The epidemiology of adolescents living with perinatally-acquired HIV: a cross-region global cohort analysis

Manuscript Number: PMEDICINE-D-17-01813R3

Full Title: The epidemiology of adolescents living with perinatally-acquired HIV: a cross-region global cohort analysis

Short Title: The epidemiology of adolescents living with perinatally-acquired HIV

Article Type: Research Article

Keywords: HIV; adolescents; children; Youth; perinatal; survival; retention; cohort; Surveillance; antiretroviral therapy

Corresponding Author: Valériane Leroy, MD, PhD
INSERM, Unité 1027
Toulouse, FRANCE

First Author: Amy Louise Slogrove, MD, PhD

Order of Authors:
Amy Louise Slogrove, MD, PhD
Michael Schomaker
Mary-Ann Davies
Paige Williams
Suna Balkan
Jihane Ben-Farhat
Nancy Calles
Kulkanya Chokephaibulkit
Charlotte Duff
Tanoh François Eboua
Adeodata Kekitiinwa
Nicky Maxwell
Jorge Pinto
George Seage III
Chloe Teasdale
Sebastien Wanless
Josiane Warszawski
Kara Wools-Kaloustian
Marcel Yotebieng
Venessa Timmerman
Jeannie Collins
Abstract:

Background: Globally, the population of adolescents living with perinatally-acquired HIV (APH) continues to expand. For the first time our knowledge, we pooled data from observational paediatric HIV cohorts and cohort networks, allowing comparisons of adolescents with perinatally acquired HIV in "real life" settings across multiple regions. We describe the geographic and temporal characteristics and mortality outcomes of APH across multiple regions including South America and Caribbean, North America, Europe, sub-Saharan Africa and South and Southeast Asia.

Methods and findings: Through the Collaborative Initiative for Paediatric HIV Education and Research (CIPHER), individual retrospective longitudinal data from 12 cohort networks were pooled. All HIV-infected children who entered care before age 10 years, not known to have horizontally-acquired HIV, and followed-up beyond age 10 years were included in this analysis conducted from May 2016 to January 2017. Our primary analysis describes patient and treatment characteristics of APH at key time points including first HIV-associated clinic visit, ART start, age 10 years and last visit, and compares these characteristics by geographic region, country income group and birth period. Our secondary analysis describes mortality, transfers out and loss to follow-up (LTFU) as outcomes at age 15 years, using competing risk analysis. Among the 38,187 APH included, 51% were female, 79% were from sub-Saharan Africa (SSA) and 65% lived in low income countries. APH from 51 countries were included (Europe - 14 countries and 3,054 APH; North America - 1 country and 1,032 APH; South America & Caribbean - 4 countries and 903 APH; South & Southeast Asia - 7 countries and 2,902 APH; SSA - 25 countries and 30,296 APH). Observation started as early as 1982 in Europe and 1996 in sub-Saharan Africa and continued until at least 2014 in all regions. The Median [interquartile range IQR] duration of adolescent follow-up was 3.1 [1.5; 5.2] years for the total cohort and 6.4 [3.6; 8.0] years in Europe, 3.7 [2.0; 5.4] years in North America, 2.5 [1.2; 4.4] years in South & Southeast Asia, 5.0 [2.7; 7.5] years in South America & Caribbean and 2.1 [0.9; 3.8] years in SSA. Median [IQR] age at first visit differed substantially by region, ranging from 0.7 [0.3; 2.1] years in North America to 7.1 [5.3; 8.6] years in SSA. The median age at ART start varied from 0.9 [0.4; 2.6] years in North America to 7.9 [6.0; 9.3] years in SSA. The cumulative incidence estimates [95% CI] at age 15 years for mortality, transfers out and LTFU for all APH were 2.6% [2.4%; 2.8%], 15.6% [15.1%; 16.0%] and 11.3% [10.9%; 11.8%], respectively. Mortality was lowest in Europe (0.8% [0.5%; 1.1%]) and highest in South America & Caribbean (4.4% [3.1%; 6.1%]). However, LTFU was lowest in South
Comparison of mortality across regions was limited by the high LTFU in SSA, being the main study limitation.

Conclusion: To our knowledge, our study represents the largest multi-regional epidemiological analysis of APH. Despite probable under-ascertained mortality, mortality in APH remains substantially higher in SSA, South & Southeast Asia and South America & Caribbean than in Europe. Collaborations such as CIPHER enable us to monitor current global temporal trends in outcomes over time to inform appropriate policy responses.

Suggested Reviewers:

Dorothy Mbori-Ngacha
UNICEF
dmborinagacha@unicef.org
Senior HIV Specialist at UNICEF serving in the East and Southern African region.

Brian Zanoni
Massachusetts General Hospital and Harvard University
bzanoni@mgh.harvard.edu
Dr. Zanoni has extensive clinical and research experience with adolescents living with perinatally-acquired HIV. This work has been conducted in both the USA and South Africa and he has an in-depth understanding of the complexities of both high and low-middle income settings.

Audrey Pettifor
Associate Professor, University of North Carolina Chapel Hill
apettif@email.unc.edu
Professor Pettifor is an Associate Professor in the Department of Epidemiology at the University of North Carolina at Chapel Hill and a faculty fellow at the Carolina Population Center. Dr Pettifor’s research focuses on determinants of HIV/STI infection in sub-Saharan Africa with the goal of identifying modifiable risk factors and developing novel interventions to prevent new HIV infections—particularly in young women. Dr Pettifor has conducted HIV research in South Africa for over 15 years and also has worked in Malawi, Zimbabwe, Kenya, the Democratic Republic of Congo and Madagascar.

Phillipe Lepage
Universite Libre de Bruxelles
Philippe LEPAGE@huderf.be
Dr. Lepage is a pediatric infectious disease expert

Opposed Reviewers:

Audrey Pettifor
Associate Professor, University of North Carolina Chapel Hill
apettif@email.unc.edu
Professor Pettifor is an Associate Professor in the Department of Epidemiology at the University of North Carolina at Chapel Hill and a faculty fellow at the Carolina Population Center. Dr Pettifor’s research focuses on determinants of HIV/STI infection in sub-Saharan Africa with the goal of identifying modifiable risk factors and developing novel interventions to prevent new HIV infections—particularly in young women. Dr Pettifor has conducted HIV research in South Africa for over 15 years and also has worked in Malawi, Zimbabwe, Kenya, the Democratic Republic of Congo and Madagascar.

Phillipe Lepage
Universite Libre de Bruxelles
Philippe LEPAGE@huderf.be
Dr. Lepage is a pediatric infectious disease expert

Financial Disclosure

Please describe all sources of funding that have supported your work. This information is required for submission and will be published with your article, should it be accepted. A complete funding statement should do the following:

Include grant numbers and the URLs of any funder’s website. Use the full name, not acronyms, of funding institutions, and use initials to identify authors who received the funding.

Describe the role of any sponsors or funders in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. If the funders had no role in any of the

IAS-CIPHER (http://www.iasociety.org/CIPHER) is made possible through funding from CIPHER Founding Sponsor ViiV Healthcare (https://www.viivhealthcare.com) and Janssen (http://www.janssen.com). Individual networks contributing to the CIPHER Cohort Collaboration have received the following financial support: CCASAnet receives funding from the United States (US) National Institutes of Health (NIH) (https://www.nih.gov) (U01AI069923); iDeA Asia Pacific receives funding from the US NIH (U01AI069911); iDeA Central Africa receives funding from the US NIH (U01AI069924); iDeA East Africa receives funding from the US NIH (U01AI069919); iDeA Southern Africa receives funding from the US NIH (U01AI069924); iDeA West Africa receives funding from the US NIH (U01AI069919); IMPAACT P1074 receives funding from the US NIH (UM1AI068616 and US NIH UM1AI068632); PHACS receives funding from the US NIH (U01 HD052102 and US NIH U01 HD052104); The Optimal Models project was supported by the President’s Emergency Plan for AIDS Relief (PEPFAR) through the Centers for Disease Control and Prevention (https://www.pepfar.gov) under the terms of Cooperative Agreement Number 5U62PS223540 and 5U2GPS001537. EPPICC receives funding from EuroCoord no260694 (http://www.eurocoord.net, PENTA Foundation (http://penta-id.org). EPPICC was partly funded by the Medical Research Council (https://www.mrc.ac.uk), programme number MC_UU_12023/26. Individual cohorts contributing to EPPICC receive the following support: The ATHENA database is maintained by Stichting HIV Monitoring and supported by a grant from the Dutch
above, include this sentence at the end of your statement: "The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript."

However, if the study was unfunded, please provide a statement that clearly indicates this, for example: "The author(s) received no specific funding for this work."

* typeset

Competing Interests

You are responsible for recognizing and disclosing on behalf of all authors any competing interest that could be perceived to bias their work, acknowledging all financial support and any other relevant financial or non-financial competing interests. You will be able to provide a separate, individual declaration concerning only your own competing interests further down in this form.

Do any authors of this manuscript have competing interests (as described in the PLOS Policy on Declaration and Evaluation of Competing Interests)?

If yes, please provide details about any and all competing interests in the box below. Your response should begin with this statement: I have read the journal's policy and the authors of this manuscript have the following competing interests:

If no authors have any competing interests to declare, please enter this statement in the box: "The authors have declared that no competing interests exist."
Data Availability

PLOS journals require authors to make all data underlying the findings described in their manuscript fully available, without restriction and from the time of publication, with only rare exceptions to address legal and ethical concerns (see the PLOS Data Policy and FAQ for further details). When submitting a manuscript, authors must provide a Data Availability Statement that describes where the data underlying their manuscript can be found.

Your answers to the following constitute your statement about data availability and will be included with the article in the event of publication. Please note that simply stating ‘data available on request from the author’ is not acceptable. If, however, your data are only available upon request from the author(s), you must answer "No" to the first question below, and explain your exceptional situation in the text box provided.

Do the authors confirm that all data underlying the findings described in their manuscript are fully available without restriction?

| No - some restrictions will apply |

Data are accessible in principle by applying to the CIPHER Cohort Collaboration Data Centres. The CIPHER Cohort Collaboration is a multi-network multisite collaboration and this analysis combined data from different sites. The data do not belong to the CIPHER Cohort Collaboration itself, but data ownership remains with the participating sites. Each site has approval from its own local Institutional Review Board to collect routine data on patients and to transfer those data anonymously to the CIPHER Cohort Collaboration Project data centre. For some sites and networks, IRB approval for use of this data is restricted to the specific protocols approved in order to protect patient identities. Requests for access to data can be directed to the International AIDS Society CIPHER, Samantha Hodgetts email:samantha.hodgetts@iasociety.org.
“All XXX files are available from the XXX database (accession number(s) XXX, XXX).” If this information will only be available after acceptance, please indicate this by ticking the box below. If neither of these applies but you are able to provide details of access elsewhere, with or without limitations, please do so in the box below. For example:

“Data are available from the XXX Institutional Data Access / Ethics Committee for researchers who meet the criteria for access to confidential data.”

“Data are from the XXX study whose authors may be contacted at XXX.”

| Additional data availability information: | Tick here if your circumstances are not covered by the questions above and you need the journal’s help to make your data available.; Tick here if the URLs/accession numbers/DOIs will be available only after acceptance of the manuscript for publication so that we can ensure their inclusion before publication. |
We thank you very much for accepting our manuscript. Please see our point by point responses below detailing modifications made and highlighted in grey in the revised manuscript enclosed. We hope you will find it satisfactory for publication.

Editorial Issues

In revising the manuscript for further consideration here, please ensure you address the specific points made by each reviewer and the editors. In your rebuttal letter you should indicate your response to the reviewers' and editors' comments and the changes you have made in the manuscript. Please submit a clean version of the paper as the main article file. A version with changes marked must also be uploaded as a marked up manuscript file.

Please also check the guidelines for revised papers at http://journals.plos.org/plosmedicine/s/revising-your-manuscript for any that apply to your paper. If you haven't already, we ask that you provide a short, non-technical Author Summary of your research to make findings accessible to a wide audience that includes both scientists and non-scientists. The Author Summary should immediately follow the Abstract in your revised manuscript. This text is subject to editorial change and should be distinct from the scientific abstract.

We hope to receive your revised manuscript within ten days. Please email us (plosmedicine@plos.org) to discuss this if you have any questions or concerns.

We ask every co-author listed on the manuscript to fill in a contributing author statement. If any of the co-authors have not filled in the statement, we will remind them to do so when the paper is revised. If all statements are not completed in a timely fashion this could hold up the re-review process. Should there be a problem getting one of your co-authors to fill in a statement we will be in contact. YOU MUST NOT ADD OR REMOVE AUTHORS UNLESS YOU HAVE ALERTED THE EDITOR HANDLING THE MANUSCRIPT TO THE CHANGE AND THEY SPECIFICALLY HAVE AGREED TO IT.

Please ensure that the paper adheres to the PLOS Data Availability Policy (see http://journals.plos.org/plosmedicine/s/data-availability), which requires that all data underlying the study's findings be provided in a repository or as Supporting Information. For data residing with a third party, authors are required to provide instructions with contact information for obtaining the data. PLOS journals do not allow statements supported by “data not shown” or “unpublished results.” For such statements, authors must provide supporting data or cite public sources that include it.

If you have any questions in the meantime, please contact me or the journal staff on plosmedicine@plos.org.

Please let me know if you have any questions. Otherwise, we will look forward to receiving your revised manuscript soon.

Kind regards,

Richard Turner, PhD
Senior Editor, PLOS Medicine
rturner@plos.org

--

Requests from Editors:

We ask you to add some additional details to the abstract. Thank you for these suggestions, please see responses below detailing additions made.

In the "background" subsection, we suggest adding a few words to state the practical value of studies of this type. A sentence was added: For the first time our knowledge, we pooled data from observational paediatric HIV cohorts and cohort networks, allowing comparisons of adolescents with perinatally acquired HIV in “real life” settings across multiples regions. (line 164-166)

You may wish to add the acronym "CIPHER"; Added (line 170).

Can you be more specific about the month or months in 2017 when the analysis was carried out? The months during which the analysis was conducted has been added to the abstract (line 172).

Please specify the total number of countries involved, the number of countries in each region, the number of APH in each region, and the length of follow-up in each region. Added (lines 178-180, 181-184).

The final sentence of the abstract and the final bullet point of the "author summary" section are very similar, and we ask you to trim and reword both of these sentences. The final sentence of the abstract has been revised: “Collaborations such as CIPHER enable us to monitor current global temporal trends in outcomes over time to inform appropriate policy responses.” (lines 195-196).
The final bullet point of the author summary has been revised: “Collaborations such as CIPHER are useful to monitor current global temporal trends in outcomes of adolescents living with perinatally-acquired HIV over time to inform and guide policy responses”. (Lines 229-230)

A full point needs to be removed at line 117. Thank you, this additional point has been removed.

You mention at line 130 that "all analyses were prespecified". We assume this does not apply to the Kaplan-Meier methodology requested by the statistical reviewers, and ask that you amend the text to identify this and any other analyses that were not prespecified. The Kaplan-Meier analysis as well as the competing risks analysis were both pre-specified, as indicated in the ‘Statistical Analysis’ section (pages 4 & 5) of the Project Concept Analysis Plan (Supplementary 1). We have therefore not added any additional wording.

Where the Kaplan-Meier analysis is mentioned (line 267), we ask you add an additional sentence, say, to quote key estimates, with CIs, to illustrate the similarity between the results of the two types of analysis. Key Kaplan-Meier estimates have been added (lines 430-432).

Please review the reference list to ensure that all citations match journal format--the journal names for references 15 and 16 appear to need abbreviating. Reference style checked and amended accordingly.

Please amend the STROBE checklist to remove the text from the manuscript itself, and refer to the relevant items in the manuscript by section and paragraph numbers. The STROBE list has been amended.
Production Issues

Please address the following issues as soon as possible. Please remember to include a marked up manuscript and a rebuttal letter, addressing all editorial points with your revision, else we will not be able to proceed with your manuscript.

Production Issues:

-Figures-

1) Please remove the excess white space around Fig 1. Please also ensure that the text in your figures is at minimum 8pt - it appears Figs2-3 have font smaller than this in their keys. Excess white space around Fig 1 has been removed. Font size has been amended in all figures to a minimum of 8pt.

2) Please ensure that all main figure file names use the following format verbatim in the file inventory: Fig 1, Fig 2, etc. The file names themselves must have no spaces, i.e. Fig1.tif. File names have been amended as required.

-Article file-

1) Please add a byline listing the authors currently listed in the submission system before the Group Author name. Please also add a list of Affiliations below this byline. The byline should contain authors’ full names but no qualifications. As the first submission of this manuscript did not list the current authors please email each of the co-authors listed and confirm they are happy with the author byline. Collate their approvals into one PDF document and send to me at rgreen@plos.org. This byline list of authors and their affiliations has been now added in the main manuscript file (lines 6 to 152). Please, note that this author list is conform to the the previous one as presented in S2 text.

2) Please include the statement "Membership of the The Collaborative Initiative for Paediatric HIV Education and Research (CIPHER) Cohort Collaboration Adolescent Project Team is provided in S2 Text" on your title page before the corresponding author's email. This has been included.

3) Please indicate the corresponding author in the byline by placing an asterisk (*) after their affiliation number. Please include the corresponding author's email address on the title page of your manuscript, indicated by an asterisk (*). Only an asterisk and the email address itself are required. This has been done (lines 84-85 and 157,156). An asterisk (*) has been indicating both corresponding authors (A. Judd, V. Leroy).

4) Please ensure that your Ethics statement is available at the beginning of your Methods section in its entirety and that it matches the version in the submission form verbatim. The ethics statement has been moved from the end of the methods section to the beginning (lines 281-285).

5) Please remove embedded figures from your manuscript file, and ensure the most up to date versions of your figures are uploaded to our submission system as separate TIF or EPS files. The figure legends should remain where they are in the text, after the paragraph containing their first in-text citation. Embedded figures removed, legends remain in text. Separate figures as TIF files prepared for upload.

6) Please ensure that all main figures use the following format verbatim in all in-text citations (including spelling and capitalization): Fig 1, Fig 2, etc. Done

7) Please ensure that all main tables in their entirety (including titles and footnotes) are placed after the paragraph containing their first in-text citation. Done

8) Please put all reference citations in square brackets separated by either commas or dashes with no spaces, e.g. [1,2,3] or [1-3]. Please primarily use rounded brackets () elsewhere in the text to avoid any confusion. This has been done.

9) Please ensure your references are in the style of PLOS Medicine (ICMJE/Vancouver style). The reference style guide can be found here: http://journals.plos.org/plosmedicine/s/submission-guidelines#loc-references. You can also find a downloadable EndNote file in these guidelines to assist you. Please note that the references will be typeset as they currently appear so please ensure the format is consistent. Reference style checked and amended accordingly.

-Metadata-
1) In accordance with PLOS' Data Policy, please ensure that your Data Availability Statement in the submission form clearly identifies how readers can access your data. Note that it will be typeset as it is written so please ensure it is in complete sentences and appears as you would like it to in the published version. You currently give the email address for Dr. Marissa Vicari as contact for the data, but we cannot permit an author of the paper to be the listed contact. Please give the contact details for another member of the International AIDS Society CIPHER team who is not an author on this paper. **We suggest to give the contact of Samantha Hodgetts : samantha.hodgetts@iasociety.org**

2) We still require confirmation of authorship and a declaration of any potential competing interests in relation to this manuscript from co-authors Eboua, Bekker, Anabwani, Lumumba, and Ayaya. We will resend our authorship email, but also request that you contact these co-authors directly to ensure they respond. **This has been done.**

3) Please fill out the 'Competing Interests' section on our submission form. Declare all competing interests beginning with the statement 'I have read the journal's policy and the authors of this manuscript have the following competing interests:' done

4) Your co-authors have declared the following competing interests in relation to this manuscript. Please include it in the main competing interest statement in our system, sticking as closely as possible to the below wording. **This has been done.**

Annette Sohn - "AS's institution receives research and travel funding from ViiV Healthcare."

Claire Thorne - "CT has participated in an advisory board for ViiV Healthcare, received research grants from the European Commission, UK Medical Research Council, Public Health England, PENTA Foundation, Abbvie, and ViiV. CT is on the Advisory Board of the Antiretroviral Pregnancy Registry, the Board of the PENTA Foundation and the UK Infectious Diseases in Pregnancy Screening Advisory Group."

Marissa Vicari - "MVs work at CIPHER is funded through Unrestricted Educational grants received from ViiV Healthcare and Janssen to the International AIDS Society."

Colette Smith - "CS has received personal payment for preparation of educational materials for Gilead Sciences and ViiV Healthcare"

Josiane Warszawski - "JW's institution has received academic grants from the INSERM-ANRS, for cohorts of JW's responsibility involved in the study."

Sebastien Wanless - "SW receives a fee from Baylor International Pediatric AIDS Initiative for consultancy services related to research."

Mark J Azbug - "MJA receives funding from NIH to perform research in the IMPAACT network."

5) Your co-author, Linda-Gail Bekker, served as a Guest Editor for the HIV Special Issue. Please remove the statement, "The authors have declared that no competing interests exist." and replace it with the following sentence as part of your competing interest statement: "LGB is guest editor for the PLOS Medicine HIV Collection.". **This has been done.**

6) Please ensure that the CRediT author contributions listed under each co-author are completed in full. To qualify for authorship, each author must meet at least one of the seven core contributions (conceptualization; data curation; formal analysis; investigation; methodology; software; validation), as well as at least one of the writing contributions (original draft preparation; review and editing). Authors may also be noted against any of the remaining contributions, however these alone will not qualify a contributor for authorship. **They meet criteria for authorship and their contribution has been updated.**

-Supporting Information-

1) Please replace the line numbers in your STROBE statement with paragraph numbers per section (e.g. "Methods, paragraph 1") since the line and page numbers of the final published paper may be different from the current manuscript. **This has been done.**
2) Please ensure that all supplementary files which are intended for publication have the file type 'Supporting Information' in the system's file inventory. This includes Supporting Figures such as S1 Fig.

3) Please rename your SI files as follows: Files have been renamed
 S11_STROBE_Checklist - S1_STROBE_Checklist
 S1_Project_Concept_Analysis_Plan - S1_Analysis_Plan
 S2_Table_Standard_Survival_Mortality_Estimates - S1_Table
 S3_Table_characteristics_birth_cohort - S2_Table
 S4_Fig_comparison_by_birth_cohort - S1_Fig
 S5_Table_Cumulative_incidence_10to15_Sensitivity - S3_Table
 S6_Table_Selected_Full_Models - S4_Table
 S7_Table_Cumulative_incidence_10to15_Sensitivity - S5_Table
 S8_Table_Crude_mortality_hazard_ratios_sensitivity - S6_Table
 S9_Acknowledgements - S1_Text
 S10_Group_authorship_list - S2_Text

Please remember that the Description field and in-text references should have a space instead of an underscore. Please update in-text citations and the Supporting Information list accordingly. In-text citations and Supporting Information captions list updated accordingly.

To edit your manuscript and the submission information provided with it you will need to login to our system (https://www.editorialmanager.com/pmedicine/) and click the 'Submissions Needing Revision' link. In the list of action items click 'Edit Revision'. You will need to check both the 'Additional Information' section and the 'Attach Files' section.

Please note that once your paper is through to production it is difficult to alter the figures, so this is your best opportunity to ensure that their content and layout are as they should be in the final published article. It is also important to understand that any changes or additions to data are likely to require a further round of editorial review, which delays publication.

To make PLOS Medicine's open-access content as widely available as possible, we encourage authors to submit translated versions of their abstract (or, where desirable, the entire manuscript). If you do submit any translations when you resubmit your manuscript, they should be uploaded as Supporting Information files. Please don't hold up the resubmission of your paper just to obtain a translation: you can also provide it by email within a week of resubmission, but make sure you let us know who to credit for the translation.

Please ensure that the paper adheres to the PLOS Data Availability Policy (see http://journals.plos.org/plosmedicine/s/data-availability), which requires that all data underlying the study’s findings be provided in a repository or as Supporting Information. For data residing with a third party, authors are required to provide instructions with contact information for obtaining the data. PLOS journals do not allow statements supported by "data not shown" or "unpublished results." For such statements, authors must provide supporting data or cite public sources that include it.

If you have any questions in the meantime, please feel free to get in touch.

Best wishes,

Rebecca Green
Full title: The epidemiology of adolescents living with perinatally-acquired HIV: a cross-region global cohort analysis

Short title: The epidemiology of adolescents living with perinatally-acquired HIV

Authors: for The Collaborative Initiative for Paediatric HIV Education and Research (CIPHER) Global Cohort Collaboration

1. Amy L. Slogrove
2. Michael Schomaker
3. Mary-Ann Davies
4. Paige Williams
5. Suna Balkan
6. Jihane Ben-Farhat
7. Nancy Calles
8. Kulkanya Chokephaibulkit
9. Charlotte Duff
10. Tanoh François Eboua
11. Adeodata Kekitiinwa-Rukyalekere
12. Nicky Maxwell
13. Jorge Pinto
14. George Seage III
15. Chloe Teasdale
<table>
<thead>
<tr>
<th></th>
<th>Name</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Sebastian Wanless</td>
<td>4</td>
</tr>
<tr>
<td>17</td>
<td>Josiane Warszawski</td>
<td>11</td>
</tr>
<tr>
<td>18</td>
<td>Kara Wools-Kaloustian</td>
<td>12</td>
</tr>
<tr>
<td>19</td>
<td>Marcel Yotebieng</td>
<td>13</td>
</tr>
<tr>
<td>20</td>
<td>Venessa Timmerman</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>Jeannie Collins</td>
<td>6</td>
</tr>
<tr>
<td>22</td>
<td>Ruth Goodall</td>
<td>6</td>
</tr>
<tr>
<td>23</td>
<td>Colette Smith</td>
<td>6</td>
</tr>
<tr>
<td>24</td>
<td>Kunjal Patel</td>
<td>2</td>
</tr>
<tr>
<td>25</td>
<td>Mary Paul</td>
<td>4</td>
</tr>
<tr>
<td>26</td>
<td>Diana Gibb</td>
<td>6</td>
</tr>
<tr>
<td>27</td>
<td>Rachel Vreeman</td>
<td>12</td>
</tr>
<tr>
<td>28</td>
<td>Elaine Abrams</td>
<td>10</td>
</tr>
<tr>
<td>29</td>
<td>Rohan Hazra</td>
<td>14</td>
</tr>
<tr>
<td>30</td>
<td>Russell Van Dyke</td>
<td>15</td>
</tr>
<tr>
<td>31</td>
<td>Linda-Gail Bekker</td>
<td>16</td>
</tr>
<tr>
<td>32</td>
<td>Lynne Mofenson</td>
<td>17</td>
</tr>
<tr>
<td>33</td>
<td>Marissa Vicari</td>
<td>18</td>
</tr>
<tr>
<td>34</td>
<td>Shaffiq Essajee</td>
<td>19</td>
</tr>
<tr>
<td>35</td>
<td>Martina Penazzato</td>
<td>20</td>
</tr>
<tr>
<td>36</td>
<td>Gabriel Anabwani</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Name</td>
<td>Number</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>37.</td>
<td>Edith Q. Mohapi</td>
<td>22</td>
</tr>
<tr>
<td>38.</td>
<td>Peter N. Kazembe</td>
<td>23</td>
</tr>
<tr>
<td>39.</td>
<td>Makhosazana Hlatshwayo</td>
<td>24</td>
</tr>
<tr>
<td>40.</td>
<td>Mwita Lumumba</td>
<td>25</td>
</tr>
<tr>
<td>41.</td>
<td>Tessa Goetghebuer</td>
<td>26</td>
</tr>
<tr>
<td>42.</td>
<td>Claire Thorne</td>
<td>27</td>
</tr>
<tr>
<td>43.</td>
<td>Luisa Galli</td>
<td>28</td>
</tr>
<tr>
<td>44.</td>
<td>Annemarie van Rossum</td>
<td>29</td>
</tr>
<tr>
<td>45.</td>
<td>Carlo Giaquinto</td>
<td>30</td>
</tr>
<tr>
<td>46.</td>
<td>Magdalena Marczynska</td>
<td>31</td>
</tr>
<tr>
<td>47.</td>
<td>Laura Marques</td>
<td>32</td>
</tr>
<tr>
<td>48.</td>
<td>Filipa Prata</td>
<td>33</td>
</tr>
<tr>
<td>49.</td>
<td>Luminita Ene</td>
<td>34</td>
</tr>
<tr>
<td>50.</td>
<td>Liubov Okhonskaia</td>
<td>35</td>
</tr>
<tr>
<td>51.</td>
<td>Pablo Rojo</td>
<td>36</td>
</tr>
<tr>
<td>52.</td>
<td>Claudia Fortuny</td>
<td>37</td>
</tr>
<tr>
<td>53.</td>
<td>Lars Naver</td>
<td>38</td>
</tr>
<tr>
<td>54.</td>
<td>Christoph Rudin</td>
<td>39</td>
</tr>
<tr>
<td>55.</td>
<td>Sophie Le Coeur</td>
<td>40,41</td>
</tr>
<tr>
<td>56.</td>
<td>Alla Volokha</td>
<td>42</td>
</tr>
<tr>
<td>57.</td>
<td>Vanessa Rouzier</td>
<td>43</td>
</tr>
</tbody>
</table>
58. Regina Succi

59. Annette Sohn

60. Azar Kariminia

61. Andrew Edmonds

62. Patricia Lelo

63. Samuel Ayaya

64. Patricia Ongwen

65. Laura F. Jefferys, SolidarMed Lesotho, Mozambique and Zimbabwe

66. Sam Phiri

67. Mwangelwa Mubiana-Mbewe

68. Shobna Sawry

69. Lorna Renner

70. Mariam Sylla

71. Mark J. Abzug

72. Myron Levin

73. James Oleske

74. Miriam Chernoff

75. Shirley Traite

76. Murli Purswani

77. Ali Judd

78. Valériane Leroy
* Corresponding authors and Contributed equally as project co-chairs.

Affiliations of authors

1. University of Cape Town, South Africa
2. Harvard T. H. Chan School of Public Health, USA
3. Epicentre, Médecins Sans Frontières, France
4. Baylor International Pediatric AIDS Initiative, *Texas Children’s Hospital*-USA, USA
5. Siriraj Hospital, Mahidol University, Thailand
6. MRC Clinical Trials Unit at University College London, London, UK
7. Yopougon University Hospital, University Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
8. Baylor International Pediatric AIDS Initiative, Uganda
9. School of Medicine, Federal University of Minas Gerais, Brazil
10. ICAP-Columbia University, Mailman School of Public Health, USA
11. Inserm (French Institute of Health and Medical Research), France
12. Indiana University School of Medicine, USA
13. College of Public Health, Ohio State University, USA
14. US National Institutes of Health, NICHD, USA
15. Tulane University, USA
16. Desmond Tutu HIV Centre, University of Cape Town, South Africa
17. Elizabeth Glaser Pediatric AIDS Foundation, USA
18. International AIDS Society, Switzerland
19. UNICEF, New York, USA
20. World Health Organization, Geneva, Switzerland
22. Baylor International Pediatric AIDS Initiative, Leshoto
23. Baylor International Pediatric AIDS Initiative, Malawi
24. Baylor International Pediatric AIDS Initiative, Swaziland
25. Baylor International Pediatric AIDS Initiative, Tanzania
26. Hospital St Pierre Cohort, Belgium
27. Institute of Child Health, University College London, UK
28. Università degli Studi di Firenze, Italy
29. Erasmus MC University Medical Center Rotterdam-Sophia Children’s Hospital, Netherlands
30. PENTA foundation, Italy
31. Medical University of Warsaw, Hospital of Infectious Diseases in Warsaw, Poland
32. Portugal Centro Hospitalar do Porto, Portugal
33. Hospital de Santa Maria, Lisbon, Portugal
34. Victor Babes Hospital, Bucharest, Romania
35. Republican Hospital of Infectious Diseases, St Petersburg, Russian Federation
36. Hospital Doce de Octubre, Madrid, Spain
37. Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
38. Karolinska University Hospital, Sweden
39. University Children’s Hospital, Basel, Switzerland
40. Faculty of Associated Medical Sciences, Chiang Mai University, Thailand
41. Institut de Recherche pour le Développement, France
42. Shupyk National Medical Academy of Postgraduate Education, Kiev, Ukraine
43. GHESKIO Center, Port-au-Prince, Haiti
44. Universidade Federal de São Paulo, Brazil
45. Treat Asia/amfAR, Bangkok, Thailand
46. Kirby Institute, University of New South Wales, Sydney, Australia
47. The Gillings School of Public Health, University of North Carolina at Chapel Hill, USA
48. Pediatric Hospital Kalembe Lembe, Lingwala, Kinshasa, Democratic Republic of Congo
49. Academic Model Providing Access to Healthcare (AMPATH), Eldoret, Kenya
50. Family AIDS Care and Education Services, Kenya Medical Research Institute, Kisumu, Kenya
51. SolidarMed Lesotho, Mozambique and Zimbabwe
52. Lighthouse Trust Clinic, Malawi
53. Center for Infectious Disease Research in Zambia, Zambia
54. Wits Reproductive Health and HIV Institute, Faculty of Health Sciences, University of the Witwatersrand, South Africa
55. Harriet Shezi Children’s Clinic, Chris Hani Baragwanath Hospital, South Africa
56. Korle Bu Teaching Hospital, Accra, Ghana
57. CHU Gabriel Touré, Bamako, Mali
58. University of Colorado School of Medicine and Children’s Hospital Colorado, USA

59. Rutgers - New Jersey Medical School, USA

60. Bronx-Lebanon Hospital Center, USA

Membership of the Collaborative Initiative for Paediatric HIV Education and Research (CIPHER) Global Cohort Collaboration is provided in S2 Text.

Corresponding authors:

*Ali Judd; MRC Clinical Trials Unit at University College London, London, UK (a.judd@ucl.ac.uk)

*Valériane Leroy; Inserm, U1027, Université Toulouse 3, Toulouse, France (valeriane.leroy@inserm.fr)
Abstract

Background: Globally, the population of adolescents living with perinatally-acquired HIV (APH) continues to expand. For the first time our knowledge, we pooled data from observational paediatric HIV cohorts and cohort networks, allowing comparisons of adolescents with perinatally acquired HIV in “real life” settings across multiple regions. We describe the geographic and temporal characteristics and mortality outcomes of APH across multiple regions including South America and Caribbean, North America, Europe, sub-Saharan Africa and South and Southeast Asia.

Methods and findings: Through the Collaborative Initiative for Paediatric HIV Education and Research (CIPHER), individual retrospective longitudinal data from 12 cohort networks were pooled. All HIV-infected children who entered care before age 10 years, not known to have horizontally-acquired HIV, and followed-up beyond age 10 years were included in this analysis conducted from May 2016 to January 2017. Our primary analysis describes patient and treatment characteristics of APH at key time points including first HIV-associated clinic visit, ART start, age 10 years and last visit, and compares these characteristics by geographic region, country income group and birth period. Our secondary analysis describes mortality, transfers out and loss to follow-up (LTFU) as outcomes at age 15 years, using competing risk analysis. Among the 38,187 APH included, 51% were female, 79% were from sub-Saharan Africa (SSA) and 65% lived in low income countries. APH from 51 countries were included (Europe – 14 countries and 3,054 APH; North America – 1 country and 1,032 APH; South America & Caribbean – 4 countries and 903 APH; South & Southeast Asia – 7 countries and 2,902 APH; SSA – 25 countries and 30,296 APH). Observation started as early as 1982 in Europe and 1996 in sub-Saharan Africa and continued until at least 2014 in all regions. The Median [interquartile range IQR] duration of adolescent follow-up was 3.1 [1.5; 5.2] years for the total cohort and 6.4 [3.6; 8.0] years in Europe, 3.7 [2.0; 5.4] years in North America, 2.5 [1.2; 4.4] years in South & Southeast Asia, 5.0 [2.7; 7.5] years in South America & Caribbean and 2.1 [0.9; 3.8] years in SSA. Median [IQR] age at first visit differed substantially by region, ranging from 0.7 [0.3; 2.1] years in North America to 7.1 [5.3; 8.6] years in SSA. The median age at ART start varied from 0.9 [0.4; 2.6] years in North America to 7.9 [6.0; 9.3] years in SSA. The cumulative incidence estimates [95% CI] at age 15 years for mortality, transfers out and LTFU for all APH were 2.6% [2.4%; 2.8%], 15.6% [15.1%; 16.0%] and 11.3% [10.9%; 11.8%], respectively. Mortality was lowest in Europe...
(0.8% [0.5%; 1.1%]) and highest in South America & Caribbean (4.4% [3.1%; 6.1%]). However, LTFU was lowest in South America & Caribbean (4.8% [3.4%; 6.7%]) and highest in SSA (13.2% [12.6%; 13.7%]).

Comparison of mortality across regions was limited by the high LTFU in SSA, being the main study limitation.

Conclusion: To our knowledge, our study represents the largest multi-regional epidemiological analysis of APH. Despite probable under-ascertained mortality, mortality in APH remains substantially higher in SSA, South & Southeast Asia and South America & Caribbean than in Europe. Collaborations such as CIPHER enable us to monitor current global temporal trends in outcomes over time to inform appropriate policy responses.
Author summary

Why was this study done?

- With increasing access to antiretroviral therapy across the globe, children with HIV acquired around the time of birth or through breastfeeding (perinatally-acquired HIV) are surviving into adolescence. However, globally, adolescents living with perinatally-acquired HIV experience poorer HIV-related outcomes compared to younger children and adults with HIV, dying more often and experiencing greater challenges in terms of treatment adherence and staying in care.
- A direct comparison of outcomes for adolescents living with perinatally-acquired HIV across multiple regions of the world has not previously been conducted, yet such an understanding is required to inform the appropriate policy responses to meet the needs of this dynamic and complex population of adolescents.
- The Collaborative Initiative for Paediatric HIV Education and Research (CIPHER) global project describes for the first time as far as we are aware, the global epidemiology of adolescents living with perinatally-acquired HIV in terms of geographic and temporal trends and compares mortality, transfer and loss to follow-up between 10 and 15 years of age across geographic regions, country income groups and birth cohorts.

What did the researchers find?

- Among 38,000 adolescents living with perinatally-acquired HIV, 79% of whom were living in sub-Saharan Africa, adolescents in North America and Europe, as well as high income group countries, generally presented to care and started antiretroviral therapy at a younger age with higher CD4 counts and less impaired height growth compared to other regions or country income groups.
- Analysis by country income group suggested that patients in high income countries had younger age, higher CD4 percent and less impaired height when starting antiretroviral therapy compared to middle or low income countries.
- Similarly HIV-associated mortality during adolescence was substantially higher in sub-Saharan Africa, South & Southeast Asia and South America & Caribbean than in Europe.
What do these findings mean?

- Although the population of adolescents living with perinatally-acquired HIV is likely to decline in the future, due to declining new perinatally-acquired HIV infections, there is still a lot of work to be done to achieve equality in health and survival for all adolescents living with perinatally-acquired HIV irrespective of geographic location.

- Collaborations such as CIPHER are useful to monitor current global temporal trends in outcomes of adolescents living with perinatally-acquired HIV over time to inform and guide policy responses.

Key words: HIV, adolescents, children, youth, perinatal, survival, retention, cohort, surveillance
Abbreviations

- **aHR** – adjusted hazard ratio
- **APH** – adolescents living with perinatally-acquired HIV
- **ART** – antiretroviral therapy
- **CD** – clusters of differentiation
- **CI** – confidence interval
- **CIG** – country income group
- **CIPHER** – Collaborative Initiative for Paediatric HIV Education and Research
- **HAZ** – height-for-age-Z-score
- **HIV** – Human Immunodeficiency Virus
- **HR** – hazard ratio
- **IPW** – inverse probability weighting
- **IQR** – interquartile range
- **LTFU** – lost to follow-up
- **MI** – multiple imputation
- **SSA** – sub-Saharan Africa
- **S&SE Asia** – South & Southeast Asia
- **uHR** – unadjusted hazard ratio
- **WHO** – World Health Organization
Introduction

It is estimated that almost 2.1 million (uncertainty bounds 1.4 million – 2.7 million) adolescents aged 10 to 19 years are living with either perinatally- or horizontally-acquired HIV [1,2]. Prior to 2005, perinatally HIV-infected children in most of the world had poor access to antiretroviral therapy (ART), with high mortality during infancy and poor survival beyond childhood [3]. With expansion of effective ART initially in Europe and North America, subsequently in South America and Asia and now in Africa, the population of children living with perinatally-acquired HIV surviving into adolescence and early adulthood is growing [1,4,5].

By the time perinatally HIV-infected children reach the developmental transition period of adolescence, they have been living for a decade with a chronic disease that even with ART treatment can still result in substantial morbidity [6]. Globally, it is recognized that adolescents living with perinatally-acquired HIV (APH) experience poorer HIV-related outcomes compared to younger children and adults, including higher mortality and virologic treatment failure rates and poorer retention in care [1,7-15]. Studies assessing the outcomes of APH over time and across geographic and economic settings are limited [16]. Based on studies in adults, after two years on ART, HIV-associated mortality in South Africa approached that in the United States, and the differential between South Africa and Europe was substantially reduced [17]. As the global community pursues attainment of the Sustainable Development Goals by 2030, particularly to ensure healthy lives and promote wellbeing for all at all ages (Goal 3) as well as to achieve gender equality (Goal 5), and reduce inequality within and among countries (Goal 10), multiregional direct comparisons of APH outcomes can inform the appropriate policy responses to meet the needs of this dynamic and complex population of adolescents living with HIV [18].

The primary objective of this Collaborative Initiative for Paediatric HIV Education and Research (CIPHER) global project was to describe the global epidemiology of APH in terms of geographic and temporal trends of patient and treatment characteristics at entry into care, ART start, entry into adolescence (age 10 years) and last visit. Our secondary objective was to compare the outcomes of mortality, transfer and loss to follow-up between 10 and 15 years of age across regions, country income groups (CIG) and birth cohorts.
Methods

Primary data collection by all participating networks was approved by their respective research ethics boards of authority and consent or assent for study participation provided by participants as required. The pooling of data and analysis at the UCT data centre was approved by the University of Cape Town Health Research Ethics Committee (UCT HREC reference 264/2014). The study concept and *a priori* analysis plan are available in supplementary material (S1 Analysis Plan). All analyses were pre-specified.

Study methods:

The CIPHER Cohort Collaboration is a global network of observational paediatric HIV cohorts or cohort networks convened by CIPHER of the International AIDS Society. The following 12 cohort networks contributed data to this collaborative project: Baylor International Pediatric AIDS Initiative at *Texas Children’s Hospital* (BIPAI); European Pregnancy and Paediatric HIV Cohort Collaboration (EPPICC); International Epidemiology Database to Evaluate AIDS (IeDEA) – Asia Pacific; IeDEA – Central Africa; IeDEA – East Africa; IeDEA – Southern Africa; IeDEA – West Africa; Caribbean, Central and South America Network for HIV Research (CCASAnet); Pediatric Late Outcomes Protocol (PACTG/IMPAACT 219/219c); Prospective Surveillance Study of Long-term Outcomes in HIV-infected Infants, Children and Adolescents (IMPAACT P1074); Médecins Sans Frontières (MSF) Pediatric Cohorts; Pediatric HIV/AIDS Cohort Study Adolescent Master Protocol (PHACS AMP); Identifying Optimal Models for Care in Africa (Optimal Models-ICAP). The data contributed by the networks were drawn from a range of care settings including dedicated research cohorts, routine care cohorts and programmatic services. Using a standardized data transfer protocol based on the HIV Cohorts Data Exchange Protocol [19], and following quality checks and queries at the central University of Cape Town data centre, individual level data on 183,119 HIV-infected children were merged in May 2016. Participants contributed data to only a single network and there was no duplication of participants amongst networks.

Analytic methods:
We conducted a retrospective cohort analysis. APH were defined as HIV-infected children with at least one documented HIV care visit prior to age 10 years, as a proxy for perinatally-acquired HIV, and at least one additional HIV care visit after 10 years of age. Children with known non-vertical routes of HIV-infection e.g. horizontal transmission from blood products, unsafe injections or sexual abuse, were excluded. Our primary analysis described patient and treatment characteristics of APH at key time points including first HIV-associated clinic visit, ART start, age 10 years and last visit, and compared these characteristics by geographic region, CIG and birth cohort. Observation time was censored at 19 years of age in adolescents with follow-up beyond this age.

The first visit was defined as the first recorded date in the database of any contact with a health care facility for HIV-related care, and first visit measurements (height, CD4 T-lymphocyte counts and percentages, and HIV viral load) were taken as the closest measurement to the first visit date, but could be no later than 182 days after the first visit. If ART was started within 182 days of the first visit, only measurements up to 14 days after ART start were considered. The date of ART start was defined as the earliest date in the network database of initiation of any two antiretroviral drugs prior to the year 2000 or three or more antiretroviral drugs from the year 2000 or later. Measurements at ART start were taken as those closest to the ART start date but limited to a window of 182 days prior to or 14 days after ART start. Measurements at age 10 years were taken as those closest to the child’s 10th birthday limited to a window of 182 days either side of the 10th birthday. The last visit was defined as the last date of any recorded visit, laboratory test or ART record. Measurements at the last visit were taken as those closest to the last visit date within a window of 18 months prior to the last visit date, to allow for only annual monitoring in stable patients on ART. It is possible for there to be overlap with individual measurements classified as occurring at more than one time point e.g. a measurement classified as a first visit measurement can also be classified as an ART start measurement and similarly for measurements at age 10 years and last visit. World Health Organization (WHO) height-for-age Z-scores (HAZ) were calculated for APH in all regions from the measured heights using the WHO ‘igrowup_restricted’ Stata macro for HAZ up to 5 years of age [20] and the ‘who2007’ Stata macro for HAZ from 5 to 19 years of age [21]. Stunting was defined as HAZ < -2 standard deviations from the mean. Viral suppression was considered as an HIV viral load...
measurement of less than 400 copies/ml, or less than the level of detection of the test at the time if greater than 400 copies/ml. Geographic regions were categorized as Europe, North America, South America & Caribbean, South & Southeast Asia and sub-Saharan Africa. CIG were assigned according to World Bank country income group classification for the median year of first visit for each country [22]. Birth cohorts were categorized as born prior to 1995, born between 1995 and 1999 and born between 2000 and 2005.

Our secondary analysis focused on patient outcomes between 10 and 15 years of age, classified as mortality, transferred out, lost to follow-up (LTFU) or alive and retained in care. Mortality included all-cause mortality as reported in the database. Transfer out included documented transfer to a different HIV care site for any reason. LTFU was defined as no observed visit for more than 365 days before the last observed visit for the cohort. APH classified as LTFU were censored 365 days after their last observed visit. APH considered to be alive and in care at database closure were those not known to have died or transferred and with an observed visit within 365 days prior to the last visit for the cohort. Cumulative incidence functions for the outcomes mortality, transfer out and LTFU at 15 years of age were calculated using competing risks analysis for the whole cohort as well as by region, CIG and birth period with person-time accruing from age 10 years [23]. Cumulative incidence functions for birth cohorts stratified separately by region or by CIG were calculated for the outcomes at 13 years of age due to few APH in the most recent birth cohort having reached age 15 years. Transfer out and LTFU were both considered to be competing risks for mortality rather than censoring events. This approach was chosen as the survival distribution of adolescents transferred out or LTFU is likely to be different to those retained in care, with better survival in stable transferred patients and poorer survival in patients LTFU and possibly no longer on ART [23]. For comparison, cumulative mortality estimates at 15 years of age were also calculated using the Kaplan-Meier product limit estimator.

Mortality hazard ratios (HR) and 95% confidence intervals (CI) were calculated for geographic regions using Cox proportional hazard models with Europe as the reference group. Continuous variables, including age, CD4 count and CD4 percent were included in the Cox models as continuous variables after confirming a linear relationship with mortality. Proportionality assumptions were evaluated using the Schoenfeld test. Adjusted
HRs were calculated adjusting for baseline differences between regions. Missing CD4 and height measurements were imputed for the multivariable models using multiple imputation by chained equations [24]. The imputation model contained all measured variables and used predictive mean matching for CD4 counts. Imputation of missing CD4 measurements was performed for all countries and subsequently also restricted only to countries with at least 50 CD4 measurements at first visit or for countries with less than 50 APH, at least 50% of APH with CD4 measurements at first visit. Sensitivity analyses were conducted to better understand how LTFU may have biased mortality estimates. Firstly, inverse probability weighting (IPW) was applied to the multivariable model giving greater weight to APH not LTFU but with characteristics similar to APH who were LTFU. Secondly, under varying assumptions about the proportion of LTFU that could be due to mortality, mortality was randomly assigned to a proportion of APH that were originally classified as LTFU [25]. Unadjusted HRs as well as cumulative incidence functions were recalculated under these assumptions. All analyses were conducted using Stata version 13.0 (StataCorp, College Station, Texas, USA) and the ‘stcompet’ package was used to calculate the cumulative incidence functions from the competing risks analysis. Figures were plotted using the ggplot2 package in R version 3.2.2 (R Foundation for Statistical Computing, Vienna, Austria).

Results

Of the 183,119 children included in the CIPHER multi-regional dataset a total of 38,187 APH were included (Fig 1), from 51 countries across five regions of the world, with 79% from sub-Saharan Africa (Table 1). Observation started as early as 1982 in Europe and 1996 in sub-Saharan Africa and continued until at least 2014 in all regions. The median (interquartile range (IQR)) year of birth was earliest in North America (1994 (1992; 1996)) and latest in South & Southeast Asia, (2001 (1999; 2002)). A total of 112,976 person-years were observed between 10 and 19 years of age and the median (IQR) duration of adolescent follow-up was longest in Europe (6.4 (3.6; 8.0) years) and shortest in sub-Saharan Africa (2.1 (0.9; 3.8) years) (Table 1). Overall 44% (46/104) of included cohorts provided data only on APH that had ever received ART.
Table 1: Profile of geographic regions included in the CIPHER Global Cohort adolescent analysis (N=38,187 adolescents)

<table>
<thead>
<tr>
<th>Region</th>
<th>Countries included</th>
<th>Number of study centres</th>
<th>Number of adolescents (%)</th>
<th>Observation period</th>
<th>Year of birth median (IQR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe</td>
<td>Belgium, France, Ireland, Italy, Netherlands, Poland, Portugal, Romania, Russian Federation, Spain, Sweden, Switzerland, Ukraine, United Kingdom</td>
<td>153</td>
<td>3054 (8.0)</td>
<td>1982-2015</td>
<td>1995 (1991; 1999)</td>
</tr>
<tr>
<td>South & Southeast Asia</td>
<td>Cambodia, India, Indonesia, Malaysia, Myanmar, Thailand, Vietnam</td>
<td>73</td>
<td>2902 (7.6)</td>
<td>1994-2014</td>
<td>2001 (1999; 2002)</td>
</tr>
<tr>
<td>South America & Caribbean</td>
<td>Argentina, Brazil, Haiti, Honduras</td>
<td>6</td>
<td>903 (2.4)</td>
<td>1990-2015</td>
<td>1998 (1995; 2000)</td>
</tr>
</tbody>
</table>

IQR – interquartile range
Comparison by geographic region

More than two thirds of APH living in sub-Saharan Africa and South and Southeast Asia were born between 2000 and 2005, compared to only 7% of APH in North America (Table 2). In all regions, approximately half of the APH were female. Median (IQR) age at first visit differed substantially by region, ranging from 0.7 (0.3; 2.1) years in North America to 7.1 (5.3; 8.6) years in sub-Saharan Africa. Similarly, APH in North America started ART at a median (IQR) age of 0.9 (0.4; 2.6) years, compared to 7.9 (6.0; 9.3) years in sub-Saharan Africa (Table 2, Fig 2 Panel A). In the 61% of APH with a CD4 count or percent measurement recorded at ART start, the median (IQR) CD4 count was 321 (165; 575), with substantial variation by region (Table 2). Similarly, median (IQR) CD4% at ART start varied by region, and was highest in North America (28% (20%; 36%)) and lowest in South & Southeast Asia (10% (4%; 16%)). By age 10 years and last visit there was less variation in CD4% by region (Fig 2 Panel B). Median (IQR) HAZ at first visit and ART start was well below WHO normative data in all regions and lowest in South & Southeast Asia, at -2.36 (-3.26; -1.42) at first visit and -2.41 (-3.31; -1.51) at ART start (Fig 2 Panel C). In APH in Europe and North America, HAZ improved by age 10 years and last visit, but at least 25% of APH in South & Southeast Asia, South America & Caribbean and sub-Saharan Africa remained stunted at their last visit (Table 2). Eighty eight percent of APH received ART at some stage, of whom 12% started ART after age 10 years, and 80% remained on ART at their last visit. Of the 7,401 (19%) APH not known to be on ART at their last visit, 62% were ART naïve. Only 38% of all APH had an HIV viral load recorded at some stage, and this proportion was lowest in sub-Saharan Africa at 25% (Table 2). Of those with an HIV viral load and on ART at their last visit, 72% (9,388/13,114) were virologically suppressed.
Table 2: Adolescent characteristics at first visit, ART start, age 10 years and last visit and cumulative incidence of outcomes (mortality, transferred out, lost-to-follow-up) compared by region

<table>
<thead>
<tr>
<th>Total</th>
<th>Europe</th>
<th>North America</th>
<th>South & Southeast Asia</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (row %)</td>
<td>38187 (100)</td>
<td>3054 (8.0)</td>
<td>1032 (2.7)</td>
</tr>
<tr>
<td>Birth Cohort - N (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-1995</td>
<td>2660 (7.0)</td>
<td>1399 (45.8)</td>
<td>640 (62.0)</td>
</tr>
<tr>
<td>1995-1999</td>
<td>13267 (34.7)</td>
<td>989 (32.4)</td>
<td>318 (30.8)</td>
</tr>
<tr>
<td>2000-2005</td>
<td>22260 (58.3)</td>
<td>666 (21.8)</td>
<td>74 (7.2)</td>
</tr>
<tr>
<td>Male – N (%)</td>
<td>18863 (49.4)</td>
<td>1475 (48.3)</td>
<td>515 (49.9)</td>
</tr>
<tr>
<td>Age in years – median (IQR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First visit</td>
<td>6.7 (4.4; 8.4)</td>
<td>1.9 (0.2; 5.5)</td>
<td>0.7 (0.3; 2.1)</td>
</tr>
<tr>
<td>ART start</td>
<td>7.5 (5.2; 9.2)</td>
<td>4.4 (1.2; 8.2)</td>
<td>0.9 (0.4; 2.6)</td>
</tr>
<tr>
<td>Last visit</td>
<td>12.4 (11.1; 14.4)</td>
<td>16.4 (13.6; 18.0)</td>
<td>13.7 (12.0; 15.4)</td>
</tr>
<tr>
<td>CD4 count in cells/mm³ – median (IQR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First visit all ages [N=19979]</td>
<td>427 (200; 757)</td>
<td>768 (375; 1580)</td>
<td>1263 (775; 2207)</td>
</tr>
<tr>
<td>First visit if age ≥ 5 years [N=14585]</td>
<td>358 (165; 632)</td>
<td>415 (202; 629)</td>
<td>504 (298; 598)</td>
</tr>
<tr>
<td>ART start all ages [N=20608]</td>
<td>321 (165; 575)</td>
<td>464 (241; 1029)</td>
<td>1129 (702; 1921)</td>
</tr>
<tr>
<td>ART start if age ≥ 5 years [N=16612]</td>
<td>292 (161; 469)</td>
<td>298 (161; 469)</td>
<td>590 (384; 767)</td>
</tr>
<tr>
<td>Age 10 years [N=26953]</td>
<td>685 (445; 972)</td>
<td>697 (468; 970)</td>
<td>796 (575; 1049)</td>
</tr>
<tr>
<td>Last visit [N=31951]</td>
<td>687 (464; 946)</td>
<td>628 (434; 868)</td>
<td>700 (494; 930)</td>
</tr>
<tr>
<td>CD4 % - median (IQR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First visit [N=13674]</td>
<td>16 (9; 25)</td>
<td>23 (15; 35)</td>
<td>30 (20; 39)</td>
</tr>
<tr>
<td>ART start [N=14740]</td>
<td>14 (8 ; 20)</td>
<td>18 (12; 28)</td>
<td>28 (20; 36)</td>
</tr>
<tr>
<td>Age 10 years [N=17974]</td>
<td>28 (20; 34)</td>
<td>29 (21; 35)</td>
<td>33 (26; 39)</td>
</tr>
<tr>
<td>Last visit [N=23292]</td>
<td>29 (21; 35)</td>
<td>30 (22; 37)</td>
<td>32 (25; 38)</td>
</tr>
<tr>
<td>HAZ – median (IQR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First visit [N=20269]</td>
<td>-1.92 (-2.91; -0.97)</td>
<td>-0.75 (-1.60; 0.15)</td>
<td>-1.15 (-2.22; -0.15)</td>
</tr>
<tr>
<td>ART start [N=20372]</td>
<td>-1.95 (-2.91; -1.02)</td>
<td>-0.77 (-1.61; 0.09)</td>
<td>-1.19 (-2.21; -0.16)</td>
</tr>
<tr>
<td>Age 10 years [N=26883]</td>
<td>-1.53 (-2.35; -0.72)</td>
<td>-0.32 (-1.08; 0.43)</td>
<td>-0.35 (-1.11; 0.47)</td>
</tr>
<tr>
<td>Last visit [N=32752]</td>
<td>-1.59 (-2.45; -0.72)</td>
<td>-0.40 (-1.14; 0.29)</td>
<td>-0.33 (-1.09; 0.42)</td>
</tr>
<tr>
<td>ART – N (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ever received</td>
<td>33514 (87.8)</td>
<td>2889 (94.6)</td>
<td>1016 (98.5)</td>
</tr>
<tr>
<td>Started > age 10 years</td>
<td>4037 (12.0)</td>
<td>371 (12.8)</td>
<td>1 (0.1)</td>
</tr>
<tr>
<td>On ART at age 10 years</td>
<td>25713 (67.3)</td>
<td>2021 (66.2)</td>
<td>866 (83.9)</td>
</tr>
<tr>
<td>On ART at last visit</td>
<td>30072(80.3)</td>
<td>2540 (84.1)</td>
<td>878 (86.1)</td>
</tr>
<tr>
<td>Virologic suppression – n/N (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 10 years</td>
<td>6919/10209 (67.8)</td>
<td>1442/2500 (57.7)</td>
<td>576/1012 (56.9)</td>
</tr>
<tr>
<td>Last visit</td>
<td>9741/14200 (68.6)</td>
<td>2149/2994 (71.8)</td>
<td>617/1020 (60.5)</td>
</tr>
</tbody>
</table>

Cumulative incidence (95% CI) at age 15 years
<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Europe</th>
<th>North America</th>
<th>South & Southeast Asia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality (%)</td>
<td>2.6 (2.4; 2.8)</td>
<td>0.8 (0.5; 1.2)</td>
<td>1.1 (0.5; 2.1)</td>
<td>2.7 (1.9; 3.8)</td>
</tr>
<tr>
<td>Transferred out (%)</td>
<td>15.6 (15.1; 16.0)</td>
<td>3.5 (2.9; 4.3)</td>
<td>1.9 (1.1; 3.1)</td>
<td>6.7 (5.5; 8.0)</td>
</tr>
<tr>
<td>Lost to follow-up (%)</td>
<td>11.3 (10.9; 11.8)</td>
<td>6.1 (5.2; 7.0)</td>
<td>8.9 (6.7; 11.3)</td>
<td>7.1 (5.6; 8.7)</td>
</tr>
</tbody>
</table>

ART – antiretroviral therapy; CI – confidence interval; HAZ – WHO height-for-age Z-score; IQR – interquartile range

Note: 48.5%, 47.7% and 26.9% of first visit CD4 count, CD4 percent and HAZ measurements respectively overlapped with ART start measurements and 14.9%, 15.5% and 7.3% of age 10 year CD4 count, CD4 percent and HAZ measurements respectively overlapped with last visit measurements.

Fig 2: Comparison by geographic region of characteristics at first visit, ART start, age 10 years and last visit of adolescents living with perinatally-acquired HIV (ART – antiretroviral therapy; IQR – interquartile range; S&SE Asia – South and Southeast Asia; WHO – World Health Organization)

By competing risks analysis, the cumulative incidence estimates (95% CI) at 15 years of age for mortality, transfers out and LTFU for all APH were 2.6% (2.4%; 2.8%), 15.6% (15.1%; 16.0%) and 11.3% (10.9%; 11.8%) respectively (Table 2). Cumulative incidence of mortality before any other competing event occurred was estimated to be lowest in Europe (0.8% (0.5%; 1.1%)) and highest in South America & Caribbean (4.4% (3.1%; 6.1%)) (Table 2). However LTFU before mortality or transfer out was lowest in South American & Caribbean (4.8% (3.4%; 6.7%)) and highest in sub-Saharan Africa (13.2% (12.6%; 13.7%)). Transfers out before mortality or LTFU were also highest in sub-Saharan Africa (19.3% (18.7%; 20.0%)). Cumulative mortality [95% CI] when estimated by the Kaplan-Meier product limit estimator, was similar at 3.0% (2.8%; 3.3%) for the total cohort, ranging from 0.8% (0.5%; 1.2%) in Europe to 4.7% (3.3%; 6.6%) in South America & Caribbean (S1 Table).
Comparison by country income group

Sixty five percent of all APH in this cohort lived in low income countries, 7.9% in lower-middle income, 17.5% upper-middle income and 9.7% in high income countries. Variation in characteristics by CIG followed the geographic region trends, with younger age, higher CD4% and less impaired HAZ at first visit and ART start in APH in high income countries compared to upper-middle, lower-middle or low income countries (Table 3, Fig 3). Mortality before transfer out or LTFU was lowest in high income countries (0.9% (0.6%; 1.3%)) and highest in low income countries (3.5% (3.1%; 3.8%)) (Table 3). However LTFU before mortality or transfer out was highest in upper-middle income countries (12.8% (11.8%; 13.9%)).
Table 3: Adolescent characteristics at first visit, ART start, age 10 years and last visit and cumulative incidence of outcomes (mortality, transferred out, lost-to-follow-up) compared by country income group

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Low Income</th>
<th>Lower-Middle Income</th>
<th>Upper-Middle Income</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total N (row %)</td>
<td>38187 (100)</td>
<td>24794 (64.9)</td>
<td>3015 (7.9)</td>
<td>6669 (17.5)</td>
</tr>
<tr>
<td>Male – N (%)</td>
<td>18863 (49.4)</td>
<td>12191 (49.2)</td>
<td>1503 (49.9)</td>
<td>3372 (50.6)</td>
</tr>
<tr>
<td>Age in years – median (IQR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First visit</td>
<td>6.7 (4.4; 8.4)</td>
<td>7.1 (5.4; 8.6)</td>
<td>6.3 (3.8; 8.1)</td>
<td>6.3 (3.7; 8.3)</td>
</tr>
<tr>
<td>ART start</td>
<td>7.5 (5.2; 9.2)</td>
<td>8.0 (6.2; 9.4)</td>
<td>7.2 (4.7; 9.0)</td>
<td>7.0 (4.7; 8.8)</td>
</tr>
<tr>
<td>Last visit</td>
<td>12.4 (11.1; 14.4)</td>
<td>12.1 (10.9; 13.7)</td>
<td>13.2 (11.4; 15.3)</td>
<td>12.6 (11.1; 14.6)</td>
</tr>
<tr>
<td>CD4 count in cells/mm³ – median (IQR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First visit [N=19979]</td>
<td>427 (200; 757)</td>
<td>405 (194; 707)</td>
<td>348 (142; 610)</td>
<td>393 (183; 709)</td>
</tr>
<tr>
<td>First visit if age > 5 years [N=14585]</td>
<td>358 (165; 632)</td>
<td>377 (176; 664)</td>
<td>302 (116; 540)</td>
<td>298 (132; 527)</td>
</tr>
<tr>
<td>ART start [N=20608]</td>
<td>321 (165; 575)</td>
<td>302 (155; 504)</td>
<td>277 (108; 455)</td>
<td>336 (171; 602)</td>
</tr>
<tr>
<td>ART start if age > 5 years [N=16612]</td>
<td>292 (161; 469)</td>
<td>300 (154; 504)</td>
<td>245 (91; 360)</td>
<td>283 (139; 478)</td>
</tr>
<tr>
<td>Age 10 years [N=26953]</td>
<td>685 (445; 972)</td>
<td>661 (421; 955)</td>
<td>702 (463; 953)</td>
<td>719 (472; 1004)</td>
</tr>
<tr>
<td>Last visit [N=31951]</td>
<td>687 (464; 946)</td>
<td>679 (443; 956)</td>
<td>692 (492; 917)</td>
<td>727 (511; 968)</td>
</tr>
<tr>
<td>CD4 % - median (IQR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First visit [N=13674]</td>
<td>16 (9; 25)</td>
<td>16 (9; 24)</td>
<td>13 (7; 20)</td>
<td>14 (8; 21)</td>
</tr>
<tr>
<td>ART start [N=14740]</td>
<td>14 (8; 20)</td>
<td>13 (8; 18)</td>
<td>11 (6; 17)</td>
<td>13 (8; 19)</td>
</tr>
<tr>
<td>Age 10 years [N=17974]</td>
<td>28 (20; 34)</td>
<td>27 (19; 34)</td>
<td>27 (21; 33)</td>
<td>28 (20; 35)</td>
</tr>
<tr>
<td>Last visit [N=23292]</td>
<td>29 (21; 35)</td>
<td>28 (20; 35)</td>
<td>29 (22; 35)</td>
<td>29 (22; 35)</td>
</tr>
<tr>
<td>HAZ – median (IQR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First visit [N=20269]</td>
<td>-1.92 (-2.91; -0.97)</td>
<td>-2.02 (-3.00; -1.07)</td>
<td>-1.98 (-2.87; -1.09)</td>
<td>-1.89 (-2.80; -1.00)</td>
</tr>
<tr>
<td>ART start [N=20372]</td>
<td>-1.95 (-2.91; -1.02)</td>
<td>-2.05 (-3.01; -1.13)</td>
<td>-2.13 (-3.05; -1.29)</td>
<td>-1.93 (-2.79; -1.10)</td>
</tr>
<tr>
<td>Age 10 years [N=26883]</td>
<td>-1.53 (-2.35; -0.72)</td>
<td>-1.69 (-2.48; -0.92)</td>
<td>-1.83 (-2.55; -1.08)</td>
<td>-1.46 (-2.20; -0.77)</td>
</tr>
<tr>
<td>Last visit [N=32752]</td>
<td>-1.59 (-2.45; -0.72)</td>
<td>-1.79 (-2.62; -0.97)</td>
<td>-1.65 (-2.44; -0.87)</td>
<td>-1.46 (-2.24; -0.67)</td>
</tr>
<tr>
<td>ART – N (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ever received</td>
<td>33514 (87.8)</td>
<td>20851 (84.1)</td>
<td>2776 (92.1)</td>
<td>6351 (95.2)</td>
</tr>
<tr>
<td>Started > age 10 years</td>
<td>4037 (12.0)</td>
<td>3028 (14.5)</td>
<td>305 (11.0)</td>
<td>423 (6.7)</td>
</tr>
<tr>
<td>On ART at age 10 years</td>
<td>25713 (67.3)</td>
<td>15444 (62.3)</td>
<td>2279 (75.6)</td>
<td>5323 (79.8)</td>
</tr>
<tr>
<td>On ART at last visit</td>
<td>30072 (80.3)</td>
<td>18408 (75.9)</td>
<td>2589 (87.8)</td>
<td>6002 (91.1)</td>
</tr>
<tr>
<td>Virologic suppression – n/N (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 10 years</td>
<td>6919/10209 (67.8)</td>
<td>467/932 (50.2)</td>
<td>885/1039 (85.2)</td>
<td>3637/4843 (75.1)</td>
</tr>
<tr>
<td>Last visit</td>
<td>9741/14200 (68.6)</td>
<td>1342/2777 (48.3)</td>
<td>1210/1486 (81.4)</td>
<td>4684/6274 (74.7)</td>
</tr>
<tr>
<td>Cumulative incidence (95% CI) at age 15 years</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mortality (%)</td>
<td>2.6 (2.4; 2.8)</td>
<td>3.5 (3.1; 3.8)</td>
<td>2.7 (2.1; 3.5)</td>
<td>1.4 (1.1; 1.9)</td>
</tr>
<tr>
<td>Transferred out (%)</td>
<td>15.6 (15.1; 16.0)</td>
<td>16.7 (16.1; 17.4)</td>
<td>14.3 (12.8; 15.8)</td>
<td>2.1 (2.0; 2.3)</td>
</tr>
<tr>
<td>Lost to follow-up (%)</td>
<td>11.3 (10.9; 11.8)</td>
<td>12.6 (12.0; 13.2)</td>
<td>7.5 (6.3; 8.8)</td>
<td>12.8 (11.8; 13.9)</td>
</tr>
</tbody>
</table>

ART – antiretroviral therapy; CI – confidence interval; HAZ – height-for-age-Z-score; IQR – interquartile range
Fig 3: Comparison by country income group of characteristics at first visit, ART start, age 10 years and last visit of adolescents living with perinatally-acquired HIV (ART – antiretroviral therapy; IQR – interquartile range; S&SE Asia – South and Southeast Asia; WHO – World Health Organization)
Comparison by birth cohort

Fifty eight percent of all APH were born in the year 2000 or later, ranging from 0.3% living in North America and 2.8% in high income countries to 86.9% living in sub-Saharan Africa and 73.6% in low income countries (S2 Table). Three-quarters (76.7%) of APH born prior to 1995 lived in Europe and North America, and age at first visit and ART start appear to be younger and CD4 count, CD4 percent and HAZ at first visit and ART start appear to be better in this group compared to those born in later calendar periods (S2 Table, S1 Fig). However for the two more recent birth cohorts, the majority of APH were from sub-Saharan Africa, and age at first visit and ART start was younger and CD4 count higher in APH born during 2000 to 2005 than 1995 to 1999. HAZ, however, did not show any improvement over time at ART start or at last visit for APH born between 2000 and 2005 compared to APH born between 1995 and 1999. Mortality before transfer or LTFU was lowest in APH born between 2000 and 2005 (1.84% (95% CI 1.50%; 2.23%)), although LTFU in this group was also more than double that of the previous two birth periods (23.34% (95% CI 19.96%; 26.88%)). When looking at birth cohort trends by region, mortality declined in every region for APH born between 2000 and 2005 compared to those born in the earlier birth cohorts, and no mortality was observed in the most recent APH birth cohort in Europe, North America and South America & Caribbean (S3 Table). However, LTFU increased for APH born between 2000 and 2005 in all regions except South America & Caribbean.

Mortality hazards compared by region

Relative to Europe, the unadjusted mortality HR (95% CI) was significantly higher in South & Southeast Asia (3.21 (2.03; 5.07)), South America & Caribbean (6.07 (3.87; 9.50)) and sub-Saharan Africa (4.35 (3.02; 6.28)), but not in North America (1.70 (0.87; 3.31)) (Table 4, model 1). After controlling for baseline characteristics including sex, birth cohort, age at first visit and any ART received, the adjusted mortality HR (aHR) increased slightly for North America and decreased for sub-Saharan Africa (Table 4, model 2). Inclusion of IPW in the model marginally reduced the HR further for all regions except North America (Table 4, model 3). Adjustment for CD4 measures, either as CD4 count or CD4%, at first visit only or time-updated and with or without multiple imputation for missing CD4 measures, also altered the individual region aHRs relative to Europe, but the
general pattern remained of elevated mortality in all regions relative to Europe and substantially elevated mortality in sub-Saharan Africa and South America & Caribbean (Table 4 and S4 Table).

Table 4: Mortality hazard ratios (95% confidence intervals) by region with reference to Europe

<table>
<thead>
<tr>
<th>Region</th>
<th>Crude mortality hazard ratio compared to Europe [N=38,187]</th>
<th>Adjusted for complete baseline characteristics* [N=38,187]</th>
<th>Adjusted for complete baseline characteristics* with IPW [N=38,187]</th>
<th>Adjusted for baseline characteristics* including CD4%, using complete cases only [N=13,699]</th>
<th>Adjusted for baseline characteristics* including CD4%, with imputation for missing CD4 [N=38,187]</th>
<th>Adjusted for baseline characteristics* including CD4%, with restricted imputationb [N=33,126]</th>
<th>Adjusted for baseline characteristics* including CD4 count, using complete cases only [N=19,979]</th>
<th>Adjusted for baseline characteristics* including CD4 count, with imputation [N=38,187]</th>
<th>Adjusted for baseline characteristics* including CD4 count, with restricted imputationb [N=33,126]</th>
<th>Adjusted for baseline characteristics* and time-updated CD4 count, with imputation [N=38,187]</th>
<th>Adjusted for baseline characteristics* including CD4 count and HAZ, with imputation [N=38,187]</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td>1.70 (0.87; 3.31)</td>
<td>2.03 (1.02; 4.02)</td>
<td>2.52 (1.24; 5.11)</td>
<td>1.84 (0.58; 5.81)</td>
<td>2.34 (1.19; 4.71)</td>
<td>1.97 (0.97; 4.02)</td>
<td>2.18 (0.71; 6.66)</td>
<td>2.37 (1.19; 4.71)</td>
<td>2.02 (0.99; 4.11)</td>
<td>2.07 (1.05; 4.10)</td>
<td>2.31 (1.16; 4.60)</td>
</tr>
<tr>
<td>South & Southeast Asia</td>
<td>3.21 (2.03; 5.07)</td>
<td>2.96 (1.79; 4.88)</td>
<td>2.78 (1.75; 4.42)</td>
<td>1.90 (0.73; 4.91)</td>
<td>1.87 (1.12; 3.13)</td>
<td>1.56 (0.91; 2.67)</td>
<td>3.16 (1.44; 6.96)</td>
<td>2.40 (1.45; 3.96)</td>
<td>1.56 (0.91; 2.67)</td>
<td>4.06 (2.45; 6.73)</td>
<td>2.21 (1.33; 3.67)</td>
</tr>
<tr>
<td>South America & Caribbean</td>
<td>6.07 (3.87; 9.50)</td>
<td>5.94 (3.77; 9.38)</td>
<td>5.61 (3.58; 8.77)</td>
<td>4.20 (1.72; 10.29)</td>
<td>5.00 (3.17; 7.90)</td>
<td>4.16 (2.54; 6.80)</td>
<td>5.52 (2.62; 11.67)</td>
<td>5.49 (3.48; 8.65)</td>
<td>4.16 (2.54; 6.80)</td>
<td>5.49 (3.48; 8.65)</td>
<td>5.21 (3.29; 8.23)</td>
</tr>
<tr>
<td>Sub-Saharan Africa</td>
<td>4.35 (3.02; 6.28)</td>
<td>3.37 (2.17; 5.23)</td>
<td>3.23 (2.21; 4.73)</td>
<td>4.09 (1.84; 9.13)</td>
<td>2.70 (1.75; 4.19)</td>
<td>2.42 (1.51; 3.87)</td>
<td>4.57 (2.23; 9.35)</td>
<td>3.01 (1.95; 4.67)</td>
<td>2.70 (1.68; 4.33)</td>
<td>3.58 (2.28; 5.64)</td>
<td>2.85 (1.83; 4.43)</td>
</tr>
</tbody>
</table>

*Sex, birth period (pre-1995; 1995-1999; 2000-2005), age at first visit, antiretroviral therapy (never started, started on dual therapy before 2000, started on triple therapy); b Multiple imputation for missing CD4 restricted to countries with at least 50 CD4 observations at first visit, or <50% missing CD4 if total country N <50; HAZ – height-for-age-Z-score; IPW – inverse probability weights
Sensitivity analyses

In sensitivity analyses, under varying assumptions of the proportion of APH classified as LTFU who may be unascertained mortality, the cumulative incidence for mortality before transfer out or LTFU in sub-Saharan Africa could be as high as 14.9% [95% CI 14.3%; 15.5%] if 100% of APH LTFU was truly mortality (S5 Table). Under the assumption that 100% of LTFU is due to mortality in all regions, the relative difference in mortality is attenuated in all regions in comparison to Europe, with the highest unadjusted HR (uHR) in sub-Saharan Africa at 1.46 (95% CI 1.33; 1.61) (S6 Table). If it is differentially assumed that in sub-Saharan Africa 50% of LTFU is unascertained mortality, but only 5% in all other regions, the uHR for mortality in sub-Saharan Africa may be as high as 7.09 (95% CI 5.45; 9.23) relative to Europe.
Discussion

To our knowledge, this is the largest analysis of APH to date, describing the characteristics and outcomes of more than 38,000 APH, across more than 100,000 person years of follow-up during adolescence, from five regions of the world, including 14 of the 15 highest adolescent HIV burden countries [1], and across low, middle and high income countries. This analysis essentially describes younger adolescents (10 to 14 years of age), 79% of whom were living in sub-Saharan Africa. Our findings show that APH in North America and Europe, as well as high income group countries, generally presented to care and started ART at a younger age with higher CD4 counts and less impaired height compared to other regions or CIG. Conversely, age at presentation to care and ART start was highest in sub-Saharan Africa. Despite probable under-ascertained mortality in some regions, the hazard of HIV-associated mortality during adolescence was substantially higher in sub-Saharan Africa, South & Southeast Asia and South America & Caribbean than in Europe. Results suggested that mortality may also have been higher in North America than Europe. Analysis by country income group followed these geographic trends, with results suggesting younger age, higher CD4 percent and less impaired height at first visit and ART start in high income countries compared to middle or low income countries.

Results also suggested a marked difference in regional and income group distributions across birth cohort groups. APH from North America and Europe, and likewise high income countries, predominated in the earliest birth cohort, with minimal representation from Asia and Africa, while the most recent birth cohort was dominated by APH living in sub-Saharan Africa. Younger age, higher CD4 and less impaired growth in the earliest birth cohort reflected this region and CIG distribution. These vastly different characteristics of APH across regions and over time require careful adjustment and interpretation due to different effects of variables across time. Nevertheless, some improvements for all APH born after 2000 compared to those born during 1995-1999 are evident, including younger age and higher CD4 count at first presentation and ART start. This trend is expected as criteria for initiating ART have progressively become less restrictive, with higher or no
CD4 thresholds, and access to ART has expanded across the globe [3,26-29]. Despite this, height was still severely impacted in APH in the most recent birth cohort. This may reflect that although APH born during 2000-2005 started ART earlier than APH born during 1995-1999, they still only started at a median of 7 years of age, having missed the benefits of early ART on growth, and probably also cognition and other morbidities, although the latter two outcomes were not evaluated in this analysis [30-32].

Comparing mortality across the regions is limited by high LTFU in sub-Saharan Africa relative to the other regions. Furthermore, LTFU rates in Europe may be overestimated due to reporting delay for some cohorts. Higher LTFU has been described in cohorts with shorter durations of follow-up where people may not yet have had the opportunity to return to care, while in cohorts of longer durations, people previously considered LTFU subsequently return to care [33]. This could affect patients born in the most recent birth cohorts in our analysis, particularly in sub-Saharan Africa. Methods have advanced in adult HIV cohort research to informatively adjust mortality estimates for under-ascertainment in those LTFU, informed by studies that actively traced patients LTFU to determine their vital status [34-37]. However, a recent systematic review identified few such tracing studies in children or adolescents living with HIV [25]. One study from Malawi traced 201 children who were LTFU, and of the 79% who were successfully traced, 11% had died, 26% had transferred to another clinic and 25% were alive but no longer on ART [38]. A better understanding of how program LTFU can bias mortality estimates specifically in adolescents is needed to truly understand and impact on mortality in adolescents living with HIV [1].

This study has limitations. As mode of transmission is generally poorly captured in routine care cohorts, we used a pragmatic definition of APH and included only HIV-infected children that had entered care before age 10 years. This was done to ensure exclusion of adolescents with horizontally-acquired HIV, who have a very different disease profile during adolescence to APH [39]. As a result of this approach, we may have excluded a relatively small but important group of APH diagnosed and entering care after age 10 years [40,41]. Our analysis does not include Nigeria, a country with the second largest burden of adolescents living with HIV and
the only country in which mortality in younger adolescents (10 to 14 years of age) is estimated to be rising [1].

Furthermore, the North American region is represented only by the United States in this analysis, and findings may not necessarily be generalizable to other North American countries. Our analysis may over-represent APH treated in healthcare settings with higher standards of care compared to the general population of adolescents, thus underestimating true mortality in APH. Additionally, approximately 44% of included cohorts collect data only on children started on ART, thus the proportion on ART observed in this analysis is likely overestimated for some regions. HIV viral load measurements were sparsely available and possibly selectively performed in the lower CIGs, with likely targeting of HIV viral load measurements to children with clinical or immunological failure where HIV viral load testing is not part of routine monitoring. This would result in overestimation of the proportion of patients with an unsuppressed HIV viral load and these HIV viral load data should be interpreted with care in this analysis.

The current generation of APH, and those represented in this CIPHER analysis, largely reflect HIV-infected children who survived early childhood without ART but at the same time experienced substantial growth morbidity, and possibly other morbidities not measured in this analysis. This current generation may be substantially different to future cohorts of APH who will have been more likely to have started ART in infancy and may be affected by different issues. It is expected that APH survival will continue to improve with greater access to early infant diagnosis and universal ART for all people living with HIV [42]. Although the population of APH is likely to decline in the future, due to declining new perinatally-acquired HIV infections, there is still a lot of work to be done to achieve equality in health and survival for all APH irrespective of geographic location. Collaborations such as CIPHER enable us to monitor current global temporal trends in APH outcomes over time to ensure that this and future generations of APH across the globe have the potential to thrive and contribute to society, outcomes that were denied to previous generations of HIV-infected children.

In summary, our analysis of a large cohort of APH between 1982 and 2014 across several regions of the globe suggests that APH generally entered HIV care at an earlier age in high income countries compared to other
CIG. Despite probable under-ascertainment, mortality continued to be substantially higher in sub-Saharan Africa, South & Southeast Asia and South America & Caribbean than in Europe, and warrants further monitoring and understanding.

Acknowledgements
We thank all contributing networks, their study teams and participants. Please see full list of acknowledgments in supplementary material (S1 Text)

References
Support information captions:

- S1 Project Concept Analysis Plan - S1 Analysis Plan
- S2 Table Standard Survival Mortality Estimates - S1 Table
- S3 Table characteristics birth cohort - S2 Table
- S4 Fig comparison by birth cohort - S1 Fig
- S5 Table Cumulative incidence 10to15 Sensitivity - S3 Table
- S6 Table Selected Full Models - S4 Table
- S7 Table Cumulative incidence 10to15 Sensitivity - S5 Table
- S8 Table Crude mortality hazard ratios sensitivity - S6 Table
- S9 Acknowledgements - S1 Text
- S10 Group authorship list - S2 Text
- S11 STROBE Checklist - S1 STROBE Checklist
<table>
<thead>
<tr>
<th>HIV-infected children in the CIPHER Global Cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=183,119</td>
</tr>
</tbody>
</table>

Excluded:
- Known non-perinatal HIV-infection N=222
- Unresolvable date discrepancies N=13
- First observation at age > 10 years N=1,989
- Last observation at age < 10 years N=142,701
- Missing gender N=7
Click here to access/download Supporting Information
S2_Table_Standard_Survival_Mortality_Estimates - S1_Table.docx
Click here to access/download
Supporting Information
S3_Table_characteristics_birth_cohort - S2_Table.docx
Click here to access/download
Supporting Information
S5_Table_Cumulative_incidence_10to15_Sensitivity - S3_Table.docx
Click here to access/download Supporting Information
S6_Table_Selected_Full_Models - S4_Table.docx
Click here to access/download
Supporting Information
S8_Table_Crude_mortality_HR_sensitivity - S6_Table.docx
Click here to access/download
Supporting Information
S9_Acknowledgements - S1_Text.docx
Click here to access/download
Supporting Information
S10_Group_authorship_list - S2_Text.docx
Click here to access/download

Supporting Information

S11_STROBE_Checklist - S1_STROBE_Checklist.doc