence based treatment algorithms to optimize GC use, reduce variation and minimize GC harm in SLE. Such an approach will also likely contribute to a more consistent ‘standard of care’ and thus improve the likelihood of success in future clinical trials.
References

