Screening for Atrial Fibrillation: a European Heart Rhythm Association (EHRA) consensus document endorsed by the Heart Rhythm Society (HRS), Asia Pacific Heart Rhythm Society (APHRS), and Societad Latinoamericana de Estimulation Cardiaca y Electrofisiologia (SOLAECE)

Georges H. Mairesse (Chair, Belgium), Patrick Moran (Ireland), Isabelle Van Gelder (The Netherlands), Christian Elsner (Germany), Marten Rosenqvist (Sweden), Jonathan Mant (UK), Amitava Banerjee (UK), Bulent Gorenek (Turkey), Johannes Brachmann (Germany), Niraj Varma (USA, HRS representative), Gustavo Glotz de Lima (Brazil, SOLAECE representative), Jonathan Kalman (Australia, APHRS representative), Neree Claes (Belgium), Trudie Lobban (UK), Deirdre Lane (UK), Gregory Y.H. Lip (UK), Giuseppe Boriani (Co-Chair, Italy)

Address for correspondence:
Georges H. Mairesse, MD, FESC, FHRS
Cliniques du Sud Luxembourg – Cardiology department
Rue des déportés 137 – B 6700 Arlon
Tel : +32 63 23 12 34
drghmairesse@skynet.be
ABSTRACT

Atrial fibrillation (AF) is a major risk factor for stroke, and asymptomatic or clinically silent AF is common while being associated with a similar risk of stroke and mortality. An earlier detection of AF by population screening could allow an earlier protection against that thromboembolic risk using earlier oral anticoagulation. Effectiveness of screening depends on the target population. Screening studies using various strategies have shown an average 0.9% of new AF cases detected (95% CI 0.7 to 1.1%) in different populations reported in the literature. Opportunistic screening for AF is now recommended by pulse taking or electrocardiographic (ECG) strip recording in patients >65 years of age. In patients after an ischemic stroke, and in patients with cardiac implanted devices, mid to long term ECG monitoring, with frequent interrogations of implanted devices is advised. ECG confirmation of AF is required before initiating AF therapy. Systematic ECG screening may also be considered in certain categories of patients with high stroke risk. Different tools are available for this ECG screening. Sensitivity is often high (>90%), but specificity can be harmed by different other arrhythmias or recording issues. Some of the newest tools still require adequate validation before being widely used for AF screening.

The cost-effectiveness is influenced by the screening methodology, but even more by the population screened, ranging from 1.916 € to 15.993 € per saved stroke. From the economic standpoint, a staged strategy using selection criteria and simple diagnostic tools seems to be most feasible and cost-effective in terms of meaningful resource utilization. However, today, there is lack of reimbursement or financial incentives for AF screening campaigns.

Overall, general public awareness about AF is poor. There is need to educate people. The general practitioners, together with primary care health professionals, can play a major role in this respect. The role of patient’s organizations is crucial to convince health authorities about the importance of education as well as of screening. Patient engagement should also be promoted.

Key Words

Atrial fibrillation, stroke, stroke prevention, screening, opportunistic screening, systematic screening, cost-effectiveness, public awareness
1. Introduction

Atrial fibrillation (AF) is the commonest cardiac arrhythmia, occurring in 1-2% of the general population. Its prevalence varies between continents and ethnicities, but the estimated number of patients with AF worldwide might be between 30 and 100 million (1). This prevalence is expected to increase significantly in the next 30-50 years due to an ageing population, and increasing risk factors to develop AF, including arterial hypertension and diabetes (2-5). In the western population, both prevalence and incidence are higher in men than in women and increase with age (6).

AF is characterized by loss of the atrial systolic contraction, loss of atrioventricular synchrony, irregularity of the ventricular response, sometimes high ventricular rates compromising ventricular filling, and a decreased cardiac output. AF is associated with an increased mortality, increased incidence of heart failure with an increased hospitalization rate, and a higher risk of thrombo-embolic events, including strokes (7). It can also be associated with a reduced exercise capacity and an altered quality of life.

Its natural evolution usually progresses from short rare episodes with little or no symptoms to longer, more frequent, more prolonged and usually clinically detectable ones, even if individual variations can also be observed (8). An earlier detection of AF could thus allow an earlier adequate management to avoid later complications.

Evidence Review

Members of the Task Force were asked to perform a detailed literature review, weigh the strength of evidence for or against particular treatments or procedures, and include estimates of expected health outcomes where data exist. Patient-specific modifiers, comorbidities, and issues of patient preference that might influence the choice of particular tests or therapies are considered, as are frequency of follow-up and cost effectiveness. In controversial areas, or with regard to issues without evidence other than usual clinical practice, a consensus was achieved by agreement of the expert panel. This document was prepared by the Task Force with representation from EHRA, HRS, APHRS, and SOLAECE. The document was peer-reviewed by official external reviewers representing EHRA, HRS, APHRS, and SOLAECE.
Consensus statements are evidence-based, and derived primarily from published data. Current systems of ranking level of evidence are becoming complicated in a way that their practical utility might be compromised. EHRA has, therefore, opted for an easier and, perhaps, more user-friendly system of ranking that should allow physicians to easily assess current status of evidence and consequent guidance (Table 1). Thus, a green heart indicates a recommended statement or recommended/indicated treatment or procedure and is based on at least one randomized trial, or is supported by strong observational evidence that it is beneficial and effective. A yellow heart indicates that general agreement and/or scientific evidence favouring a statement or the usefulness / efficacy of a treatment or procedure may be supported by randomized trials based on small number of patients or not widely applicable. Treatment strategies for which there has been scientific evidence that they are potentially harmful and should not be used are indicated by a red heart. EHRA grading of consensus statements does not have separate definitions of Level of Evidence. The categorization used for consensus statements (used in consensus documents) should not be considered as being directly similar to that used for official society guideline recommendations which apply a classification (I-III) and level of evidence (A, B and C) to recommendations in official guidelines.

Relationships with Industry and Other Conflicts

It is EHRA/ESC policy to sponsor position papers and guidelines without commercial support, and all members volunteered their time. Thus, all members of the writing group as well as reviewers have disclosed any potential conflict of interest in detail, at the end of this document.

2. Rationale for screening

2.1: The AF-related stroke risk

AF is a risk factor for stroke but recent studies have highlighted that ischemic stroke risk in the presence of multiple stroke risk factors is similarly high, whether or not documented AF is present (9-10). This raises the issue of whether it is worth investing in screening strategies targeted to detect AF in the general population. In a cohort of patients with multiple risk factors and no known AF at baseline, one-
third developed new onset AF by one year (11). Importantly, the risk of stroke is not homogeneous and is dependent on the presence or absence of various stroke risk factors, the most common of which have been used to formulate stroke risk stratification schemes, such as the CHA₂DS₂-VASc score (12).

AF is a major stroke risk factor and the evidence is very clear that oral anticoagulation with the Vitamin K antagonists (VKA, eg warfarin) significantly reduces stroke/systemic thromboembolism and all-cause mortality, compared with control or placebo (13). The non-VKA oral anticoagulants (NOACs) offer additional advantages in overall efficacy (with a significant reduction in stroke and mortality), safety (especially the reduction in intracranial bleeding) and relative convenience compared to the VKAs (14). The CHA₂DS₂-VASc score is used in many guidelines, and is best at initially identifying low risk patients (ie CHA₂DS₂-VASc 0 in males, 1 in females) who do not need any antithrombotic therapy, following which the next step is to offer stroke prevention to those with ≥1 additional stroke risk factors (15).

Given that many patients have associated comorbidities and would seek medical attention, opportunistic screening may be one way of improving detection of AF. Nowadays we are in the era of new technologies, and the key issue becomes whether AF screening can be conducted in a more systematic, comprehensive and cost effective manner (16).

2.2: Asymptomatic AF

Asymptomatic or clinically “silent AF” is common and patients may not report any symptom commonly attributable to an arrhythmia (i.e. palpitations, shortness of breath, lightheadedness, chest pain, pre-syncope or syncope) or may experience both symptomatic and asymptomatic episodes of AF, of variable duration, with a ratio up to more than 10 asymptomatic per one symptomatic episode (17).

The precise prevalence of patients with asymptomatic AF is obviously unknown, but it has been estimated that among patients with diagnosed AF, one third does not report symptoms (17,18). In general, early detection of AF, even at the stage of an asymptomatic arrhythmia, incidentally discovered at a routine physical examination, during blood pressure measurement, at a pre-operative ECG or cardiology visit, or as a result of a systematic or opportunistic screening may have a series of potential expected advantages, some of which are unproven and therefore have to be reported as hypothetical (Table 2). Prevention of thromboembolism and stroke, achievable by institution of oral anticoagulation in
patients at risk, is at present the most plausible advantage of detecting asymptomatic AF and is the basis for proposing preventive strategies based on screening of AF (19).

Few studies evaluated the prognostic implications of asymptomatic AF. In a substudy of AFFIRM, (Atrial Fibrillation Follow-up Investigation of Rhythm Management) the presence/absence of symptoms associated with AF were not associated with differences in the risk of stroke or death, taking into account differences in baseline clinical parameters (20). The negative prognostic implications of asymptomatic AF emerged in the EurObservational Research Programme-Atrial Fibrillation (EORP-AF) Pilot General Registry, where asymptomatic AF was commonly associated with elderly age, high burden of co-morbidities, and high thromboembolic risks, with higher 1-year mortality as compared with symptomatic AF (21). In the Belgrade AF study, asymptomatic AF carried a worse prognosis compared with symptomatic AF (21b).

3. Epidemiological considerations

Effectiveness of screening depends on the target population, the test’s diagnostic accuracy, and cost-effectiveness (22,23). Prevalence and incidence vary by baseline characteristics. It is thus of crucial importance to target the most at risk population to increase the screening efficiency.

Age and sex
AF prevalence and incidence increase with age (figure 1) and ageing populations (6,24-26). In screening studies, prevalence and incidence were 2.3% and 1.0% overall, and 4.4% and 1.4% in individuals ≥65 years (17). Although opportunistic screening is recommended at ≥65 years by ESC guidelines since 2012 (28), systematic screening may be effective at older age (29), despite lower participation rates (30). There is no evidence to recommend screening whole populations or subjects at <65 years.
Asymptomatic AF is associated with male sex, irrespective of age (31).

Ethnicity
All ethnicities, whether immigrant (23,32-34) or indigenous (35,36), have lower prevalence of AF than Caucasians. There is regional variation in burden of AF and available data, with poorer countries under-represented. In both sexes, prevalence and incidence are higher in high-income countries (37). Data from lower-income countries and specific ethnic groups are required.
Body size

AF is associated with obesity (38), and the relationship with body size spans the life-course, from birth weight (39,40), to large body size at age 20, and weight gain from age 20 to midlife (41). However the role and timing of screening are un-researched.

Other risk factors

Most AF occurs with identifiable causes, comorbidities or structural cardiac disease. Critically ill patients (42), particularly with sepsis (43), have high AF prevalence, but data to guide screening are currently unavailable. Incidence increases with increasing CHA2DS2-VASc score, suggesting its use for targeting the population to screen. A threshold of CHA2DS2-VASc≥2 is pragmatic, since anticoagulation may not be advised at lower scores (44).

Emerging markers

Although several genetic loci and biomarkers are implicated in the pathophysiology of AF (45,46), there is currently no evidence for their use in screening.

4. Review of studies

A number of prospective controlled and non-controlled studies have examined the effect of screening on the detection rate of previously undiagnosed AF, using a range of different screening programmes and target populations. These studies are summarised in Table 3. Further details of each study are provided in evidence tables in the appendix.

Three randomised controlled trials (RCTs) have compared screening to routine care or another screening programme. The UK SAFE trial (47) compared opportunistic pulse palpation (followed by ECG confirmation if an irregular pulse was found) and systematic screening by 12-lead ECG in people over 65 years to routine care and found that both were associated with a small but statistically significant absolute increase in the proportion of people diagnosed with AF (risk difference [RD] 0.6%, 95%CI 0.1 to 1.1 for both). An earlier UK RCT (48) comparing opportunistic pulse palpation to systematic screening by ECG (lead II rhythm strip) also reported modest increases in the overall AF detection rate in both groups (0.5% and 0.8%, respectively) with no significant difference in the proportion of new AF cases diagnosed using the two screening strategies (RD 0.3%, 95%CI -0.2% to 0.9%). The remaining RCT (49) compared a
two year detection programme for people with one or more risk factors for AF with routine care in Spain. The programme involved an index assessment during which an ECG was carried out and participants were trained to check their own pulse and calculate their heart rate. AF detection outcomes are reported for those that were recruited from the study population into both groups at the end of the two years (as opposed to all those who were invited), and show that this pilot programme was associated with a non-statistically significant absolute increase of 1.1% in the proportion of people diagnosed with AF in the screened group (95%CI -0.6 to 2.8).

Twenty-three prospective, cross sectional studies reporting the proportion of new AF cases yielded by different screening programmes have been reported (see Table 3 + appendix). All of these are limited by the absence of a control group with which to compare the number of cases diagnosed over the study period. Many also use different denominators to calculate the effect of screening (all invited, all screened, with or without known AF cases in the screened population), which limits the comparability of the results. Four of these studies relied on self-reporting to ascertain AF history, rather than conducting a search of individual patient records (50-53). In two others, it was unclear whether or not patient records were searched (54-55). In general the highest yields were observed in the studies with the highest baseline prevalence of AF, as indicated by the age range and/or number of AF risk factors of participants, and those that involved prolonged testing rather than testing at a single point in time. Examples include two separate Swedish studies examining screening of 75 and 76 years olds using intermittent single lead ECG screening twice daily for two weeks, which reported yields of 3% and 4.7%, and one study of screening people aged ≥55 years with two or more AF risk factors using 14 day continuous monitoring, which reported a yield of 5.3% 29,56-57). Another study that involved over 75’s taking their own pulse twice a day for one month resulted in a detection rate of 2% for newly diagnosed AF within the screened population, while screening patients on a geriatric ward, using handheld ECG reviewed by a physician, resulted in a new AF detection rate of 2.1% (58-59). Conflicting results were reported by three studies that examined the effect of screening people attending influenza vaccination clinics, with two UK studies that screened over 65’s using pulse palpation reporting yields of 0.3 to 0.6%, while a Dutch study that screened over 60’s using single lead ECG achieved a yield of 1.1% (55-60-61). Diverse results were also reported for screening programmes aimed at the general public that were advertised through mass media, which have reported yields ranging from 0.2% to 1.1% (26-54). The most common target population for screening was those aged ≥65 years in a primary care setting, with screening with being
carried out opportunistically at GP appointments or pharmacy visits, or through invitation to attend for an ECG. Reported yields from these studies ranged from 0.4% to 1.5%

Apart from the relatively high yields obtained from studies that used prolonged screening in older age groups or those with AF risk factors, no obvious correlation was observed between the type of screening test used and the overall yield of new AF cases achieved. A recent systematic review of diagnostic test accuracy of AF screening tests grouped these tests into four major categories; blood pressure monitors, pulse palpation, non-12 lead ECG and smartphone applications (67). Based on this pooled analysis the authors conclude that pulse palpation is inferior to blood pressure monitoring and non-12 lead ECG, because although the sensitivity of all four methods was broadly comparable, pulse palpation had a considerably lower specificity, and would therefore result in a greater number of false positives (67).

A number of trials are currently in progress which may strengthen the evidence base for screening. Of particular interest is the STROKESTOP study, an RCT that began in 2012 and has already reported data on AF detection in the screening group, which will also compare stroke outcomes, mortality and AF-associated dementia in screened and unscreened groups at 5 years follow up (29,68). This is due to be the first study to measure the benefits of treating screen detected people, who may have a different stroke risk profile to symptomatically detected AF patients. Three other RCTs with a primary outcome of AF detection are also in progress (69-71), including one examining the use of wearable sensors in a screening cohort with different start ages for men (55 years) and women (65 years), which includes stroke as a secondary outcome (mSToPS trial), as well as a cluster randomised trial comparing pulse palpation, blood pressure monitoring and handheld ECG screening with routine care in the Netherlands (D2AF trial).

5. Tools for screening

5.1. Clinical screening

Risk Scores
Risk scores may be used to predict the future risk of an individual developing atrial fibrillation. This has potential value in informing screening strategies, in identifying possible targets for AF prevention initiatives, and in clarifying the potential value of genetic and novel biomarkers in predicting risk of AF. A risk score derived from the Framingham Heart Study assigned points for simple clinical features, with
most points assigned for increasing age and for diagnosis of heart failure at a young age (78-79). The other factors found to increase risk were sex, presence of a significant heart murmur, obesity, high blood pressure, treatment for hypertension, and a long PR interval. A score derived from the ARIC study, based in a younger and biracial cohort, also found race (higher risk in white than African American), smoking status, height, history of diabetes and coronary heart disease, and left ventricular hypertrophy and left atrial enlargement (using ECG criteria) to be predictive of future AF risk (80).

Potential limitations of the risk scores derived from the Framingham Heart Study and the ARIC study include that they were derived from single cohorts, and did require an ECG to complete score. Therefore, the CHARGE consortium developed and validated a further risk score using data from five European and US cohorts (81). In the CHARGE study, a model incorporating age, race, height, weight, systolic and diastolic blood pressure, current smoking, use of antihypertensives, diabetes, and history of myocardial infarction and heart failure was found to have reasonable discrimination ((C statistic 0.77, 95% CI 0.75-0.78) in prediction of AF over five years. A further risk score (82), validated using an administrative database, similarly found that a score based on seven risk factors for AF (age, coronary artery disease; diabetes; sex; heart failure; hypertension; valvular disease) showed reasonable prediction of subsequent AF (C statistic 0.81, 95% CI 0.80-0.82).

There is considerable overlap in terms of factors between scores that predict risk of AF, and scores that predict risk of stroke in AF, such as CHA2DS2-VASc, (83) with age, heart failure, diabetes and hypertension featuring in both types of score. Therefore, a strategy for identifying the target population through these scores has the potential advantage that the people they identify, if they do subsequently develop AF, are likely to benefit from anticoagulation.

Pulse taking

The simplest method of screening for AF in a clinical context is to take the pulse. The sensitivity and specificity depend upon what is being sought: looking for any pulse irregularity has the highest sensitivity, whereas looking for continuous pulse irregularity has the highest specificity (48). In general, high sensitivity is preferred for a screening test. Studies of the more sensitive method of pulse palpation for any irregularity have reported sensitivity rates varying between 87% and 97%, with specificities between 70% and 81%. (84) A strategy of opportunistic screening of the pulse, followed by ECG if positive, has been found to be effective at detecting new cases of AF (47).
BP automated measurement

A commonly performed screening test in primary care is to take the blood pressure. Historically, this would have incorporated pulse palpation, but with the advent of automated sphygmomanometers, this is now no longer the case. Automated blood pressure devices are now available that also detect atrial fibrillation. These are more accurate than pulse palpation, with sensitivity between 93% and 100%, and specificity between 86% and 92% (85-87). One such device, the WatchBP Home A, was evaluated by the English National Institute for Health & Clinical Excellence, who concluded that using an automated BP device to detect AF would be cost saving compared to a strategy of pulse palpation (88).

Any clinical suspicion of AF should however be confirmed by an ECG recording before assessing the patient for the need of anticoagulation protection.

5.2. ECG screening

Traditional noninvasive monitoring may not detect paroxysmal and asymptomatic AF episodes. Noninvasive devices are now available which can improve possibilities for AF detection (figure 2). In primary prevention screening large patient groups, the method utilized has to be cost-effective and easy to use and the recordings easy to analyze, whereas, in secondary prevention screening after stroke, more costly resources can be motivated.

Single lead ECG handheld devices

A number of noninvasive devices for a simplified 1 lead ECG registration have been validated and used in various screening studies. These include single or intermittent ECG registration, using hand held ECG that can store or transmit several recordings to a database. So far three devices have been used in clinical studies serving as a model for screening in larger groups. These devices have been used for recording a single ECG recording or repeated registrations over a limited time period in large cohorts (61,72,89). Repeated registrations seem to be 2-3 times more effective in catching intermittent episodes compared to single ECG recordings or 24-48 hours of long term ECG (90-91). The detection rate is most likely to be dependent of the length of the registration period and the comorbidity of the patients.
A single ECG recording detects unknown AF in approximately 1.5% of the screened population varying according to age and comorbidities (64). In a large prospective cohort screening study of 7000 individuals 75-76 years old without known AF, 3.1% of the patients had a previously unknown paroxysmal silent atrial fibrillation detected by intermittent recordings planned twice a day over a 2 week period (29). A significant problem with screening studies is the burden of work related to ECG analysis performed with visual control of the tracings. Additionally, it can sometimes be difficult to differentiate atrial flutter from sinus tachycardia on the basis of a single lead recording corresponding to lead I. Therefore, automatic algorithms capable to efficiently discriminate normal sinus rhythm from any kind of supraventricular arrhythmias including AF are most welcomed (92)

Patches and belts

Single-use noninvasive waterproof continuous recording ambulatory cardiac rhythm monitoring patches, capable for continuous use up to 14 days have been tested in patients, and was found to be superior to 24-hour Holter monitor with regard to detect AF episodes (93). Recorders attached to a dry-electrode multi-lead non-adhesive belt worn around the chest have also be proposed with prolonged monitoring, using long term batteries, and 30 minutes memory capacity capable of recording up to 2.5 minute per episodes (94-95). Better compliance was observed from the patients compared to conventional adhesive skin-contact electrodes. However, while high sensitivity is required to diagnose AF, automated diagnostic algorithms should be able to discriminate from external noise signals, and noise will always tend to increase with an increasing recording duration, and a possible decrease of the electrode-skin contact.

5.3. New tools

Smartphone based ambulatory monitoring introduces the ability for patient activated monitoring without the need for wearable devices, and for indefinite periods (96). For heart rhythm monitoring, some technologies partner sensors into a casing added to the smartphone which, when held between both hands, records an ECG tracing which can be interpreted by the patient or transmitted to a physician (97). Another technology derives heart rhythm analysis from pulse waveforms recorded from finger apposition to the smartphone camera (98). This is attractive because it
operates without the need for any special additional hardware. Diagnostic accuracy of smartphone detection of AF was equivalent to 12 lead ECG in some studies. In one community screening study, an automated AF algorithm was retrospectively applied to collected iECGs among 1,000 pharmacy customers aged ≥65 years (mean 76 ± 7 years; 44% male), and this allowed to detect new AF in 1.5% of subjects, all with CHA₂DS₂-VASc score ≥2. In comparison with other methods (table 4), the automated iECG algorithm showed 98.5% sensitivity for AF detection and 91.4% specificity (16).

Given the almost ubiquitous presence of smartphones, downloadable health care apps have the potential to be widely used and for unrestricted periods of time, with ability to transmit data over cellular networks or Wi-Fi, breaking the traditional use of ambulatory ECG monitoring. Already, more than two thirds of adults own a smartphone, including an increasing proportion of those aged >65 years old. Skepticism, physical difficulties, and challenges in learning new technologies may be potential barriers to using the technology in a medical role, but acceptability is increasing. One study demonstrated that 50% of the entire 75- to 76-year-old population screened was willing and able to use a small portable device to screen for AF multiple times per day (68). Longer term ECG monitoring of this form is likely to increase the detection of atrial fibrillation over time. Moreover, there are potential benefits of involving patients in their health care process, increasing their engagement and compliance with medical therapies and follow up management. This therefore develops a new facet to health care delivery. Patients reported the use of an App for AF detection as “reassuring to their general sense of well-being,” and made them “conscious of their health (98). A feedback on transmitted events may consolidate this behavioral change. One study assessing the impact of a mobile phone text message support programs reported positive effect on cardiovascular risk factors (99).

The role of smartphone AF screening is potentially disruptive to the traditional model of conventional diagnostic devices requiring physician interpretation, and blurs the definitions of patient vs consumer. There is an accompanying set of challenges regarding validation of recordings (eg noise correction, limitations of single lead ECG recordings), increased onus on the physician for interpretation of large volumes of transmissions (without established reimbursement), data storage and security. Regarding AF characterization, when used in a general population with low disease prevalence, the risk of false positive results may obviously increase. The snapshot recording will not provide information about the duration and burden of atrial fibrillation which may be necessary to assess the associated risk of stroke and guide anticoagulation, or the efficacy of treatment such as antiarrhythmic drug therapy or catheter ablation. This level of granularity is feasible only through use of continuous monitoring.
Finally, it has to be highlighted that the regulations for validation of medical devices do not constantly apply to, nor are regulatory followed for Apps to be used with smartphones, so that a careful approach has to be advised both to customers and physicians.

6. Screening strategies

6.1. OPPORTUNISTIC versus SYSTEMATIC

In order to improve detection of silent AF, opportunistic screening for AF in all patients ≥ 65 years by taking the pulse is recommended by ESC guidelines since 2012 (28), and opportunistic screening by pulse taking or ECG strip received a class I level of evidence B recommendation in the most recent ECG guidelines (5). Yet, it may be questioned whether the yield of this opportunistic way of screening is sufficient in higher risk patients and whether it should be extended to younger individuals. Further, systematic screening in higher risk groups may even be warranted. Detection of and screening silent AF is simplified nowadays due to the development of easy to use handheld and implantable devices. Guidelines evolution in the last 4 years is summarized in table 5.

For a screening program to be efficient, high positive predictive values achieved at low cost using a low-risk tool is required (figure 4). The screening yield depends on the prevalence of the disease and the diagnostic performance of the test. From epidemiological studies (100), it is known that the number of AF cases increases disproportionally in older adults and with increasing comorbidities (reflected by the CHA₂DS₂-VASC score). Other parameters that influence the yield of AF screening include the duration of screening and number of electrocardiographic registrations and transmissions (29,57,101-102).

Population screening strategies include opportunistic case finding and systematic screening (table 6). In opportunistic case finding the presence of AF is assessed whenever a patient visits e.g. a general practitioner by taking the pulse or using devices assessing the actual rhythm. Systematic screening can be performed in a targeted population, e.g. higher risk patients who all become invited for the screening. The first large scale screening trial was the Screening in Atrial Fibrillation in the Elderly (SAFE) trial (103-104). In 50 primary care centres in England in 14.802 patients ≥ 65 years it was studied whether screening improved detection of silent AF. Patients were randomized to screening or routine care in detecting AF. After 12 months of follow up new AF was detected in 1.63% in the screening intervention group versus 1.04% in the control group. This beneficial effect of screening at one point in time in patients at risk was confirmed by a systematic review that included 30 studies with more than 120.000
patients. Previous undiagnosed silent AF at a single time point screening identified new AF in 1% of patients and in 1.4% of those ≥ 65 years (77). A subsidiary study of the SAFE trial randomized 9888 patients in 25 centres in the intervention screening arm to either systematic (invitation for ECG at one point in time) or opportunistic screening (patients were flagged to encourage pulse recording during routine consultation followed by an ECG if an irregular pulse was found). No difference was observed in the detection rate of new AF between the systematic and opportunistic screening strategies (1.62% versus 1.64%). The STROKESTOP study assessed the yield of systematic screening in a targeted population in 2 regions in Sweden (29). This study screened moderate to high risk individuals who were invited to undergo intermittent ECG recordings during 2 weeks using a handheld ECG. In total 14387 individuals were invited of whom 7173 participated in the screening. New AF was detected in 218 individuals (3%). Only 0.5% was found with the first ECG emphasizing the advantage of repeated ECG recordings. Recently a population systematic screening programme for AF was published (26). Data from 5 years of 1 week of screening in Belgium during the National Heart Rhythm week were analyzed. All adults aged ≥ 18 years (!) were invited on a voluntary basis to participate. Everyone underwent one 30 second one-lead ECG recording using a handheld device. The yield of new AF was 1.1%. Interestingly, also in younger subjects silent AF was detected, even at a higher rate as expected.

According to the evidence collected so far, it appears that, opportunistic screening in patients ≥ 65 years has to be recommended. It may even be started at a lower age in the presence of a higher CHA₂DS₂-VASc score (CHA₂DS₂-VASc ≥ 2 in individuals ≥ 55 years). The need for systematic screening still is uncertain. So far, no firm advantage of systematic above opportunistic screening has been demonstrated. Initiatives like the Belgian Heart Rhythm Week, pharmacy screening and screening during influenza vaccination warrants further evaluation especially with regards to logistics and cost-effectiveness. In this respect new, innovative, less expensive and easy to use devices may pave the way for systematic AF screening in targeted high risk populations.

6.2. Secondary screening (after stroke or systemic embolism)

It is known that cardio-embolism accounts for 17% to 30% of all ischemic strokes (105-106), and that paroxysmal AF can often be undetected, especially in case of short duration episodes, frequently asymptomatic. This implies that it challenging to rule out or, alternatively, to confirm the presence of AF at bedside, with the consequent risk of suboptimal secondary prevention (107). It is thus likely that an
undetermined proportion of strokes labeled as cryptogenic could be AF-related cardio-embolic strokes, in the setting of occult undiagnosed AF (108-110).

Post-stroke in-hospital rhythm monitoring is limited by a finite window of observation, which is particularly problematic in the context of intermittent AF (111). Traditionally, 24 h ambulatory ECG (Holter) monitoring has been used, though the utility is limited by low rates of arrhythmia detection, inadequate negative predictive value, and poor cost-effectiveness in unselected patients.

Given that arrhythmia detection is related to total AF burden and improves with increasing intensity of monitoring, prolonged monitoring utilizing external event loop recorders (ELR) has been employed. The open-label, multi-center, randomized controlled EMBRACE trial (112) enrolled 572 subjects without history of AF and cryptogenic stroke or TIA of undetermined cause within the previous 6 months. At 30 days, AF lasting 30s or longer was detected in 16.1% in the ELR group, as compared with 3.2% in the control group (P < 0.001). The strategy of minimally invasive rhythm monitoring through an implantable loop recorder (ILR) has been tested in CRYSTAL-AF study (113) where a total of 441 patients were prospectively enrolled and randomized 1:1 to standard arrhythmia monitoring vs. implantation of a implantable cardiac loop reorder (ILR). The rate of AF detection at 6 months was 8.9 %(n = 19) in the ILR group compared to 1.4%(n = 3) in the control group. AF detection by continuous monitoring in the ILR arm increased progressively throughout the study and was 8-fold higher at 36 months (30%) compared with 1 month (3.7%) and 10-fold higher compared with the control arm (3%) at 36 months (114).

Combined, EMBRACE and CRYSTAL-AF imply that detection of occult AF in cryptogenic stroke may warrant treatment with anticoagulation. Ongoing trials try to determine the minimal duration of AF needed to increase risk of ischemic stroke and the total burden needed to warrant treatment with anticoagulation (115-116).

The complexity of the AF – stroke relationship is further magnified by the evidence that AF may be either a risk factor or a simple marker of the risk of stroke and that AF can in some cases be detected only after and not before a stroke event (117).

6.3. Screening in patients with cardiac implanted devices

Current evidence on AF screening in patients with cardiac implanted electronic devices (CIEDS) is limited. Several observational and randomized studies demonstrated that atrial high rate events (AHRE) detected by CIEDs were associated with increased risk of subsequent stroke, systemic embolic events and
mortality in patients with implanted cardioverter-defibrillators (ICDs), pacemakers (PM) and cardiac resynchronization therapy devices (CRTs) (115-118).

In the MOST trial (118), AHRE of >5 minutes were associated with 2.48 fold (95% CI 1.25-4.91) increase in risk of total mortality and 2.79 fold (95%CI 1.51-5.15) increase in risk of thromboembolic events in patients with PMs. In another recent study of patients with implanted pacemakers, AHRE episodes ≥5 minutes within 6 months of PM implantation had 2.8 fold increase in risk of cardiovascular mortality and 9-fold increase in risk of stroke mortality during 6.6 years of follow-up (119). Risk of thromboembolic events was found doubled in presence of total atrial tachycardia/atrial fibrillation (AT/AF) burden of >5.5 hours during 30-day after implantation of device in TRENDS study, that included population with ICD, PM and CRT (120). In ASSERT trial (115), subclinical tachyarrhythmias of >6 minutes duration detected by 3 months after implantation of ICD or PM in patients >65 years and hypertension but without baseline AF, were associated with 2.49 fold (95%CI 1.28–4.85, p=0.007) increased risk of ischemic stroke or systemic embolism during 2.5 years of follow-up, the risk sustained after adjustment for CHADS₂ score. In patients with implanted CRT-D, the risk of composite outcomes death or heart failure hospitalizations was twice higher in those with cumulative episodes of AT/AF of >10 minutes per day detected during 13 months of follow-up, in presence of high NYHA class, low ejection fraction and absence of beta-blocker therapy (121). In another recent study of population with implanted CRT and without AF history before implantation, early detection (<6 months) of AHRE >6 min duration was associated with doubled risk of thromboembolic events (HR 2.35, 95% CI 1.09-4.83) (122). SOS AF project analysed data of 3 studies, that included ICD, CRT, or PM population, with 60% having CHADS₂ score >2 (123). Authors demonstrated that AF burden of >5 min per day and > 1 hour per day were associated with risk of stroke or transient ischemic attack development (HR – 1.76 – 2.11) during median 24 months of follow-up. In patients without oral anticoagulation at baseline and AF burden >1 hour/day, the risk was twice higher than in those with AF burden <1 hour, the HR remained significant after adjustment for CHADS₂ score.

These studies on AF detection performed through implanted devices have even highlighted the issue of “subclinical AF”, corresponding to episodes of atrial tachyarrhythmias and AF with duration between 5 minutes and 24 hours that can be measured in terms of “daily AF burden”, and are detected in patients without clinical history of typical symptoms of AF (18).

Remote and home monitoring of CIEDs provides earlier detection of arrhythmias as compared to periodic office device interrogation of devices (124-125). Automated home monitoring of ICDs was
shown to reduce routine office device follow-up as well as to detect arrhythmias early (2 days vs 36 days) providing window for timely management (126). Remote monitoring in patients with ICDs and PMs was cost-effective and new-onset AF was detected earlier in group of remote monitoring (2 days vs. 78 days) compared to standard care (127). Continuous home monitoring in heart failure CRT patients revealed that AHRE>3.8 hours was associated with 4 times increased risk in cardiovascular mortality and 9 times increase in risk of thromboembolic events during 370 days of follow-up (128).

The recently published IMPACT study (129), included patients with ICDs or CRT without history of stroke or documented AF, randomized to control and intervention arms (remote monitoring of CIEDs and oral anticoagulation according to CHADS\textsubscript{2} if AT was detected) . Atrial tachycardia, (AF in 60% and atrial flutter 30% of cases) developed in 33.2 and 36.3% of patients with and without remote monitoring. There were no differences in primary outcomes (stroke, systemic embolic, major hemorrhage, mortality) between control and intervention arms during follow-up, however the treatment of arrhythmia was initiated significantly earlier in the remote monitoring group (3 vs 54 days, p<0.001).

Based on limited current evidence, remote monitoring of CIEDS for AF screening may be considered in patients at risk of stroke and thromboembolic events. There is a need for randomized studies to clarify role of automatic home/remote monitoring of CIEDS in screening of AF and to define populations with CIEDs at risk for AF and its complications.

Management of patients with AHRE

As it is not yet confirmed if AHRE carry exactly the same thromboembolic risk as overt AF, current ESC guidelines (5) recommend ECG confirmation of AF before prescribing oral anticoagulation in high risk patients (figure 3). The effect of anticoagulation therapy on stroke and systemic embolism, when prescribed only on the basis of device-detected AHRE episodes of short duration, in combination with clinical risk stratification is currently prospectively evaluated by ongoing trials (130,131).

6.4. **The role of the General Practioners (GP) and health care professionals**

In many cases the GP is the first to face a patient with suspected AF, or simply at risk of developing AF. Screening for AF in asymptomatic patients in primary care is proposed as a way of reducing the burden of stroke by detecting people who would benefit from prophylactic anticoagulation prior to the onset of arrhythmia-related symptoms (84). Both systematic and opportunistic screening increase the rate of detection of new AF cases, compared with routine practice in patients > 65 years in a primary care
However, opportunistic screening demands far less efforts to the GP (30,104). Strategies used to detect patients with an unknown history of AF include several screening models and various clinical techniques ranging from simple pulse checks to 12 lead ECG with expert interpretation. When AF is suspected through any kind of clinical or electrical screening, the GP remains the cornerstone to further assess the patient, calculate his stroke and bleeding risk factors, and when diagnosis of AF is confirmed by ECG, refer him for an echocardiogram, and take care of the follow-up of the long term treatment, including anticoagulation, when needed (132-133). When the diagnosis of AF is confirmed, an integrated and structured approach with cooperation of primary care physicians, cardiologists, cardiac surgeons, AF specialists, stroke specialists, and allied health care practitioners is needed to evaluate and propose lifestyle interventions, treatment of associated cardiovascular conditions and AF specific therapies (figure 4).

Education also remains a crucial role for the primary care nurses and physicians, including understanding of the disease and related risks, and empowering of the patient in his disease management.

6.5. The role of patient's organizations - Awareness campaigns

Professional Patient Organisations (PPO’s) also play a very important role in healthcare systems by raising awareness of medical conditions, providing support, delivering information and education. Studies have shown awareness campaigns improve outcomes – earlier/quicker diagnosis, informed decision making by both healthcare professional and patient and greater access to appropriate care and treatments (134).

Arrhythmia Alliance (A-A) and AF Association (135-136) are global patient organisations, partnering with patients, governments, policy-makers, medical organisations and allied professionals, providing education, support, and advice to ensure that they receive speedy diagnosis, appropriate access to treatment leading to an improved quality of life.

A-A brought about one of the most important policy changes to affect arrhythmia services in the UK in 2005, resulting in a new Chapter on Arrhythmias and Sudden Cardiac Death in the National Service Framework on Coronary Heart Disease (NSF CHD, 137). Prior to the awareness campaign, the word ‘arrhythmia’ was mentioned only once in the NSF CHD. A-A began an awareness campaign involving politicians, policy makers and the media to draw attention to the lack of guidelines on arrhythmias. A
simple yet effective campaign that within nine months brought about policy change and even garnered support from the Prime Minister of UK and politicians from all political backgrounds. It brought together the cardiology and electrophysiology community in the UK who supported the Arrhythmia Alliance in their campaign – the first of its kind. This simple strategy has now been duplicated around the world by affiliated groups.

The “Detect, Protect, Correct” campaign has grown on a global scale (138-139). With earlier diagnosis (Detect) and the instigation of appropriate anticoagulation therapy (Protect), it is estimated that 50-70 percent of AF-related strokes could be avoided. It is also important that once diagnosed and receiving anticoagulation therapy to reduce the risk of AF-related stroke the patient should also be referred for treatment for AF (Correct).

PPO’s have brought about national, European and global change due to their targeted, concise campaigns. PPO’s can act independently and without any conflict of interest. They represent the patient and carer, those who are living with their condition on a daily basis and the reason why healthcare services are required. Governments, healthcare providers and allied professionals must listen to the patient – they are the end-user – the customer. Therefore public awareness campaigns led by PPO’s may be more powerful, more acceptable and more successful than those initiated by other sectors.

7. Cost effectiveness

Economic evaluations are based on a systematic analysis and comparison of the costs and consequences (health effects) of alternative health care interventions (140-141). The aim is usually to estimate whether a new treatment or a new strategy should be preferred in comparison to the currently used approaches. In these economic analyses, appropriate analytical methods allow to weight up the benefits and costs of specific medical interventions/activities in order to provide a rational basis for policy making (figure 5).

Cost-effectiveness estimates express clinical consequences and outcome in terms of ‘years of added life’ and cost-utility in terms of ‘quality-adjusted life years’ gained, while cost-benefit analysis directly assigns a monetary value to therapeutic benefits (142). With regard to the threshold of cost-effectiveness that is considered affordable by a payer or a health care system, various thresholds have been proposed and, usually, a threshold of 50,000 $/QALY, a figure derived from renal dialysis, has been proposed as a
standard for approving decisions in the contest of Medicare, while in UK, the National Institute of Clinical Excellence took decisions that indirectly suggest a cost-effectiveness threshold in the range of 20,000–30,000 £/QALY (143).

Opportunistic and systematic screening have similar efficacy in improving AF detection and increasing the amount of patients with appropriately diagnosed asymptomatic AF as compared with routine clinical practice. However a strategy for AF detection based on opportunistic screening is associated with lower costs as compared with systematic screening and this is the basis for evaluating cost-effectiveness.

A systematic search of published literature was performed in order to obtain information on cost-effectiveness evaluations on different screening strategies for AF. The focus of the search (performed in April 2016) were the last 4 years, databases were MEDLINE / PUBMED / Cochrane Database of Systematic Reviews / Health Technology Assessment database. For the time before 2012 a Cochrane publication (30) was included referencing only on one RCT meeting the high criteria of the Cochrane meta-review. The results of this systematic search are shown in Table 7.

Overall 4 publications and one Cochrane review (144,145,59,64,30) matched our criteria to include the comparison of an AF screening method with another or with the “no screening at all” case and the inclusion of cost data. The 4 source publications showed that intermittent / opportunistic screening for AF detection (i.e. an ECG recording handheld at the free disposal of the patient itself to be used at predefined recording intervals) may cost – depending on device, calculation method and intensity - between 10 Euro (145) and 108 Euro (30) per patient and screening. In comparison, systematic Holter-ECG based screening may cost up to 471 Euro (30) per patient and screening, depending on device calculation method and intensity.

For the most relevant cost-utility parameter, the cost to prevent one stroke, the method of intermittent screening showed the best effectiveness ranging from 1.916 Euro per saved stroke (135) in a selected geriatric population (no AF history, no device, over 75 years) to 15.993 EUR (59) per saved stroke in an unselected pharmacy population aged 65 and above. All investigations also focusing on QALYs showed quite low costs per QALY, all below 5.000 Euro per QALY (30,59,144). One publication (30) even found a dominant cost-benefit analysis: intermittent screening would save 44.000 Euro per 1000 simulated patients screened over 20 years.

Overall, it turns out that, even with a simple filter of “persons aged over 65” the method is cost-effective in terms of QALYs saved below a value of 5.000 EUR. From the economic standpoint, a staged screening,
using entry selection criteria and simple diagnostic tools, seem to be most feasible and cost-effective in terms of meaningful resource utilization.

Currently, there is lack of reimbursement or financial incentives for screening and this is an obvious limitation to adoption of these strategies in most settings (146).

8. Patient perceptions and engagements

General public awareness about AF related risks is poor(147). There is need to educate people about AF, the potential consequences of having it, and the risks and benefits of treatment when needed. AF may be first detected opportunistically, when the patient attends a physician for a different reason; therefore, many patients inadvertently discover they have AF, and are not given the chance to decline ‘screening’ or to consider the consequences (physical and psychological) of an AF diagnosis beforehand. Symptoms of anxiety commonly accompany an AF diagnosis (149-150): anxiety over having AF, the risk of stroke, the risk of bleeding associated with OAC etc... In addition, screening may result in false positives, subjecting patients to further tests and resultant anxiety. Further, false negatives are highly likely in asymptomatic paroxysmal AF patients; this could falsely reassure people who are at risk. If AF is suspected or detected following screening then a comprehensive assessment and follow-up package are required to ensure patients are promptly and appropriately investigated, treated and reassured.

None of the studies which have screened for AF have assessed patient perceptions of screening, the psychological impact of screening and/or diagnosis of AF, or included pre-screening counselling. However, the SEARCH-AF screening programme (64), conducted in Australian pharmacies, included qualitative interviews reviewing its implementation (89). Although taken from the pharmacist’s perspective (no patients were interviewed), one perceived barrier for AF screening was public engagement. Overall the initiative received positive customer feedback; people were happy for pharmacists to conduct the screening but were not aware that pharmacies could offer this facility. Pharmacists perceived that some people were apprehensive about screening because of fears over the results and of AF being detected; concerns they felt could be allayed by providing clear and simple explanations. In order to promote patient engagement with AF screening, programmes need to be acceptable: not too time-consuming (trade-off between time required and recording ECG long enough to detect AF); ideally non-invasive; and utilising reliable diagnostic methods. Novel technologies are usually
well received. However, multiple strategies are likely to be warranted in order to engage a greater proportion of the general public.

9. Future research

No studies have as yet reported the effect of screening for atrial fibrillation (AF) on stroke incidence or severity, so there remains a lack of evidence about the clinical benefit of earlier detection and treatment of screen detected patients. When economical resources are lacking, one may consider to specifically focusing AF screening in target populations at higher risk, such as patients above a certain age, high CHA\textsubscript{2}DS\textsubscript{2}-VASc score patients, screening in diabetic clinics, peripheral artery disease clinics or screening in nursing homes. The cost-effectiveness of each of these strategies should be compared to help national health systems in deciding their screening strategies. As randomised trials comparing these strategies will have little chance to happen, analytic modeling may be an alternative. Also the psychological aspects of AF screening have not yet been investigated: What is the impact of detecting AF in asymptomatic patients with low CHA\textsubscript{2}DS\textsubscript{2}-VASc scores not indicated for anticoagulation protection? What is the risk associated with over-detection and over-anticoagulation of patients with short runs of atrial arrhythmias?
10. Conclusions: KEY POINTS & RECOMMENDATIONS

<table>
<thead>
<tr>
<th>Key Points & Recommendations</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Opportunistic screening for AF in the community by pulse taking or ECG strip recording is recommended by ESC guidelines in persons aged 65 years and older.</td>
<td>5</td>
</tr>
<tr>
<td>• Systematic ECG screening may be considered to detect AF in patients aged 75 years or older, or those at high stroke risk.</td>
<td></td>
</tr>
<tr>
<td>• ECG confirmation of AF is needed before considering the patient for anticoagulation therapy.</td>
<td>5, 152</td>
</tr>
<tr>
<td>• Detection of AF is of crucial importance in stroke survivors and efforts to screen for AF should include prolonged ECG monitoring, eventually using external or implanted loop recorders.</td>
<td>4, 5, 153</td>
</tr>
<tr>
<td>• Regular interrogation of pacemakers and ICDs memories, eventually using tele-surveillance, is advised for an earliest detection of subclinical AF and of atrial high rate episodes (AHRE).</td>
<td>5</td>
</tr>
<tr>
<td>• AHRE of >5-6mins burden in combination with stroke risk factors (eg. CHA_2DS_2-VASc ≥2) is associated with a high risk of stroke or systemic embolism</td>
<td>115, 118</td>
</tr>
<tr>
<td>• All stakeholders in healthcare systems should be involved, to increase awareness and education, increase patient’s consciousness about the risks of untreated AF, and increase auto-surveillance, resulting in an earlier management of these patients as soon as AF is confirmed.</td>
<td>132, 133</td>
</tr>
<tr>
<td>• Repeated recordings, using new technologies such as smartphone applications can be recommended to document AF in selected asymptomatic patients.</td>
<td>68, 98</td>
</tr>
<tr>
<td>• When performed in high risk populations, screening for AF is cost-effective.</td>
<td>59, 144</td>
</tr>
<tr>
<td>• Funding of AF detection campaigns is always a challenge and depends on the national income level, until national health authorities will realize the benefit of an early diagnosis with an early start of anticoagulation in high risk patients.</td>
<td>134</td>
</tr>
</tbody>
</table>
Figure 1: Prevalence of AF in the Overall Population According to Gender and Age in 65,747 subjects screened in Belgium during the week of the Heart rhythm from 2010 to 2014 (26).

Legend: M = Males; F = Females.
Figure 2: Screening tools (better drawing in progress by professional designer)

Clinical screening
Risk scores
Pulse taking
Automated blood pressure monitors

ECG screening
Single lead: Omron recorder
MyDiagnostick
Zio patch

Multilead: Holter monitoring
Multielectrode belt

New tools
Pulse smartphone
Smartphone + device

Implanted devices
Pacemaker
ICD
ILR
Telemetry
AF = atrial fibrillation, AHRE = atrial high rate episodes, CIED = cardiac implanted electric devices, ECG = electrocardiogram, ESC = European Society of Cardiology, OAC = oral anticoagulants
Figure 4: Screening and management strategy

ECG = electrocardiogram
Figure 5: Epidemiological considerations in screening strategies for AF

<table>
<thead>
<tr>
<th>Test performance at detecting AF</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>Specificity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prevalence and incidence of AF in target population</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive predictive value</td>
<td>Negative predictive value</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cost-effectiveness of AF screening</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Population risk of stroke/systemic embolism</td>
<td>Cost threshold per QALY</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AF management</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral anticoagulation prescription and adhesion</td>
<td>Efficacy/Safety of anticoagulation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinical endpoints</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Stroke/systemic embolism</td>
<td>Mortality</td>
</tr>
<tr>
<td>Definitions (where related to a treatment or procedure)</td>
<td>Consensus statement</td>
</tr>
<tr>
<td>--</td>
<td>---------------------</td>
</tr>
<tr>
<td>Scientific evidence that a treatment or procedure is beneficial and effective. Requires at least one randomized trial, or is supported by strong observational evidence and authors’ consensus (as indicated by an asterisk).</td>
<td>Recommended/indicated</td>
</tr>
<tr>
<td>General agreement and/or scientific evidence favour the usefulness / efficacy of a treatment or procedure. May be supported by randomized trials based on small number of patients or not widely applicable.</td>
<td>May be used or recommended</td>
</tr>
<tr>
<td>Scientific evidence or general agreement not to use or recommend a treatment or procedure.</td>
<td>Should NOT be used or recommended</td>
</tr>
</tbody>
</table>
Table 2: Expected or hypothetical potential advantages of detecting AF in an asymptomatic stage.

- Prevention of subsequent onset of symptoms
- Prevention and/or reversal of electrical/mechanical atrial remodeling
- Prevention and/or reversal of tachycardiomyopathy at atrial and ventricular level
- Prevention and/or reversal of AF-related hemodynamic derangements
- Prevention of thromboembolic events and stroke by institution of oral anticoagulation in patients at risk
- Prevention of AF-related morbidity and reduction of AF-related hospitalizations
- Reduction of AF-related mortality

Legend: AF= atrial fibrillation
Table 3: Screening studies

Notes: * Denominator for detection rate of new AF cases excludes those with a prior history of AF; ** Denominator for detection rate of new AF cases includes those with a prior history of AF; ^ Study authors reported outcomes for a hypothetical cohort of 1000 people; Px – Patients; VA – Veterans Affairs; ECG – Electrocardiogram; CI – Confidence Interval

Table 4: Sensitivity and specificity of various AF screening tools

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse taking</td>
<td>87-97 %</td>
<td>70-81%</td>
</tr>
<tr>
<td>Automated BP measurements</td>
<td>93-100%</td>
<td>86-92%</td>
</tr>
<tr>
<td>Single lead ECG screening</td>
<td>94-98%</td>
<td>76-95%</td>
</tr>
<tr>
<td>Smartphone apps</td>
<td>98.5 %</td>
<td>91.4 %</td>
</tr>
</tbody>
</table>

AF = atrial fibrillation, BP = blood pressure, ECG = electrocardiogram
Table 5: Guidelines recommendations

<table>
<thead>
<tr>
<th>Year</th>
<th>Organization</th>
<th>Guidelines recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>ESC (28)</td>
<td>Opportunistic screening for AF in patients >65 years of age using pulse taking followed by an ECG is recommended to allow timely detection of AF (Class I, LoE B)</td>
</tr>
<tr>
<td>2014</td>
<td>NICE (152)</td>
<td>In patients presenting with any of the following: breathlessness/dyspnoea, palpitations, syncope/dizziness, chest discomfort, stroke/TIA manual pulse palpation should be performed to assess for the presence of an irregular pulse that may indicate underlying AF. (Class C) An ECG should be performed in all patients, whether symptomatic or not, in whom AF is suspected because an irregular pulse has been detected (Class B).</td>
</tr>
<tr>
<td>2014</td>
<td>AHA/ACC/HRS (4)</td>
<td>No formal recommendation for screening</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In the full text: Prolonged or frequent monitoring may be necessary to reveal episodes of asymptomatic AF.</td>
</tr>
<tr>
<td>2014</td>
<td>Canadian (153)</td>
<td>For patients being investigated for an acute embolic ischemic stroke or TIA, we recommend at least 24 hours of ECG monitoring to identify paroxysmal AF in potential candidates for OAC therapy (Strong Recommendation, Moderate-Quality Evidence). For selected older patients with an acute, nonlacunar, embolic stroke of undetermined source for which AF is suspected but unproven, we suggest additional ambulatory monitoring (beyond 24 hours) for AF detection, where available, if it is likely that OAC therapy would be prescribed if prolonged AF is detected (there are currently insufficient data to indicate what the minimum AF duration should be for OAC to be instituted, and expert opinion varies widely) (Conditional Recommendation, Moderate-Quality Evidence)</td>
</tr>
<tr>
<td>2016</td>
<td>ESC (5)</td>
<td>Opportunistic screening for AF is recommended by pulse taking or ECG rhythm strip in patients >65 years of age (Class I, LoE B) In patients with TIA or ischemic stroke, screening for AF is recommended by short-term ECG recording followed by continuous ECG monitoring for at least 72 hours. (Class I, LoE B) It is recommended to interrogate pacemakers and ICDs on a regular basis for atrial high rate episodes (AHRE). Patients with AHRE should undergo further ECG monitoring to document AF before initiating AF therapy (Class I, LoE B) In stroke patients, additional ECG monitoring by long term non-invasive ECG monitors or implanted loop recorders should be considered to document silent AF (Class IIa, LoE B) Systematic ECG screening may be considered to detect AF in patients aged >75 years, or those at high stroke risk (Class IIa, LoE B)</td>
</tr>
</tbody>
</table>

Legend: AF = atrial fibrillation, ECG = electrocardiogram, ICD = implantable cardioverter defibrillator, LoE
= level of evidence, TIA = transient ischemic attack

Table 6: Screening strategies

<table>
<thead>
<tr>
<th>Methodical screening of all subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSTEMATIC</td>
</tr>
<tr>
<td>Methodical screening of all subjects living in one specific area</td>
</tr>
<tr>
<td>COMMUNITY</td>
</tr>
<tr>
<td>Methodical screening of all subjects presenting critical clinical characteristics</td>
</tr>
<tr>
<td>HIGH RISK POPULATIONS</td>
</tr>
<tr>
<td>Screening of some subjects taking advantage of opportunities and circumstances</td>
</tr>
<tr>
<td>OPPORTUNISTIC</td>
</tr>
</tbody>
</table>
Table 7: Cost-effectiveness

<table>
<thead>
<tr>
<th>Method used</th>
<th>Screening Cost per Pt</th>
<th>Cost per detected AF Pt</th>
<th>QALYs saved per 1000 Ptyrs</th>
<th>Cost Savings per 1.000 Pt yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lars Levin et al. 2014</td>
<td>intermittent ECG recordings</td>
<td>108,00 €</td>
<td>n.a.</td>
<td>1,5</td>
</tr>
<tr>
<td>Lars Levin et al. 2014</td>
<td>short term 24h Holter ECG</td>
<td>471,00 €</td>
<td>n.a.</td>
<td>1,5</td>
</tr>
<tr>
<td>M. Aronsson et al. 2015</td>
<td>intermittent ECG recordings</td>
<td>50,00 €</td>
<td>n.a.</td>
<td>1,2</td>
</tr>
<tr>
<td>Lien Desteghe et al.</td>
<td>auto ECG in-hosp cardio pop</td>
<td>10,00 €</td>
<td>193,00 €</td>
<td>n.a.</td>
</tr>
<tr>
<td>Lien Desteghe et al.</td>
<td>auto ECG in-hosp geriatric pop</td>
<td>10,00 €</td>
<td>82,00 €</td>
<td>n.a.</td>
</tr>
<tr>
<td>N. Lowres et al.</td>
<td>12 lead ECG in pharmacy pop</td>
<td>142,50 €</td>
<td>9 500,00 €</td>
<td>n.a.</td>
</tr>
<tr>
<td>Moran et al. Reviews 2013</td>
<td>intermittent ECG screening</td>
<td>n.a.</td>
<td>421,25 €*</td>
<td>n.a.</td>
</tr>
<tr>
<td>Moran et al. Reviews 2013</td>
<td>systematic ECG screening</td>
<td>n.a.</td>
<td>1892,50 €*</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

* = Calculated from GBP with Factor 0,8 GBP = 1 Euro

ECG = electrocardiogram, auto = automated, in-hosp = in hospital, pop = population, Pt = patient, Ptyrs = patient.years
References

60/ Rhys GC, Azhar MF, Foster A. Screening for atrial fibrillation in patients aged 65 years or over attending annual flu vaccination clinics at a single general practice. Qual Prim Care. 2013;21(2):131-140.

84/ Harris K, Edwards D, Mant J. How can we best detect atrial fibrillation? J R C Physicians Edinb 2012; 42(Suppl 18):5-22

88/ NICE. WatchBP Home A for opportunistically detecting atrial fibrillation during diagnosis and monitoring or hypertension. Medical Technology Guidance, Published NICE 16th January 2013. Nice.org.uk/guidance/mtg13

94/ Meziane N, Webster JG, Attari M, Nimunkar AJ. Dry electrode for electrocardiography. Physiol Meas 2013;34(9):R47-69

130/ Apixaban for the reduction of Thrombo-embolism in patients with device-detected subclinical atrial fibrillation (ARTESIA). ClinicalTrials.gov identifier : NCT01938248

131/ Non-vitamin K antagonist oral anticoagulants in patients with atrial high rate episodes (NOAH). ClinicalTrials.gov identifier: NCT02618577

134/ Lobban TCA, Camm AJ. Patient Associations as stakeholders: a valuable partner for facilitating access to therapy. Europace 2011;13:ii21-ii24

135/ Arrhythmia Alliance – www.aa-international.org

136/ AF Association – www.afa-international.org

http://www.rand.org/pubs/research_reports/RR1053.html

148/ Lane DA, Aguinaga L, Blomstrom-Lundqvist C et al. Cardiac tachyarrhythmias and patient values and preferences for their management: the European Heart Rhythm Association (EHRA) consensus document endorsed by the Heart Rhythm Society (HRS), Asia Pacific Heart Rhythm Society (APHRS), and Sociedad Latinoamericana de Estimulacion Cardiaca y Electrofisiologa (SOLEACE). Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology 2015;17:1747-1769.

Appendix

<table>
<thead>
<tr>
<th>Study, Design, Risk of bias*</th>
<th>Intervention and comparator</th>
<th>Method of allocation</th>
<th>Setting</th>
<th>Participant characteristics</th>
<th>Length of follow-up and Methods of analysis</th>
<th>Results (new cases detected (%))</th>
<th>Additional comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benito 2015 (49), Design: RCT, Risk of bias: High</td>
<td>Intervention: A 2 year programme of early detection of AF for people without AF but with one or more AF risk factors comprising ECG, physical examination and medical history every 6 months; participants were also trained to take their own pulse and requested to do so once a month</td>
<td>A random sample of 4000 patients taken from the total study population (7498 patients with one or more AF risk factors for AF were) and randomly allocated to either the screening group (2000 patients) or the control group (2000 patients).</td>
<td>Spain, primary healthcare centre in an urban area</td>
<td>1 or more AF risk factor (≥65, hypertension, ischaemic heart disease, valvular heart disease, diabetes, heart failure)</td>
<td>Follow up: 24 months</td>
<td>11 new cases of AF were diagnosed in the intervention group (2.4%) compared with 6 new cases in the control group (1.3%). This corresponds with a non-significant odds ratio (OR) of 1.86 (95%CI 0.68 to 5.08) of being detected in the systematic screening group compared with the opportunistic screening group.</td>
<td>At 6 months there was a significant difference in AF detection between the 2 groups (OR 8.16, 95%CI 1.02 to 65.49), but this was not maintained at 12 months. Time to diagnosis was shorter in the interventions group (median 7 days [IQR 192] in the intervention group compared with 277 days [IQR 188] in the control group (p<0.05).</td>
</tr>
</tbody>
</table>

Note: RCT = Randomized Controlled Trial.
<table>
<thead>
<tr>
<th>Hobbs 2005 (47), Design: RCT, Risk of bias: Low</th>
<th>Intervention: 1) Opportunistic pulse palpation of over 65’s during routine GP consultations, with ECG confirmation of an irregular pulse. 2) Systematic screening of over 65’s by invitation to 12-lead ECG</th>
<th>Comparator: Routine care</th>
<th>Stratified cluster randomisation of GP practices (25 intervention, 25 control), with random selection of 5000 patients aged 65 years and older from routine care practices, and 10,000 patients aged 65 years and older from intervention practices, which were then randomised to either systematic (5000 patients) or opportunistic (5000 patients) screening</th>
<th>UK primary care Control: 4963, Opportunistic screening: 4933, Systematic screening: 4933. (When existing AF cases and patients with missing data are excluded the number of patients in each arm was: Control 4513, Opportunistic: 4575, Systematic: 4562)</th>
<th>Aged ≥65 years</th>
<th>Follow up: 12 months</th>
<th>47 new cases of AF were identified in the control group (1.04%), compared with 75 in the opportunistic screening group (1.64%) and 74 in the systematic screening group (1.62%). (Both systematic and opportunistic screening was more effective than routine practice (OR 1.57, 95% CI 1.08 to 2.26 and OR 1.58, 95% CI 1.10 to 2.29, respectively).)</th>
<th>Baseline AF prevalence in the control population was higher than in the intervention population (7.9% versus 6.9%). Among those without a diagnosis of AF, the uptake rate of systematic screening was 53%, while the uptake rate of pulse palpation was 69%, and 73% of those found to have an irregular pulse agreed to have an ECG.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morgan 2002 (48), Design: RCT, Risk of bias: High</td>
<td>Intervention: Systematic screening of over 65’s by invitation to lead II rhythm strip ECG</td>
<td>Comparator: Opportunistic pulse palpation of over 65’s during routine GP consultations.</td>
<td>Random sample of 750 patients aged between 65 and 100 years from each of 4 general practices (3001 in total), which were then randomised to either opportunistic or systematic screening</td>
<td>UK primary care Opportunistic screening: 1502, Systematic screening: 1499</td>
<td>Aged ≥65 years</td>
<td>Follow up: 6 months</td>
<td>7 new AF cases were identified in the opportunistic screening group over the 6 month follow up period (0.5%), compared with 12 new AF cases in the systematic screening group (0.8%). This corresponds with a non-significant odds ratio (OR) of 1.10 to 2.29, respectively.)</td>
<td>A confirmatory ECG was not required to confirm all AF cases diagnosed in the opportunistic screening arm. Uptake of systematic screening was 73%, compared with 29% for opportunistic pulse palpation. The percentage of</td>
</tr>
</tbody>
</table>
randomised, including those with a previous diagnosis of AF.

1.72 (95%CI 0.68 to 4.39) of being detected in the systematic screening group compared with the opportunistic screening group.

Desteghe 2016 (59), Design: Cross sectional study, Risk of bias: High

Intervention: AF screening using two handheld ECG devices (MyDiagnostick and AliveCor) among hospitalised patients in geriatric and cardiac wards

All patients on both wards were asked to consecutively hold the two devices to obtain ECG recordings, including those with known AF or an implanted device.

Cardiac and geriatric wards in a large tertiary hospital in Belgium.

344 cardiac px.
159 geriatric px.

Cardiac px: mean age 68, 57% male
Geriatric px: mean age 83, 38% male

Follow up: N/A

Using the results of the study the authors calculate the number of new AF cases diagnosed using both devices alone, and in combination with physician review, for a hypothetical sample of 1000 cases with or without AF. Denominator used to calculate yield is those without a prior history of AF.

Cardiology patients:
Device algorithm alone: 4 new AF cases per 700 screened (0.05%)
Device algorithm plus physician review: 4 new AF cases per 700 screened (0.06%)

Geriatric patients:
Device algorithm alone: 9 new AF cases per 680 screened (1.3%)
Device algorithm plus physician review: 14 new AF cases per 680 screened (2.1%)

those found with an irregular pulse who agreed to undergo an ECG was not reported.

The number of new cases detected using each of the devices was identical.
<table>
<thead>
<tr>
<th>Study</th>
<th>Intervention</th>
<th>Comparator</th>
<th>Follow up</th>
<th>Number of new cases diagnosed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaasenbrood 2016 (61), Design: Cross sectional study, Risk of bias: High</td>
<td>AF screening using a single-lead handheld ECG (MyDiagnostick) of patients attending an influenza vaccination programme.</td>
<td>None</td>
<td>None</td>
<td>37 new cases were diagnosed through screening (1.1%)</td>
</tr>
<tr>
<td>Proietti 2016 (26), Design: Cross sectional study, Risk of bias: High</td>
<td>Over 18's invited to attend for a one lead ECG through a media campaign that included flyers and advertisements in national radio stations, newspapers and magazines</td>
<td>None</td>
<td>None</td>
<td>One year data from this programme was previously reported by Claes 2012.32</td>
</tr>
<tr>
<td>Study</td>
<td>Intervention</td>
<td>Comparator</td>
<td>Setting</td>
<td>Follow up</td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>------------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>Smyth 2016 (62), Design: Cross sectional study, Risk of bias: High</td>
<td>Opportunistic pulse palpation of over 65's during routine GP consultations, with ECG confirmation of an irregular pulse</td>
<td>None</td>
<td>General practices in rural areas in the west of Ireland</td>
<td>6 months</td>
</tr>
<tr>
<td>Bury 2015 (72), Design: Cross sectional study, Risk of bias: High</td>
<td>Systematic screening of over 70's using 3-lead ECG</td>
<td>None</td>
<td>25 general practices were requested to randomly select 40 patients without a history of atrial fibrillation or flutter, who had attended the practice at least once in the last 3 years and who did not have a terminal illness or cognitive impairment that might impact on informed consent</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Of the 1003 patients invited, 639 (64%) consented to screening. Among these, 20 patients were found to have a history of AF from review of their charts and 3 cases were newly diagnosed prior to screening. Ultimately 566 of the 1003 patients invited to screening had a 3 lead ECG performed (56%).
<table>
<thead>
<tr>
<th>Study</th>
<th>Intervention</th>
<th>Comparator</th>
<th>Location</th>
<th>Age Range of Those Screened</th>
<th>Rate of New Case Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>LePage 2015</td>
<td>Cardiac screening involving blood pressure monitoring, single lead ECG and a questionnaire, advertised to members of the general public though local press and radio.</td>
<td>None</td>
<td>Island of Jersey, which has a total population of 98,000. 989 people attended for screening, with 954 having an ECG recorded</td>
<td>12-99 years</td>
<td>2 new cases of AF (0.2%) along with a further 2 cases of atrial flutter</td>
</tr>
<tr>
<td>Svennberg 2015</td>
<td>People aged 75 or 76 years were invited to attend an ECG examination at the screening clinic followed by intermittent 1-lead ECG recordings twice daily or whenever they noticed palpitations over a two week period</td>
<td>None</td>
<td>2 regions (Stockholm County and Halland) in Sweden. 7173 participants (666 of which had a previous diagnosis of AF)</td>
<td>75-76 years, 46% male</td>
<td>218 new cases of AF were diagnosed (3.0%)</td>
</tr>
<tr>
<td>Study</td>
<td>Intervention</td>
<td>Comparator</td>
<td>Participants</td>
<td>Age</td>
<td>Follow up</td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>------------</td>
<td>--------------</td>
<td>-----</td>
<td>-----------</td>
</tr>
<tr>
<td>Kearley 2014 (73), Design: Cross sectional study, Risk of bias: High</td>
<td>Patients ≥75 years, with or without AF, were screened using an AF-detecting blood pressure monitor, two single lead ECG devices and a 12-lead ECG.</td>
<td>None</td>
<td>2673 out of a total of 6529 patients aged ≥75 from 6 UK general practices were invited to attend screening. Recruitment was stopped when 1000 patients were screened. 1 patient was excluded from the analysis due to an inconclusive 12-lead ECG, giving a total sample size of 999.</td>
<td>Aged ≥75 years Mean age 80 years, 49% male</td>
<td>Follow up: N/A Rate of new case detection was calculated using the denominator of all patients screened, including those with a prior history of AF</td>
</tr>
<tr>
<td>Lowres 2014 (64), Design: Cross sectional study, Risk of bias: High</td>
<td>Opportunistic screening of patients aged ≥65 attending community pharmacies using pulse palpation and handheld lead I ECG.</td>
<td>None</td>
<td>All patients entering the pharmacies involved in the study were eligible for screening, unless they had an existing condition that prevented their participation, such as severe dementia or a terminal illness. Screening was advertised in the pharmacies and staff offered screening to potentially eligible customers.</td>
<td>Aged ≥65 years Mean age 76 years. 44% male</td>
<td>Follow up: N/A Rate of new case detection was calculated using the denominator of all patients screened, including those with a prior history of AF</td>
</tr>
<tr>
<td>Study</td>
<td>Intervention</td>
<td>Comparator</td>
<td>Study Details</td>
<td>Rate of new cases of AF diagnosed (%, Follow up time)</td>
<td>Exclusion criteria</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------</td>
<td>------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Turakhia 2014</td>
<td>Over 55's without a history of AF with 2 or more AF risk factors were screened using a wearable 1-lead ECG sensor that records up to 14 days of continuous monitoring</td>
<td>None</td>
<td>79 individuals were enrolled from outpatient cardiology, echocardiography and stress testing clinics, 75 of which completed monitoring. No data is available on whether consecutive patients were enrolled and how many declined to participate.</td>
<td>5.3% (2 weeks)</td>
<td>included those with previously documented AF, supraventricular tachycardia, stroke, transient ischaemic attack, systemic embolism, palpitations or syncope in the previous 12 months</td>
</tr>
<tr>
<td></td>
<td>1 health care provider in California, USA (Veterans Affairs Palo Alto Health Care System)</td>
<td></td>
<td>75 patients completed monitoring</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aged ≥55 years with 2 or more AF risk factors (coronary artery disease, heart failure, hypertension, diabetes, sleep apnea)</td>
<td></td>
<td>Mean age 69 years, 100% male</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Follow up: 2 weeks Rate of new case detection calculated using the denominator of all those who successfully completed monitoring (none of which had a history of AF)</td>
<td></td>
<td>4 new cases of AF were diagnosed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virtanen 2014</td>
<td>Over 75's were invited to an index assessment that included an ECG and were trained to palpate their own pulse and requested to do so twice a day for one month</td>
<td>None</td>
<td>Total population of people over 75 was 1024. All contactable people (982) were sent a letter inviting their participation, of which 460 (48%) responded. Total number of people willing to participate in training after all exclusions (including prior AF diagnosis) was 300. Random sample of 206 was selected, one of which was excluded due to chronic AF.</td>
<td>2.0% (1 month)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 municipality in Finland</td>
<td></td>
<td>205 patients trained in pulse palpation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aged ≥75 years Mean age 79 years, 43% male</td>
<td></td>
<td>Follow up: 1 month Rate of new case detection reported as the number of newly diagnosed cases divided by the total number trained (which included known AF cases)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 new cases of AF were diagnosed (2.0%)</td>
<td></td>
<td>At 1 month follow up the capability for pulse palpation was rated as good for 69% of the study population, moderate for 18% (some difficulty finding pulse or calculating heart rate) and poor for 13% (unable to find pulse or calculate heart rate).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Intervention</td>
<td>Comparator</td>
<td>Region</td>
<td>Age</td>
<td>Gender</td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>------------</td>
<td>--------</td>
<td>-----</td>
<td>--------</td>
</tr>
<tr>
<td>Engdahl 2013 (56), Design: Cross sectional study, Risk of bias: High</td>
<td>People aged 75 or 76 years were invited to undergo a 12-lead ECG. Those in sinus rhythm with at least one AF risk factor in addition to their age (CHADS$_2$ ≥2) were requested to perform intermittent 1-lead ECG recordings twice daily or whenever they noticed palpitations over a two week period</td>
<td>None</td>
<td>Halmstad, Sweden</td>
<td>Aged 75-76 years, 43% male</td>
<td>2 weeks</td>
</tr>
</tbody>
</table>
| Clua-Espuny 2013 (74), Design: Cross sectional study, Risk of bias: High | People aged ≥60 years were requested to attend for an ECG in their local primary care centre | None | Baix Ebre, Spain | Aged ≥60 years, average age 79 years, gender distribution not reported | N/A | 23 new cases of AF were diagnosed (2.2%) | | Type of ECG test performed is not reported. Study is described as retrospective, but the paper reports that selected patients were contacted to sign consent forms and agree to undergo ECG testing.
<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Risk of bias</th>
<th>Intervention</th>
<th>Comparator</th>
<th>Participants</th>
<th>Age</th>
<th>Follow up</th>
<th>Study outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frewen 2013 (52), Design: Cross sectional study, Risk of bias: High</td>
<td></td>
<td></td>
<td>3 lead ECG as part of a population study of ageing in over 50's</td>
<td>None</td>
<td>8175 people were recruited from a nationally representative sample, corresponding to a response rate of 62%. No information is reported on how the subset of people who had an ECG performed was selected.</td>
<td>Aged ≥50 years</td>
<td>Follow up: N/A</td>
<td>45 new cases of AF diagnosed (0.9%)</td>
</tr>
<tr>
<td>Rhys 2013 (60), Design: Cross sectional study, Risk of bias: High</td>
<td></td>
<td></td>
<td>AF screening by pulse palpation, followed by ECG if an irregular pulse is found, of all over 65's attending influenza vaccination clinics, regardless of whether they had a prior diagnosis of AF</td>
<td>None</td>
<td>573 of the 1714 over 65's in the study area attended the influenza vaccination clinic, all of whom were screened.</td>
<td>Aged ≥65 years</td>
<td>Follow up: N/A</td>
<td>2 new cases of AF were diagnosed (0.3%)</td>
</tr>
</tbody>
</table>

The authors report that those aged ≥85 may have been underrepresented due to frailty and transport difficulties making them less likely to attend flu vaccination clinics. Uptake of pulse palpation: 100%, Uptake of ECG for those with an irregular pulse and didn’t have a prior AF diagnosis: 57%. 7 of 39 ECGs were unreadable.
<table>
<thead>
<tr>
<th>Study</th>
<th>Intervention</th>
<th>Comparator</th>
<th>Invitations to screening</th>
<th>3 primary care centres and 1 tertiary hospital in Spain</th>
<th>Aged ≥65 years</th>
<th>Follow up</th>
<th>Rate of new case detection</th>
<th>Participants recorded an average of 24 daily readings over the 30 day screening period (range 1 to 32)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sanmartin 2013 (65), Design: Cross sectional study, Risk of bias: High</td>
<td>Over 65's without a history of AF were sent a letter inviting them to attend screening clinics involving pulse palpation, blood pressure monitoring and heart rate measurement.</td>
<td>None</td>
<td>Invitations to screening were posted to 8869 of the 9864 over 65's without a history of AF in the study areas, as identified from medical records</td>
<td>1532 attended a screening clinic which was conducted over 5 consecutive days, 46 participants had a history of AF, giving a study population of 1486</td>
<td>Mean age 73 years, 43% male</td>
<td>N/A</td>
<td>Rate of new case detection was calculated using the denominator of all those without a history of AF who attended screening</td>
<td>17 new cases were diagnosed (1.1%)</td>
</tr>
<tr>
<td>Wiesel 2013 (75), Design: Cross sectional study, Risk of bias: High</td>
<td>Patients (with or without AF) with at least one risk factor for AF were monitored daily for 30 days using an AF-detecting blood pressure monitor, as well as an ECG event monitor</td>
<td>None</td>
<td>160 patients were enrolled from general practices, 10 withdrew before recording any ECG or BP measurements, 1 failed to record any ECG readings, 1 patient with a pacemaker was omitted and 9 failed to record logs of the BP monitor readings as required for participation, leaving a total of 139 screened patients.</td>
<td>Unspecified number of general practices, USA</td>
<td>Mean age 67 years, 37% male</td>
<td>30 days</td>
<td>Rate of new case detection calculated using the denominator of all those who had ≥1 AF blood pressure monitor reading with a comparative ECG recording (including those with known AF)</td>
<td>2 new cases of AF were diagnosed (1.4%)</td>
</tr>
</tbody>
</table>
| Gordon 2012
(55),
Design: Cross sectional study,
Risk of bias:
High |
|---|---|---|---|---|---|
| **Intervention:** Screening of people aged ≥65 years without a history of AF who are attending annual influenza vaccination clinics over the course of two years, using pulse palpation and 12-lead ECG of those found to have an irregular pulse
Comparator: None |
| **A self selected group of people who attended an influenza vaccination programme over the course of two years**
Two commissioning group areas in the UK.
36,290 patients without a history of AF who attended an influenza vaccination clinic were screened in year one of the study, out of a total population of 64,257 over 65’s (56%)
(31,908 patients screened out of a total population of 65,063 over 65’s (49%) in year two) |
| **Age and gender distribution was not recorded**
Follow up: N/A
Rate of new case detection is calculated here using the denominator of all patients screened.
232 new cases of AF diagnoses in years 1 (0.64%)
(142 new cases of AF diagnosed in year 2 [0.44%]) |
| Schnabel 2012
(76),
Design: Cross sectional study,
Risk of bias:
High |
| **Intervention:** 12 lead ECG screening as part of a population based study of cardiovascular disease prevalence
Comparator: None |
| **Random sample of 5000 people aged between 35 and 74 from a total population 210,867, stratified by sex, age group, and urban versus rural areas, with or without a history of AF**
City of Mainz and the region of Mainz-Bingen in Germany.
The study sample consisted of the first 5000 people screened |
| **Aged between 35 and 74 years**
Average age 52 years, 50% male |
| **Follow up:** N/A
Rate of new case detection is calculated here using the denominator of all patients screened, including those with a prior history of AF
25 new AF cases were diagnosed (0.5%)
None |
<table>
<thead>
<tr>
<th>Study</th>
<th>Intervention</th>
<th>Comparator</th>
<th>Design</th>
<th>Risk of bias</th>
<th>USA</th>
<th>Aged ≥45 years</th>
<th>Follow up</th>
<th>Rate of new case detection</th>
<th>Study outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meschia 2010</td>
<td>7 or 12 lead ECG performed as part of a study examining geographical and racial differences in stroke incidence among over 45's</td>
<td>None</td>
<td>Cross sectional study</td>
<td>High</td>
<td>30,239 people were recruited, but 378 were excluded for missing ECG or lack of self-reporting of AF history, leaving a study population of 29861</td>
<td>Aged ≥45 years</td>
<td>Follow up: N/A</td>
<td>Rate of new case detection is calculated here using the denominator of all patients screened, including those who were aware they had a history of AF</td>
<td>174 new cases diagnosed (0.6%)</td>
</tr>
<tr>
<td>Wheeldon 1998</td>
<td>Over 65's from a single practice were invited to attend screening using 12-lead ECG</td>
<td>None</td>
<td>Cross sectional study</td>
<td>High</td>
<td>1 urban general practice run by 4 physicians in the UK 1207 of the 1422 patients invited agreed to be screened (85%)</td>
<td>Aged ≥65 years</td>
<td>Follow up: N/A</td>
<td>Rate of new case detection reported here as the number of new AF cases divided by the total number invited to screening</td>
<td>5 new cases of AF were diagnosed (0.4%)</td>
</tr>
</tbody>
</table>

Wheeldon 1998 (63)
Intervention: Over 65's from a single practice were invited to attend screening using 12-lead ECG
Comparator: None
Design: Cross sectional study, Risk of bias: High
USA
All 1422 patients over 65 (with or without AF) from the overall practice population of 7526 were invited to screening
Aged ≥65 years
Follow up: N/A
Rate of new case detection reported here as the number of new AF cases divided by the total number invited to screening
5 new cases of AF were diagnosed (0.4%)
Study outcome was self-reported awareness of AF and no search of individuals’ medical files was conducted. Almost half of those diagnosed who reported no history of AF were taking warfarin.
<table>
<thead>
<tr>
<th>Study (Year)</th>
<th>Intervention</th>
<th>Comparator</th>
<th>Cohort Details</th>
<th>Follow up</th>
<th>Study Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Furberg 1994 (51), Design: Cross sectional study, Risk of bias: High</td>
<td>12 lead ECG performed as part of a study examining risk factors for coronary artery disease and stroke in over 65's</td>
<td>None</td>
<td>5201 men and women were recruited from a random sample of patients from Medicare eligibility lists from 4 US communities. 4 areas in the US. After exclusion of those with missing ECG data or pacemakers the study population included 5151 participants. Aged ≥65 years</td>
<td>N/A</td>
<td>77 new cases diagnosed (1.5%)</td>
</tr>
<tr>
<td>Hill 1987 (66), Design: Cross sectional study, Risk of bias: High</td>
<td>Over 65's without AF symptoms were sent a letter inviting them to undergo a screening assessment that included a 12 lead ECG</td>
<td>None</td>
<td>All 1015 over 65's from one general practice without AF symptoms were sent a letter inviting them to undergo screening in their local health centre or in their own home. 1 primary care area in the UK. 196 of the 1015 over 65's without AF either refused or had moved away or died, giving a total of 819 patients screened. Aged ≥65 years</td>
<td>N/A</td>
<td>10 new AF cases diagnosed (1.2%)</td>
</tr>
</tbody>
</table>

* Risk of bias was assessed using the Cochrane risk of bias tool; RCT – Randomised controlled trial; ECG – Electrocardiogram; GP – General practitioner; OR – Odds ratio; CI – Confidence interval; N/A – Not applicable; IQR – Interquartile range; BP – Blood pressure.