Leopard (*Panthera pardus*) density in southern Mozambique: Evidence from spatially explicit capture-recapture in Xonghile Game Reserve

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Oryx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>Oryx-17-A-0174.R2</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Article</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>07-Jan-2018</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Strampelli, Paolo; University of Oxford Wildlife Conservation Research Unit, Zoology Andresen, Leah; University of Pretoria, Center for Wildlife Management Everatt, Kristoffer; University of Pretoria, Centre for Wildlife Management Somers, Michel J.; University of Pretoria, Center for Wildlife Management Rowcliffe, Marcus; Institute of Zoology, Zoological Society of London</td>
</tr>
<tr>
<td>Keywords:</td>
<td>camera trap, capture-recapture, density estimation, leopard, Mozambique, Panthera pardus, SECR, trophy hunting</td>
</tr>
<tr>
<td>Number of Words (all inclusive, except tables):</td>
<td>4498</td>
</tr>
<tr>
<td>Abstract:</td>
<td>Rigorous status estimates of large carnivore populations are necessary to inform their management and help evaluate the effectiveness of conservation interventions. The African leopard (Panthera pardus) faces rising anthropogenic pressures across most of its contracting sub-Saharan range, but the scarcity of reliable population estimates means that management decisions often have to rely on expert opinion or educated guesses. This is particularly true for Mozambique, where as a result of prolonged conflict very little is known on the ecology or conservation status of leopard populations across the country. We used camera trapping and spatially explicit capture-recapture models to provide a leopard density estimate in Xonghile Game Reserve, southern Mozambique, part of the...</td>
</tr>
</tbody>
</table>
Greater Limpopo Transfrontier conservation initiative. The estimated population density was of 2.60 (SE=±0.96) leopards per 100 km2. Our study provides a baseline leopard density for the region, as well as the first empirical density estimate in southern Mozambique. In addition, our results suggest that current methods used to set trophy hunting quotas for leopard, both in Mozambique and elsewhere in Africa, might be leading to overinflated quotas, and highlight the importance of robust empirical data in guiding conservation policy.
TITLE: Leopard (*Panthera pardus*) density in southern Mozambique: Evidence from spatially explicit capture-recapture in Xonghile Game Reserve

Paolo Strampelli¹, Leah Andresen², Kristoffer T. Everatt³, Michael J. Somers⁴, J. Marcus Rowcliffe⁵

¹ Wildlife Conservation Research Unit (WildCRU), Department of Zoology, University of Oxford. paolo.strampelli@gmail.com (Corresponding author)

² Centre for Wildlife Management, University of Pretoria, Pretoria, South Africa. wildedens@gmail.com

³ Centre for Wildlife Management, University of Pretoria, Pretoria, South Africa. kteveratt@gmail.com

⁴ Centre for Wildlife Management & Centre for Invasion Biology, University of Pretoria, Pretoria, South Africa. michael.somers@up.ac.za

⁵ Institute of Zoology, Zoological Society of London, Regent’s Park, London, United Kingdom. marcus.rowcliffe@ioz.ac.uk

Word Count: 4,498

Keywords: camera trap; capture-recapture; density estimation; leopard; Mozambique; *Panthera pardus*; SECR; trophy hunting
ABSTRACT

Rigorous status estimates of large carnivore populations are necessary to inform their management and help evaluate the effectiveness of conservation interventions. The African leopard (*Panthera pardus*) faces rising anthropogenic pressures across most of its contracting Saharan range, but the scarcity of reliable population estimates means that management decisions often have to rely on expert opinion or educated guesses. This is particularly true for Mozambique, where as a result of prolonged conflict very little is known on the ecology or conservation status of leopard populations across the country. We used camera trapping and spatially explicit capture-recapture models to provide a leopard density estimate in Xonghile Game Reserve, southern Mozambique, part of the Greater Limpopo Transfrontier conservation initiative. The estimated population density was of 2.60 (SE=±0.96) leopards per 100 km². Our study provides a baseline leopard density for the region, as well as the first empirical density estimate in southern Mozambique. In addition, our results suggest that current methods used to set trophy hunting quotas for leopard, both in Mozambique and elsewhere in Africa, might be leading to overinflated quotas, and highlight the importance of robust empirical data in guiding conservation policy.
INTRODUCTION

The leopard (*Panthera pardus*) is vulnerable to extinction in fragmented landscapes due to its low densities, large spatial requirements and potential for conflict with humans (Nowell & Jackson, 1996; Balme *et al.*, 2010). Leopard populations in Africa are increasingly threatened by growing anthropogenic pressures, leading to a rising conservation concern and calls for reliable population estimates to better inform conservation management (Jacobson *et al.*, 2016). In the absence of robust population estimates, management decisions are often reliant on expert opinion or educated guesses, making it difficult to identify areas of concern, prioritise conservation investments, and evaluate the effectiveness of interventions (Balme *et al.*, 2014; Gray & Prum, 2012).

In this context, density estimation, such as through capture-recapture modelling, has become a key process in wildlife ecology, conservation, and management (Gray & Prum, 2012). Initially, capture-recapture techniques estimated abundance rather than density, and relied on estimating the survey’s effective sampled area to obtain the latter. However, no theoretical basis exists for this process, and the reliability of this approach is therefore questionable (Efford, 2004; Borchers & Efford, 2008; Royle *et al.*, 2009). Recently developed methodologies, known as spatially-explicit capture-recapture (SECR) overcome these issues by estimating density directly as an explicit parameter (Efford, 2004; Royle *et al.*, 2009).

Since being first applied to tiger populations in India (Karanth, 1995), capture-recapture techniques have been employed to obtain density estimates of most large carnivores, including for leopards in various African countries, such as South Africa (Balme *et al.*, 2009; Chase-Grey *et al.*, 2013; Swanepoel *et al.*, 2015), Gabon (Henschel, 2011), Tanzania (Cavallo, 1993), and Namibia (Stein *et al.*, 2011). Nevertheless, there is still paucity of such data across much of the continent, precluding effective conservation management (Balme *et al.*, 2014). This is particularly
the case for Mozambique, where armed conflicts during much of the latter half of the 20th
century contributed to large declines in wildlife populations across the country (Hatton et al.
2001), and considerably hindered conservation efforts. As a result, very little research has been
conducted on the status, distribution or ecology of the leopard in Mozambique.

Leopards are legally hunted for trophies in several locations in Mozambique, with the current
quota set at 120 permits per annum (CITES, 2007). This quota is based on efforts to estimate the
overall abundance of leopards in Mozambique by Martin & de Meulenaer (1988), who employed
a predictive model to estimate a country-wide population of 37,542 leopards, based on an
average density of 0.10/km² (10 leopards per 100 km²). Such estimates have been widely rejected
as exaggerated for a number of reasons, including omitting from the model critical factors such
as anthropogenic mortalities and prey availability, and relying on the assumption that leopards
occur at maximum potential densities in all available habitats (Jackson, 1989; Balme et al., 2010).
Nevertheless, this approach was employed as a justification for the most recent increase in
trophy hunting quota, with a lack of alternative in-country estimates of population densities cited
as the principal reason for this (CITES, 2007). Consequently, more accurate assessments of
leopard populations in Mozambique are needed to assess the reliability of current quota setting
methods in the country, and to ensure that future changes in trophy hunting quotas are based on
robust population data.

Here we use a closed-population SECR methodology to estimate density of leopards in Xonghile
Game Reserve (XGR), a legally protected area in southern Mozambique. The aim of the study
was to obtain the first empirical density estimate for a leopard population in southern
Mozambique, and provide information that can guide management and act as a baseline to assess
conservation interventions. Finally, the implications of findings for trophy hunting in
Mozambique are explored.
STUDY AREA

Xonghile Game Reserve (Fig. 1) is a legally protected area in southern Mozambique. Its northern-most border is located approximately 13 km south of Limpopo National Park’s (LNP) southern border, the country’s largest national park. XGR is unfenced, bordering South Africa’s Kruger National Park (KNP) to the west and unprotected land to the north, east and south. The reserve covers approximately 450 km2, and is part of the Greater Limpopo Transfrontier Conservation Area (GLTFCA), a trans-boundary initiative where protected parks and reserves in Mozambique, South Africa and Zimbabwe are linked by non-protected areas. The predominant habitat in XGR consists of sand plains (‘sandveld’) characterized by low woodlands and thickets on deep sandy soils, as well as short-grass ‘pans’ (seasonally flooded depressions). Although large mammal populations in the region were severely depleted during the country’s many years of armed conflicts (1964-1992; Hanks, 2000), the removal of fencing along the KNP border in recent years has provided the potential for movement of wildlife into the area. No human population permanently resides in XGR, with the main anthropogenic impacts coming from relatively low levels of poaching for bushmeat, anti-poaching efforts, and the low levels of tourism the reserve experiences (Andresen & Everatt; unpublished data). Trophy hunting does not currently take place in XGR.

Figure 1 here

METHODS

Camera Trapping

29 digital motion-activated cameras of multiple models (Reconyx HC500, Spy Point Tiny-W2, Bushnell Trophy Cam) were deployed at 26 stations over an area of c. 300 km2 in XGR (Fig. 1),
between August 24 - November 23, 2012. Twenty-three stations had a single camera at the
station, while at three stations two cameras were deployed.

The majority of stations were located at a distance of between 0.5-3 km from one other, ensuring
that multiple cameras were likely to be present in an individual’s home range. This was the case
for all but three stations, which were placed between 5 and 6 km from the nearest station. While
there was therefore a small possibility that an individual’s home range did not contain a station,
SECR models allow for the presence of such ‘holes’ in the trap array when estimating density
(Borchers & Efford, 2008), and low prey densities in the study area (Andresen & Everatt,
unpublished data) suggest this is unlikely. Cameras were set on trees along roads and game trails at
a height of 35cm. The survey length of 92 days was considered adequate for assuming
demographic closure, consistently with numerous previous studies of large felids (e.g. Karanth,
1995; Alexander et al., 2015; Boron et al., 2016).

Density Estimation

Density was modelled in a SECR framework, using the package secr (Efford, 2015) running in R
v3.2.3 (R Core Development Team, 2015). A maximum-likelihood framework was chosen over a
Bayesian one as it provides results comparable with other studies (Tobler & Powell, 2013; Noss
et al., 2013) with quicker computation times (Efford, 2015).

Leopards were identified from their pelage patterns and sexed by visual inspection of external
genitalia. The flank with the greater number of captures (left) was chosen for identification of
individual leopards. Individual spatial capture and trap effort histories were developed following
the recommended procedures (Efford, 2015), with each day (24 hours) treated as a separate
sampling occasion, as recommended by recent findings (Goldberg et al., 2015). Information on
varying effort from different camera stations (exact number of days active) was included in order
to improve estimates of detection probability. The buffer width around the trapping grid was
increased until density estimates stabilised, ensuring that no individual outside of the buffer area
could be captured, and a half-normal detection function was fitted to the distance between home
range centre and station. This is the most commonly used function in spatial capture-recapture
analyses (Efford, 2004; Boron et al., 2016), and describes the probability of capture (P) of an
individual i at a trap j as a function of distance (d) from the activity centre of the individual to the
trap, as follows: $P_{ij} = g0 \exp \left(-\frac{d_{ij}^2}{2\sigma^2}\right)$, where $g0$ is the probability of capture at exactly the
home range centre, and sigma (σ) is a spatial parameter related to home range size (Efford, 2004).

A Bernoulli or binomial encounter model was fitted to the data, as this is most relevant to
camera trapping studies; under this model, an individual can be recorded at different camera
stations during one sampling occasion, but only once at each station (Royle et al., 2009; Noss et
al., 2013).

Given that leopard populations have been shown to have unequal ranging patterns between
sexes (Bailey, 1993; Kittle et al., 2017), in turn potentially impacting capture parameters, sex was
modelled as a covariate (Sollmann et al., 2011; Tobler & Powell, 2013; Goldberg et al., 2015). This
was achieved by fitting a hybrid mixture model, which accommodates for individuals of
unknown sex (Efford, 2015). The impact of sex on both parameters $g0$ and σ was tested through
the comparison of four alternative models using the Akaike Information Criterion, adjusted for
small sample size (AICc; Burnham & Anderson, 2002): “secr.0” (null model), “secr.sex.g0” ($g0$
varies between males and females), “secr.sex.σ” (σ varies between males and females), and
“secr.sex” (both $g0$ and σ vary between males and females) (Efford, 2015; Boron et al., 2016).

RESULTS

Sampling effort & capture success

A total sampling effort of 1,021 trap nights by 26 stations (mean trap nights per camera = 39.3)
yielded 57 leopard capture events. Of these, 31 (54%) were used to identify nine individual
leopards (five males, two females, two unsexed); the remaining 26 events (46%) were not suitable
for identification (due to picture quality and/or wrong flank) and therefore discarded. Capture
frequencies were 9, 3, 2, 2, and 1 for the five males; 6 and 4 for the two females; and 3 and 1 for
the two unsexed individuals.

187 Density estimation
188 The best SECR model (AICc=360.36) did not allow either g0 or σ to vary with sex (secr.0), with
the model receiving significantly more support than the next best alternative (secr.sex.σ,
ΔAICc=10.47; Table 1).
189 The leopard density estimate of the best fitted model (secr.0) was 2.60 ± SE 0.96 adults per 100
km². Capture probability at home range centre (g0) was estimated at 0.043 ± SE 0.013, and the
scale parameter, σ, at 1,936 ± 279 m (Table 2). Buffer width stabilised at 10,000m, as reported by
similar leopard density studies (Gray & Prum, 2012; Borah et al., 2013).

Table 1 Here
Table 2 Here

197 DISCUSSION
199 Leopard density
200 Our study provides a baseline leopard density estimate for a relatively well-protected area of the
region, which is also the first empirical estimate for a leopard population in Mozambique. Using
SECR models, we estimated leopard density in XGR at 2.60 ± 0.96 adults per 100 km². While
density estimates obtained in XGR are on the lower end of the spectrum relative to studies
elsewhere in sub-Saharan Africa, they are nonetheless higher than estimates from other protected
areas of southern Africa, including the densities of 0.60 leopards per 100 km² in the dry
savannas of the Kalahari Gemsbok National park (South Africa; Bothma & Le Riche, 1984); of
0.62 per 100 km² in the savannah/woodland Cederberg Wilderness Area (South Africa; Martins
and of 1.50/100 km2 in the savannah habitat of the Kaudom Game Reserve, Namibia (Stander et al., 1997).

In South Africa’s KNP, contiguous with XGR’s western border, high leopard densities of 30.3/100 km2 were reported for the Sabie riverine area (Bailey, 1993), and of 12.7/100 km2 in the N’wantesi concession (Maputla et al., 2013). We believe the observed differences are most likely a reflection of contrasting habitats, and consequently prey availability, between study sites. While density estimates from KNP came from highly productive riverine forests (Bailey, 1993) and savannah woodlands (Maputla et al., 2013), XGR is predominantly comprised of nutrient-poor, lower-productivity sandveld that is able to sustain lower animal densities (Redfern et al., 2003; Scholes et al., 2003). Furthermore, the relatively high level of protection enjoyed by the reserve (Andresen & Everatt, unpublished data) indicate that artificially low prey densities due to human hunting are unlikely.

Nonetheless, we cannot exclude the possibility that XGR could be acting as a population sink for leopards dispersing from KNP, through anthropogenic mortalities occurring in the adjacent non-protected areas (NPAs). While no estimates for anthropogenic leopard mortalities in the area are available, it is possible that individuals venturing into the NPAs adjoining the reserve could be suffering relatively high anthropogenic mortality rates, which in turn could attract leopards from surrounding areas (e.g. KNP). This ‘vacuum effect’ has been documented in large carnivores and in leopards in particular, and it may cause edge effects that affect the interior of even very large protected areas (Loveridge et al., 2007). Indeed, multiple incidents of poisoned leopards have been recorded in nearby Limpopo National Park (Andresen & Everatt, unpublished data). Longer term camera trapping or GPS collaring efforts, combined with social surveys targeting the communities outside the reserve, are necessary to ascertain whether this is the case.

Methodological considerations and sex specific parameters
The majority of our stations comprised only one camera-trap, rather than the two-camera set-up (one for each flank) recommended (Karanth, 1995). Our strategy was a result of limited resources, allowing us to survey a larger area and thus increase the number of captured individuals. While we believe that in our case this was the best strategy, the trade-offs between surveying a larger area and obtaining higher identification rates should be considered on a case-by-case basis.

Interestingly, even though males commonly occupy territories overlapping with those of two to four females (Bailey, 1993), more males (n=5) than females (n=2) were captured during our study (although the gender of n=2 individuals could not be determined). Maputla et al. (2013) also recorded a marked male-bias in capture rates, and cited several potential reasons for this, as identified by Krebs (1999); heterogeneity in behaviour between genders in the vicinity of the trap, and in tendencies to use trap locations (e.g. roads), were suggested as particularly probable causes.

The SECR model which received the most support in the ranking was the model where sex did not influence neither the detection (g0) nor scale (σ) parameters. However, rather than indicating the absence of widely described sex-dependent heterogeneity in behaviour and ranging patterns (e.g. Bailey, 1993; Kittle et al., 2017), we believe that the relatively small sample size did not provide enough data to allow for the inference and modelling of sex-specific differences in detectability and ranging patterns.

Implications for conservation policy in Mozambique

Trophy hunting has been shown to have substantial potential to foster conservation of large carnivores (Lindsey et al., 2007; Loveridge et al., 2007), and it is estimated that each leopard hunted in Mozambique has the potential to contribute in the region of $24,000 to the local and national economy (Jorge et al., 2013). However, if poorly managed or additive to other source of anthropogenic mortality, excessive harvesting of a species can reduce numbers to such an extent
that a population is no longer viable in the long term. Demonstrating that hunting practices, including quotas, are biologically sustainable is therefore essential if trophy hunting is to be considered an effective tool in the management and conservation of large African carnivores (Swanepoel et al., 2014; Braczkowski et al., 2015).

Our results lead us to question the reliability of the estimates being employed to set leopard quotas in Mozambique. The study by Martin & de Meulenaer (1988), quoted as the primary justification for a recent trophy export quota increase in Mozambique (from 60 to 120 individuals per annum; CITES, 2007), states that up to 80% of Mozambique supports leopard at between 3-10 individuals per 100 km2. In addition, it also suggests that only 3% of the country’s total land area should exhibit leopard population densities lower than those found by the present study. However, our estimated of 2.60 per 100 km2 in XGR, one of the better protected areas in the country, suggests that it is unlikely that many areas in Mozambique exhibit the densities cited in the quota revision application. Although some landscapes will yield higher primary productivity levels than XGR, it seems plausible that the high levels of anthropogenic disturbances common in much of the country (Hatton et al., 2001) would often more than counteract this. Thus, while we appreciate that trophy hunting has not taken place in our study area in almost 10 years (Andresen & Everatt, unpublished data), and we acknowledge the limitations of our study in terms of size and number of individuals encountered relative to the overall range and total population, we believe that it is unlikely that leopard densities as high as those cited in the quota increase application are common in the majority of areas where hunting currently takes place.

As a result, we recommend further assessments of leopard population status and densities across different habitats and land-use types across the country, in both hunting and potential protected source areas. This would be an important first step towards the development of a sustainable and empirical leopard trophy hunting quota allocation system in Mozambique, similar to that being
currently developed for neighbouring South Africa, which includes age-based hunting
regulations, adaptive management strategies, and dynamic, evidence-based quota systems
(Department of Environmental Affairs, 2017). Camera trapping surveys such as ours would be a
relatively rapid method to obtain robust estimates of leopard numbers at moderate cost (Balme et
al., 2009), and, if followed by effective management interventions, would play an important role
in the species’ successful recovery and conservation in many recuperating post-conflict
landscapes across the country.

Finally, we believe the identified conservation problems are not exclusive to Mozambique, with
both Tanzania and Namibia employing the Martin & de Meulenaer (1988) density estimates for
justification in previous leopard quota modifications approved by CITES (CITES 2002, 2004).
Our results reinforce the need for caution when setting leopard quotas, and the importance of
reliable population estimates across its range. We suggest similar research be carried out in other
regions where such estimates are used to set leopard harvest quotas, in the hope of a continent-wide shift towards evidence-based processes being employed to guide management and policy.
ACKNOWLEDGMENTS

We thank the Director of National Conservation Areas Mozambique for granting K.E. and L.A. the research permits (005-2011/003-2012) necessary for this study. We also thank the shareholders of XGR for allowing us to access the reserve, and the Centre for Wildlife Management, University of Pretoria, and Wilderness Trust for financial support. Finally, thanks go to Valeria Boron and Charlotte Searle for their precious input during the analyses.

AUTHOR CONTRIBUTIONS

Data was collected by L.A and K.E; analyses were performed by P.S; write-up was a collaboration between all authors.
REFERENCES

http://www.oryxthejournal.org

Jackson, P. (1989) A review by leopard specialists of the status of leopard in sub-Saharan Africa by Martin and de Meulenaer. Submitted to the seventh meeting of the CoP to CITES. Lausanne, Switzerland.

Tables

Table 1

<table>
<thead>
<tr>
<th>Model</th>
<th>AICc</th>
<th>ΔAICc</th>
<th>AIC wt</th>
<th>K</th>
<th>Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>g0 () sigma ()</td>
<td>360.364</td>
<td>0.000</td>
<td>1</td>
<td>4</td>
<td>324.364</td>
</tr>
<tr>
<td>g0 () sigma (sex)</td>
<td>370.835</td>
<td>10.471</td>
<td>0</td>
<td>5</td>
<td>322.663</td>
</tr>
<tr>
<td>g0 (sex) sigma ()</td>
<td>371.280</td>
<td>10.916</td>
<td>0</td>
<td>5</td>
<td>323.281</td>
</tr>
<tr>
<td>g0 (sex) sigma (sex)</td>
<td>394.663</td>
<td>10.916</td>
<td>0</td>
<td>6</td>
<td>322.835</td>
</tr>
</tbody>
</table>

AICc = Akaike Information Criterion, adjusted for small sample size; ΔAICc = difference in AICc values between each model and best ranking (lowest AIC) model; AICc wt = AICc model weights; K = number of model parameters; Dev. = Model deviances. g0 = probability of capture at home range centre; σ = spatial parameter related to home range size. secr.0: null model; secr.sex.g0: g0 varies between males and females; secr.sex: both g0 and σ vary between males and females; secr.sex.σ: σ varies between males and females.

Table 2

<table>
<thead>
<tr>
<th>Value</th>
<th>SE</th>
<th>95% LCI</th>
<th>95% UCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>g0</td>
<td>0.043</td>
<td>0.013</td>
<td>0.024</td>
</tr>
<tr>
<td>Σ (m)</td>
<td>1963</td>
<td>279</td>
<td>1464</td>
</tr>
<tr>
<td>D (N/100km²)</td>
<td>2.599</td>
<td>0.957</td>
<td>1.292</td>
</tr>
</tbody>
</table>

SE = Standard error; LCI and UCI = lower and upper confidence intervals respectively; D = Density. g0 = probability of capture at the home range centre; σ = spatial parameter related to home range size.
Figure 1

Fig.1 Xonghile Game Reserve (XGR), including camera locations and intensive trapping area within a 10 km buffer zone, as required by the SECR models. Inset map: XGR in the context of the wider GLTFCA, comprising both protected areas (grey) and non-protected lands (dotted).