Chronic Kidney Disease and Arrhythmias: Conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference

Mintu P. Turakhia¹, Peter J. Blankestijn², Juan-Jesus Carrero³, Catherine M. Clase⁴, Rajat Deo⁵, Charles A. Herzog⁶, Scott E. Kasner⁷, Rod S. Passman⁸, Roberto Pecoits-Filho⁹, Holger Reinecke¹⁰, Gautam R. Shroff¹¹, Wojciech Zareba¹², Michael Cheung¹³, David C. Wheeler¹⁴, and Wolfgang C. Winkelmayr¹⁵, Christoph Wanner¹⁶; for Conference Participants¹⁷

¹Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Stanford University School of Medicine, Stanford, CA, USA; ²Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands; ³Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; ⁴Department of Medicine and Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada; ⁵Section of Electrophysiology, Division of Cardiovascular Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; ⁶Division of Cardiology, Department of Medicine, Hennepin County Medical Center and University of Minnesota, Minneapolis, Minnesota and Chronic Disease Research Group, Minneapolis Medical Research Foundation, Minneapolis, MN, USA; ⁷Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; ⁸Northwestern University Feinberg School of Medicine and the Bluhm Cardiovascular Institute, Chicago, IL, USA; ⁹School of Medicine, Pontificia Universidade Catolica do Paraná, Curitiba, Brazil; ¹⁰Division of Vascular Medicine, Department of Cardiovascular Medicine, University Hospital Muenster, Muenster, Germany; ¹¹Division of Cardiology, Department of Medicine, Hennepin County Medical Center and University of Minnesota, Minneapolis, MN; ¹²Heart Research Follow-up Program, Cardiology Division, University of Rochester Medical Center, Rochester, NY, USA; ¹³KDIGO, Brussels, Belgium; ¹⁴University College London, London, UK; ¹⁵Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA; ¹⁶Department of Medicine, Division of Nephrology, University Hospital of Würzburg, Würzburg, Germany.

¹⁷Other conference participants: Kerstin Amann, Germany; Debasish Banerjee, UK; Nisha Bansal, USA; Giuseppe Boriani, Italy; Jared Bunch, USA; Christopher T. Chan, Canada; David M. Charytan, USA; David Conen, Canada; Allon N. Friedman, USA; Simonetta Genovesi, Italy; Rachel M. Holden, Canada; Andrew A. House, Canada; Michel Jadoul, Belgium; Alan G. Jardine, UK; David W. Johnson, Australia; Min Jun, Australia; Laura Labriola, Belgium; Patrick B. Mark, UK; Peter A. McCullough, USA; Thomas D. Nolin, USA; Tatjana S. Potpara, Serbia; Patrick H. Pun, USA; Antonio L. P. Ribeiro, Brazil; Patrick Rossignol, France; Jenny I. Shen, USA; Manish M. Sood, Canada; Yusuke Tsukamoto, Japan; Angela Yee-Moon Wang, Hong Kong; Matthew R. Weir, USA; James B. Wetmore, USA; Jerzy K. Wranicz, Poland; Hiro Yamasaki, Japan.
Running title: Chronic kidney disease and arrhythmias: A KDIGO conference report

Word count: 5144 words

Keywords: Anticoagulation; arrhythmia; atrial fibrillation; chronic kidney disease; dialysis; electrolyte disturbances; rate control; rhythm control; stroke; sudden cardiac death

Correspondence:

Mintu P. Turakhia, MD, MAS
Veterans Affairs Palo Alto Health Care System
3801 Miranda Ave, 111C, Palo Alto, CA 94304
E-mail: mintu@stanford.edu

Christoph Wanner, MD
Department of Medicine
Division of Nephrology, University Hospital
Oberduerrbacherstr. 6
Würzburg D-97080, Germany
E-mail: Wanner_C@ukw.de
ABSTRACT

Patients with chronic kidney disease (CKD) are at increased risk for cardiac rhythm disorders. Drug, device, and procedural treatment options may be limited in this population or complicated by concomitant CKD or dialysis. Patients with advanced CKD have also been underrepresented or excluded from randomized trials, limiting the generalizability of evidence. To address these challenges, the KDIGO 2016 Controversies Conference entitled, *Chronic Kidney Disease and Arrhythmias* convened a multidisciplinary panel of clinical and scientific experts to identify knowledge gaps and research priorities for preventing and treating arrhythmias in CKD across several disease areas: atrial fibrillation and stroke, rate versus rhythm control in atrial fibrillation, prognostication and prevention of sudden cardiac death, and maintenance of electrolyte homeostasis in CKD and dialysis. This conference report outlines the points of debate and consensus in managing arrhythmias in CKD and provides guidance for clinical practice and recommendations for future research.
INTRODUCTION

Patients with chronic kidney disease (CKD) are predisposed to heart rhythm disorders, including atrial fibrillation/flutter, supraventricular tachycardias, ventricular arrhythmias, and sudden cardiac death (SCD). While treatment options, including drug, device, and procedural therapies, are available, their use in the setting of CKD is complex and limited. Patients with CKD and end-stage kidney disease (ESKD) have historically been underrepresented or excluded from randomized trials of arrhythmia treatment strategies, although this situation is changing. Cardiovascular society consensus documents have recently identified evidence gaps for treating patients with CKD and heart rhythm disorders.

To identify key issues relevant to the optimal prevention, management, and treatment of arrhythmias and their complications in patients with kidney disease, KDIGO (Kidney Disease: Improving Global Outcomes) convened an international, multidisciplinary Controversies Conference in Berlin, Germany, titled CKD and Arrhythmias in October 2016. The conference agenda and discussion questions are available on the KDIGO website.

ATRIAL FIBRILLATION AND STROKE IN KIDNEY DISEASE

Epidemiology

Atrial fibrillation (AF) is the most common sustained arrhythmia.\(^8\) CKD affects 10% of adults worldwide,\(^9\) and patients with CKD have an increased burden of AF compared with those without CKD (Supplemental Table 1). The prevalence of AF is high: estimates range from 16% to 21% in patients not dependent on dialysis\(^10-12\) and 15% to 40% in patients on dialysis (Supplemental Table 1).\(^13-18\) CKD and AF share many risk factors, making it difficult to discern the contributions of individual factors to either condition or associated outcomes (Figure 1). For non-dialysis CKD, there seems to be an independent relationship between CKD and the risk of AF,\(^19-25\) although this association has not been well characterized across the spectrum of estimated glomerular filtration rate (eGFR) or proteinuria.\(^13, 14, 26, 27\) In the United States (US), both incidence and prevalence of AF are increasing among hemodialysis patients,\(^27, 28\) which could be because of older age of patients, better ascertainment of AF, and improved survival after vascular events.

Consequences of AF in CKD

The risk of stroke is elevated in non-dialysis\(^29-32\) and dialysis\(^29, 31, 33\) CKD (Supplemental Table 2). Separately, both CKD and AF are risk factors for stroke, but it is currently unknown whether the prognostic significance of CKD markers and AF is independent or interdependent. The association between AF and CKD may be bidirectional; AF may predict new-onset low GFR and proteinuria.\(^21\) In CKD, the adjusted risk ratios of stroke with AF have varied considerably across CKD subpopulations, ranging from 4.2 in women in the general population\(^34\), 1.3 in dialysis patients\(^33, 35\), and with modestly significant (1.4)\(^36\) and non-significant\(^37\) associations after kidney transplantation. These differences may be due to greater competing risk of death in more
advanced CKD, \(^{35}\) a higher baseline risk of stroke in CKD without AF, or a higher prevalence of unrecognized AF.

AF increases the risk of incident CKD and progression to ESKD\(^{21,38-40}\) (Supplemental Table 3), and increases risk of death in patients with non-dialysis CKD and those on dialysis.\(^{13,35,41,42}\) Other outcomes related to AF, including heart failure, sudden cardiac death (SCD), and myocardial infarction, require further research. The contribution of AF as a mediator of stroke in CKD, as well as the stroke subtypes observed, requires further study. The competing risk of death in CKD may reduce the importance of the contribution of AF to stroke, which could mitigate the effectiveness of some stroke prevention strategies.\(^{35}\)

Stroke risk scores

The predictive value and calibration of the CHADS\(_2\) and CHA\(_2\)DS\(_2\)-VASC stroke prediction scores have only been evaluated in dialysis patients, in which performance appears to be similar to their performance in the general population.\(^{16,33,43,44}\)

Inclusion of CKD in risk scores to improve stroke prediction has demonstrated variable results. Adding two points for GFR < 60 ml/min/1.73 m\(^2\) to CHADS\(_2\) (called R\(_2\)CHADS\(_2\)) improved net reclassification index (NRI) but not C statistic in one large study using external validation\(^30\) but did not improve NRI or C statistic in other studies.\(^{45,46}\) The ATRIA score, which includes terms for GFR < 45 ml/min/1.73 m\(^2\) and proteinuria, demonstrated improved NRI and borderline improvement in C statistic compared with CHADS\(_2\) and CHA\(_2\)DS\(_2\)-VASC in external validation\(^{47}\), although NRI may not be clinically meaningful.\(^{48}\) For these reasons and for the potential for categorically recommending oral anticoagulant (OAC) to most patients with CKD without regard to competing risks, CHA\(_2\)DS\(_2\)-VASC remains the most commonly-recommended
score for risk stratification5,49, and observational data has shown that a treatment threshold of CHA\textsubscript{2}DS\textsubscript{2}-VASC ≥ 2 is associated with OAC benefit, even in CKD.50

Bleeding risk scores

The HAS-BLED, ORBIT, HEMORR\textsubscript{2}HAGES and ATRIA bleeding risk scores all include CKD measures. Although the formal use of these bleeding risk scores has not been recommended by the majority of professional society guidelines,49,51 the increased risk of bleeding with and without OAC in CKD is well described and should be considered in clinical decision making.

STROKE PREVENTION AND ORAL ANTICOAGULATION

The pathophysiologic mechanisms responsible for stroke/thromboembolism in patients with CKD and AF are multifactorial and poorly understood; the precise contribution of cardioembolic versus non-cardioembolic factors is unclear. AF may be a direct cause of cardioembolic stroke, a risk marker of ischemic stroke including atherothrombotic subtypes, and in rare cases, a consequence of stroke.52

CKD patients with estimated creatinine clearance (eCrCl) of 30-50 ml/min

Pivotal RCTs have established that direct oral anticoagulants (DOACs) are non-inferior to warfarin among patients with Cockcroft-Gault eCrCl of 30-50 ml/min (for apixaban, 25-50 ml/min).53-56 However, there is insufficient evidence to recommend any one DOAC over any other in this population because no head-to-head trials have directly compared individual DOACs57-62 (Table 1). Indirect comparisons are challenging because these trials differed in inclusion criteria and outcome definitions.
Although efficacy (prevention of stroke and systemic embolism) may merely be non-inferior to warfarin, the safety profile of DOACs compared to warfarin does appear to be superior. In all pivotal RCTs, DOACs have been associated with a significant reduction (about 50%) in risk of intracranial hemorrhage compared to warfarin. Among patients with eCrCl between 25-50 ml/min, treatment with apixaban and edoxaban resulted in significantly fewer major bleeding events compared with warfarin (Figure 2). Although these observations do not necessarily indicate the superiority of apixaban and edoxaban relative to other DOACs, it may be helpful to clinicians when treating patients at particularly high bleeding risk or low time in therapeutic range (TTR) values while receiving warfarin or other vitamin K antagonists (VKAs).

CKD G4, G5 and G5D

In the absence of trial data, the results from observational studies on the efficacy and safety of anticoagulation for stroke prevention in CKD patients with eGFR < 30 ml/min/1.73 m² not on dialysis are conflicting as they are for CKD G5D (Table 2). There is insufficient high-quality evidence to recommend warfarin or other VKAs for prevention of stroke in CKD G5D patients with AF, especially when balancing the significant risks of bleeding, accelerated vascular calcification and calcific uremic arteriopathy associated with VKA therapy. A pooled meta-analysis of 56,146 CKD G5D patients with AF from 20 observational cohort studies demonstrated an increase in all-cause bleeding associated with VKA therapy without benefit in reduction of all-cause stroke or ischemic stroke. Yet, a well-conducted observational analysis of acute myocardial infarction patients with AF from the SWEDHEART registry (2003-2010) found that VKA therapy was associated with a reduced risk of a composite of death, myocardial infarction, and ischemic stroke with no increase in bleeding risk across the spectrum of CKD. The high time in international normalized ratio (INR) TTR in Sweden (> 75%) likely contributed...
to these findings, and has been difficult to replicate in other health systems.67 A large US health care system analysis found that CKD severity is associated with decreased TTR despite similar INR monitoring intensity.68 These findings suggest that TTR is more likely to be poor in CKD and can mediate the increased stroke and bleeding risk in CKD.69 VKAs may lead to CKD via repeated subclinical glomerular hemorrhages70 or through accelerated tissue or vascular calcification.71

The US Food and Drug Administration recently approved mention of the doses of apixaban 5 mg twice daily (with contingent dose modifications) and rivaroxaban 15 mg daily in CKD G5 and G5D (and dabigatran 75 mg orally twice daily for eCrCl 15-30 ml/min) on the respective labels based on single/limited dose pharmacokinetic and pharmacodynamic data with no clinical safety data.72-75 The conference attendees suggest consideration of the lower dose of apixaban 2.5 mg orally twice daily in CKD G5/G5D to reduce bleeding risk until clinical safety data are available, an approach supported by a recent pharmacokinetic study comparing the two doses.76 Recognizing that many CKD patients would likely qualify for a dose reduction to apixaban 2.5 mg orally twice daily anyway (if age ≥80 years or body weight ≤ 60 kg), this suggestion honors the “first do no harm” principle, while acknowledging the lack of clinical efficacy or safety data in this regard (Table 2).

Randomized clinical trials are particularly needed to evaluate VKA use in patients with CKD G5D. A clinical trial evaluating VKAs versus no oral anticoagulation (AVKDIAL, NCT02886962) is planned. It is not known whether DOACs have an advantage over VKAs in CKD G5D patients with AF. The AXADIA (NCT02933697) and RENAL-AF (NCT02942407) trials of apixaban versus VKAs in ESKD are enrolling in Germany and US.
Pragmatic considerations while managing anticoagulation in CKD

In pivotal RCTs, study eligibility and DOAC dose assignments were based on kidney function as assessed using eCrCl (Cockcroft-Gault). However, in clinical practice, other measures such as eGFR are routinely used. Given the imprecision in measures for estimating kidney function, individualization of DOAC dosing based on either method is reasonable. Important safety concerns, mainly increased fatal or non-fatal bleeding, emerged after the early “off-label” prescriptions of dabigatran and rivaroxaban in patients with CKD G5D. A recent study of 1,473 AF patients with renal indication for dose reduction found that 43% were potentially overdosed with DOACs, resulting in higher bleeding risk. These adverse signals suggest the need for systemic measures focused on patient safety to guide clinicians regarding the use of DOACs.

Team-based, multidisciplinary active communication, particularly involving the nephrologist, cardiologist (or cardiac electrophysiologist), primary care physician, and when possible, clinical pharmacist, may be useful to evaluate the risk-benefit of any decision regarding choice of VKA or a DOAC.

For CKD patients receiving DOAC therapy, we recommend periodic monitoring of kidney function because decline over time may necessitate dose modification. There are no data to indicate the optimal frequency of monitoring, but it may be clinically reasonable to assess kidney function every six to twelve months, (or at least yearly, consistent with professional society guidelines), with more or less frequent monitoring as appropriate based on recency of DOAC initiation, CKD severity, and CKD trajectory. For all CKD patients on anticoagulant therapy, annual reevaluation of treatment goals and discussion of pros and cons of anticoagulant therapy should be considered.
Periprocedural/perioperative management of DOACs is contingent upon individual agents and eCrCl, for which recommended parameters exist (Table 3). For patients with CKD G5D on anticoagulants, strategies to reduce bleeding warrant systematic research but may include minimizing heparin with dialysis, use of citrate locks for catheters, consideration of prophylaxis for gastrointestinal bleeding when clinically indicated, tight blood pressure control, and discontinuation of concurrent antiplatelet agents if clinically reasonable.

Anticoagulation reversal protocols are well-established for warfarin and VKAs. Idarucizumab has been approved for reversing dabigatran, and andexanet alfa has been developed for reversal of anti-Xa agents. Data specific to reversal in CKD patients are limited.

Antiplatelet therapy for stroke prevention for AF in CKD
In a general, mostly non-CKD population, the AVERROES trial of aspirin versus apixaban was stopped early due to a higher risk of stroke with aspirin but with similar bleeding risk in both groups. However, there is insufficient evidence to recommend single or dual antiplatelet therapy for prevention of stroke/thromboembolism in AF among patients with CKD G4, G5, or G5D, even when OAC is considered undesirable. Similarly, these patients should not receive concomitant antiplatelet therapy while taking anticoagulants, unless there is a specific secondary indication (e.g., recent coronary stent). The duration of concomitant single or dual antiplatelet therapy in those receiving anticoagulants needs to be minimized and individualized based on clinical factors and type of stent.

Left Atrial Appendage Occlusion in CKD
The left atrial appendage (LAA) is believed to be the site of thrombus formation for most AF-related cardioembolic strokes. Circulatory exclusion of the LAA represents a non-
pharmacological, device-based therapy for stroke prevention that could conceivably be an option in moderate to high stroke risk in CKD, particularly with contraindications to long-term OAC. Five-year data from two randomized trials of the Watchman® LAA occlusion device demonstrated a reduction in stroke risk comparable to warfarin but with additional reduction in major bleeding. However, CKD prevalence or severity was not reported and could have been underrepresented. The majority of patients receiving the device in trials and in practice are continued on dual- or single-antiplatelet drug therapy, which may be associated with higher bleeding risk in CKD. Moreover, enrolled subjects were anticoagulation eligible and without contraindications (and hence randomized). Registry data of the Amplatzer Cardiac Plug, a similar device, has shown comparable procedural safety in CKD vs. normal kidney function. A randomized trial of LAA occlusion versus VKAs in CKD stage 4 and 5 (CKD G4 and G5) is ongoing. (https://clinicaltrials.gov/ct2/show/NCT02039167; accessed November 29, 2017)

RATE VERSUS RHYTHM CONTROL OF AF
Indications for a rhythm control strategy in CKD patients mirror those in the general population. The major evidence-based indication for a rhythm-control strategy for AF is symptom reduction, although many patients are asymptomatic. Older randomized trials have demonstrated that rhythm and rate control strategies are equivalent in terms of their effects on risks of heart failure, stroke, and survival. Retrospective analyses have suggested rhythm control with ablation provides superior outcomes, but the evidence is limited. Regardless of which strategy is pursued, anticoagulation should also be continued based on stroke risk (as indicated by the CHADS2 or CHADSVASc score), unless otherwise contraindicated. Additional factors that may favor attempts at rhythm control include difficulty in achieving adequate rate control, younger patient age, tachycardia-mediated cardiomyopathy, first episode of AF, AF that is precipitated by an
acute illness or surgery, and patient preference (Figure 3). Hemodialysis patients with hemodynamic instability due to AF during dialysis sessions may benefit from rhythm control. The impact of its treatment on outcome is unknown. Patients without clear indications for a rhythm control strategy should default to rate control. In the general population of patients with permanent AF and preserved ejection fraction, lenient rate control (i.e., resting heart rate < 110 beats per minute) has been shown to be equivalent to a strict rate control for a combined endpoint including stroke, heart failure, death, and need for pacemaker or implantable cardioverter-defibrillator (ICD).

No RCTs have specifically compared rate versus rhythm control or strict versus lenient rate control in patients with CKD or ESKD. In a post-hoc analysis of the GUSTO III trial, treatment with a rhythm or rate control strategy did not significantly impact short- or long-term mortality regardless of kidney disease status.

Considerations about rate control

Special considerations in CKD include alterations in symptomatology and a potentially increased propensity to develop tachycardia-mediated cardiomyopathy, given the prevalence of structural heart disease. Moreover, the pharmacokinetic and dialyzability of rate control agents in CKD need to be considered (Table 4). When the ventricular rate cannot be controlled with medical therapies alone, atrioventricular nodal ablation and pacemaker implantation can be considered. However, the high rates of complications from transvenous devices in hemodialysis patients should enter into the decision-making process. Whether leadless pacemakers have a role in this situation remains to be determined.
Considerations about rhythm control

Direct current cardioversion (DCCV) is the most commonly used method of rhythm restoration in patients with persistent AF. The success rate of DCCV been reported to be similar regardless of kidney function. However, the risk of recurrence of AF increases as eGFR decreases, although patients with mild-to-moderate CKD in whom sinus rhythm is maintained may experience an improvement in kidney function. DCCV alone is generally insufficient to maintain normal sinus rhythm, and long-term antiarrhythmic drugs or ablation are necessary for rhythm control.

The use of antiarrhythmic drugs for rhythm control is limited in patients with CKD because of issues with renal clearance and proarrhythmic risks in individuals with structural heart disease (Table 5). Amiodarone, the antiarrhythmic drug most commonly used to treat AF, does not appear to negatively affect survival, regardless of eGFR function, even in ESKD. Whether CKD patients treated with amiodarone are at higher risk for organ toxicity is unknown.

Catheter ablation is more effective than antiarrhythmic drugs alone for maintenance of sinus rhythm. A meta-analysis of 4 studies of pulmonary vein isolation using radiofrequency ablation in patients with CKD showed a nearly 2-fold increased risk of AF recurrence, possibly as a result of larger pre-ablation left atrial volumes, which may serve as a marker for non-pulmonary vein triggers of AF. The safety and efficacy of AF ablation in CKD was evaluated in 21,091 ablations, in which 1,593 cases (7.6%) had CKD and 60 were on dialysis. Among patients selected for AF ablation, those with and without CKD had similar rates of post-procedural complications and subsequent AF hospitalization, DCCV, and repeat ablation, although the patients with CKD were more likely to be re-admitted for heart failure. In a study of CKD patients undergoing cryoballoon ablation, patients with CKD G3 had significantly higher...
rates of AF recurrence compared with those with CKD G1 and G2.

No cases of contrast-induced nephropathy were reported. In general, sinus rhythm maintenance via ablation is associated with improved eGFR, while ablation failure is associated with eGFR decline.

AF ablation may potentially provide survival benefit in the setting of reduced left ventricular ejection fraction (LVEF) and heart failure. A randomized trial of catheter ablation compared to usual care in AF and LVEF < 35% was recently presented and found to have an improvement in survival associated with ablation, although the study has not yet been published.

In contrast to atrial fibrillation, radiofrequency ablation for rhythm control of atrial flutter should be considered as first-line therapy in CKD patients given the high success and low complication rates of ablation. Patients with CKD are at higher risk of long-term AF following ablation of atrial flutter and may require long-term monitoring to survey for AF recurrences if a withdrawal of anticoagulation is being considered.

Lifestyle modifications

Weight loss and exercise, can reduce the burden of AF in the general population, as does treatment for obstructive sleep apnea (OSA). Patients on hemodialysis have a 4-fold higher risk of sleep-disordered breathing compared with control patients matched for age, gender, race, and body mass index. In a claims-based study of older patients in the US, sleep-disordered breathing in hemodialysis patients was not associated with AF.
PREVENTION OF SUDDEN CARDIAC DEATH (SCD)

Incidence and etiology of SCD in CKD and ESKD populations

There is an increased risk of SCD in CKD (Supplemental Table 4). SCD accounts for 25-27% of all-cause mortality in hemodialysis patients and around 30-35% of all-cause mortality in patients initiating dialysis. Recent data indicate that although all-cause mortality rates in hemodialysis patients have been decreasing, the rates of SCD remain the same, indicative of an increased proportion of patients dying from SCD. Risk of all-cause mortality is substantially higher in dialysis (15-20% at 1 year) than in heart failure or post-infarction patients (3-8% at 1 year). Annual risk of SCD is higher in hemodialysis patients in comparison to other patient populations (Figure 4): 5-7% in hemodialysis patients, 4% in heart failure patients, and 1.5%-2.7% in non-dialysis patients. The annual rates in non-dialysis patients are comparable to that of post-infarction patients. Nephrologists should be encouraged and educated to discuss risks and potential treatment options with patients, and enhance participation in clinical trials.

There is a significant gap of knowledge in the understanding of electrical and hemodynamic mechanisms underlying SCD (Figure 5). In a retrospective study of hemodialysis patients who were prescribed a wearable cardioverter defibrillator, 80% of cardiac arrests were recorded as ventricular tachyarrhythmias (ventricular tachycardia or ventricular fibrillation) compared to 20% bradyarrhythmias. In a recent study with continuous electrocardiogram (ECG) monitoring bradyarrhythmias and asystole, rather than ventricular tachyarrhythmias, were important determinants of SCD in ESKD patients.

The definitions of sudden death and SCD in ESKD patients need to be refined. The unexpected nature of sudden death needs to be emphasized to avoid misclassifications.
Supplemental Table 5 proposes definitions of sudden death, SCD, and aborted cardiac arrest pertinent for ESKD patients.

Risk factors for SCD in CKD and ESKD patients

The mechanisms of SCD in CKD and ESKD incorporate the long-standing, pathophysiologic abnormalities that predispose to the arrhythmogenic conditions and the triggering mechanisms which precipitate sudden cardiac arrhythmia (Figure 6).

The roles of myocardial ischemia, electrolyte and volume shifts with hemodynamic instability, left ventricular hypertrophy, fibrosis and dysfunction, as well as autonomic dysregulation and sympathetic overactivity in the pathway leading to SCD, will all need to be further evaluated.

Risk factors predisposing to SCD have been identified in ESKD patients (Supplemental Table 6) and usually their combinations contribute to SCD.128,139 Future studies need to determine whether SCD-specific risk factors could be recognized.7 Since it is difficult to identify SCD-specific risk factors in patients without ESKD, it might be that just cardiac death specific risk factors will suffice to evaluate life-saving interventions in ESKD patients.140 The primary focus should be on modifiable risk factors which could be targets for intervention (Supplemental Table 6).139

The role of modifiable biomarkers (defined as laboratory tests that are measurable in blood, urine, or saliva) has been investigated in risk stratification of CKD and ESKD but requires further studies.141 Troponins and brain natriuretic peptides could have an additive value and should be further explored to assess their role in a comprehensive risk assessment for SCD.142-145

There are very limited data regarding the prognostic significance of incidentally detected arrhythmias in CKD and ESKD. Identification of episodes of non-sustained ventricular
tachycardia, frequent premature ventricular complexes, bradyarrhythmias and pauses may be useful in identifying patients at risk of SCD. Ongoing and upcoming studies with long-term ECG monitoring devices (implantable loop recorders or external ECG monitoring patches worn over a few days to weeks) will provide data regarding incidence and prognostic significance of these arrhythmias.

Syncope is yet another important and not infrequent event observed in CKD and ESKD patients, but its prognostic significance is uncertain. Transient loss of consciousness due to hypovolemia or hypotension should be classified as syncope and considered as such for prognostication and treatment.

The role of defibrillator therapies for primary and secondary prevention of SCD in ESKD

Data regarding secondary prevention ICD therapy indicate some benefits but further studies are needed to assess longer-term risk versus benefit that account for competing risks of death. Primary prevention ICD therapy is indicated in patients with left ventricular ejection fraction (LVEF) \(\leq 35\% \) although data on benefits of primary prevention ICD therapy in patients with LVEF \(\leq 35\% \) and advanced CKD are not encouraging, as compromised by competing morbidity and mortality and high risk of complications. Patients with LVEF \(\leq 35\% \) account for 10-15% of dialysis patients, but no data exist for the majority of dialysis patients with LVEF > 35%. Available data seem to suggest that the benefit of ICDs decreases with declining GFRs, in relationship to competing risks of comorbidity and mortality and high risk of complications. Studies with subcutaneous defibrillators, which do not have transvenous hardware, are needed since this approach might be associated with fewer and less severe complications, such as infection. Wearable cardioverter defibrillators may provide protection.
for a limited high-risk period. Further assessment of pacing devices for bradyarrhythmias (including leadless pacemakers) is needed.

POTASSIUM HOMEOSTASIS AND HANDLING IN CKD AND DIALYSIS

Electrolyte abnormalities and risk for cardiovascular or arrhythmic events

Although definitive evidence for causality is lacking, both hyperkalemia and hypokalemia have been associated with higher risk of all-cause and cardiovascular mortality in patients with ESKD. In patients on hemodialysis, when pre-dialysis serum potassium values (i.e., potassium values on blood drawn at the start of the hemodialysis procedure, in keeping with clinical practice) rise or fall away from 5 mEq/L, the risk for sudden cardiac arrest increases. Among incident hemodialysis patients, higher mortality and hospitalization rates have been documented to occur immediately after the 2-day interdialytic interval. A contributing factor may be larger fluid accumulation followed by excessive ultrafiltration and abrupt fluctuations in serum potassium concentrations (Supplemental Figure 1). In contrast, hypokalemia is more common in patients on peritoneal dialysis, and hypokalemia has been associated with increased risk of all-cause, cardiovascular, and infectious mortality in this subgroup of patients.

Treatment options for improving potassium homeostasis

Treatments for hyperkalemia include dietary restriction, correction of acidosis, increasing distal sodium load, and loop diuretics, and in the case of hypokalemia, potassium-sparing diuretics and potassium supplements could be used. It may be possible to reduce the dose or stop drugs that interfere with potassium homeostasis, such as nonsteroidal anti-inflammatory drugs, sulfamethoxazol-trimethoprim, calcineurin inhibitors, and non-selective beta blockers.
Pharmacologic treatments for managing hyperkalemia include the cation-exchange resin kayaexalate,160 calcium-resin resonium,161 the potassium-binding polymer patiromer,162 and the potassium trap ZS-9.159 Beyond the treatment of hyperkalemia, these agents might also enable more patients with concomitant CKD to be started on or maintained on guideline-recommended renin-angiotensin-aldosterone system (RAAS) inhibitors, and this possibility is currently being investigated.159 In addition to reducing serum potassium, patiromer has been shown to reduce serum aldosterone levels in patients with CKD and hyperkalemia taking RAAS inhibitors.163 Other important questions regarding potassium binders relate to their safety and efficacy in post-kidney transplant patients, patients with Type IV renal tubular acidosis, or patients taking calcineurin inhibitors.

Data from 3 clinical trials have indicated that dual RAAS blockade therapy increases the risk of hyperkalemia in patients with CKD.164-166 Meta-analysis data have indicated that mineralocorticoids can mediate hyperkalemia in patients undergoing dialysis, but large trials are needed to better evaluate this process and its clinical significance.167 In patients with type 2 diabetes, a sodium-glucose cotransporter 2 (SGLT2) inhibitor has been associated with small mean changes in serum electrolytes and less hyperkalemia compared to placebo, especially in patients taking anti-hypertensives that interfere with potassium excretion.168

Dialysate and dialysis parameters

For patients undergoing hemodialysis, both the potassium concentration in the dialysate and the schedule of hemodialysis treatments affect the risk of sudden death (Figure 6). Potential confounding factors, such as nutrition, treatment compliance, and comorbidities, have not been thoroughly evaluated. It is also not clear whether or how much central venous pressure, hypervolemia, and pulmonary hypertension predispose patients to arrhythmic events. Three
studies have indicated that a low potassium dialysate concentration (< 2 mEq/L) is associated with a higher incidence of sudden death, especially when pre-dialysis patient serum levels are <5 mEq/L.139, 169, 170 For patients with a pre-dialysis serum potassium concentration of > 5 mEq/L, the risks associated with low potassium dialysates have not been statistically significant. In DOPPS (Dialysis Outcomes and Practice Patterns Study), mortality rates were similar in patients prescribed 2 and 3 mEq/L dialysate.171 Rapid correction of acidemia, low serum or dialysate calcium, and high ultrafiltration rates may contribute to the arrhythmogenic potential of low potassium dialysate.139, 172 In a study of 50 patients undergoing thrice-weekly dialysis, risk of SCD and significant arrhythmias was greater during the 72-hour versus 48-hour breaks. There were no analyses specifically related to potassium levels in these studies.138 Whether shortening the interval between hemodialysis sessions could result in clinically significant reductions in sudden cardiac arrest and its relationship to potassium levels is not clear and warrants further study. Dialysate concentrations of bicarbonate, calcium, magnesium, and glutamic acid also are likely to be relevant to risk for arrhythmic events. It is possible that personalizing dialysis parameters for individual patients could reduce risk of SCD, but this is untested and would be logistically complicated to implement.

Fluid control during dialysis

Ultrafiltration rates higher than 10 ml/h/kg have been associated with a higher likelihood of intradialytic hypotension and risk of mortality.173 Hemodynamic stress during dialysis induces cardiac stunning, which over time may progress to the development of regional fixed systolic dysfunction, consistent with underlying myocardial hibernation and fibrosis.174 A retrospective analysis has indicated that greater interdialytic weight gain is associated with an increased risk of
cardiovascular morbid events;175 therefore, strategies that mitigate interdialytic weight gain warrant investigation.

CONCLUSION

People with CKD have an increased burden from AF relative to those without CKD, and an elevated risk of stroke. For preventing stroke in patients with eCrCl 30-50 ml/min, DOACs are non-inferior to warfarin and have a more favorable safety profile. For CKD G5D patients with AF, there are insufficient clinical efficacy and safety data to routinely recommend VKA treatment for preventing stroke.

Evidence from older randomized trials indicates that pharmacological rhythm and rate control strategies are equivalent in terms of their efficacy on risks of heart failure, stroke, and survival. However, catheter ablation, which is superior to antiarrhythmic drug therapy for freedom from AF recurrence, has comparable safety in CKD and non-CKD. The role of AF ablation may continue to evolve, particularly among other co-morbid conditions such as heart failure. Regardless of whether a rhythm or rate strategy is pursued, anticoagulation should also be prescribed unless otherwise contraindicated based on stroke risk.

The risk for SCD is increased in patients with CKD, and for those with ESKD on dialysis, several factors that increase risk have been identified. Studies are needed to identify risk factors for SCD in CKD non–dialysis patients. For preventing SCD in ESKD, primary prevention ICD therapy is indicated in patients with LVEF $\leq 35\%$, although data on its benefits in these patients are not encouraging. Data regarding secondary prevention ICD therapy indicate some benefits, but further studies are needed to assess long-term risk-benefit ratios in these patients. Available data seem to suggest that the benefit of ICDs decreases with declining GFR.
For patients undergoing hemodialysis, both the potassium concentration in the dialysate and the schedule of hemodialysis treatments affect the risk of sudden death. Whether shortening the interval between hemodialysis sessions could result in clinically significant reductions in sudden cardiac arrest is not yet clear and warrants further study. It is possible that personalizing dialysis parameters for individual patients could reduce risk of SCD, but this is untested and would be logistically complicated to implement.

Recent guidelines include considerable practical and scientific detail on management of these arrhythmias in CKD.3-7, 84, 176 However, there remain substantial evidence gaps, which will require clinical trials, and when not possible, robust observational data. We have outlined research recommendations in the hopes that future investigations can better advance the evidence base in this area (Table 6). A multidisciplinary approach is vital for understanding the mechanisms of arrhythmias in CKD as well as for evaluating therapies and improving clinical care. Nephrologists and cardiologists should initiate and continue partnerships in designing and conducting clinical trials as well as treating individual patients with CKD and AF.

ACKNOWLEDGMENTS

We thank Jennifer King, PhD, for assistance with the manuscript preparation.

DISCLOSURES

The conference was sponsored by KDIGO and supported in part by unrestricted educational grants from AstraZeneca, Bayer HealthCare, Boston Scientific, Daiichi-Sankyo, Fresenius Medical Care, Sanofi-Genzyme, Medtronic, Relypsa, and Vifor Fresenius Medical Care Renal Pharma. All conference attendees received travel support for meeting participation.
MPT has received research support from AstraZeneca, Boehringer Ingelheim, Cardiva Medical, Janssen, Medtronic, and Veterans Health Administration; has served as a consultant to Akebia, AliveCor, Boehringer Ingelheim, Cardiva Medical, iBeat, iRhythm, Medtronic, Precision Health Economics, and St Jude Medical; has received speaker honoraria from Medscape/theheart.org; has reported equity in AliveCor, iBeat, Zipline Medical; and is an editor for JAMA Cardiology. JJC has received institutional Research grants from AstraZeneca, Vifor Fresenius Medical Care Renal Pharma and Swedish Heart and Lung Foundation and speaker honorarium from Vifor Fresenius Medical Care Renal Pharma. CAH has served as a consultant to Abbvie, Bristol-Myers Squibb, Fibrogen, Relypsa, Sanifit, ZS Pharma; received research support from Amgen and Zoll; owns stock in Boston Scientific, GE, Johnson & Johnson and Merck. SEK has received research support from WL Gore and Associates, Bayer and Bristol-Myers Squibb; and has served as a consultant to Abbvie, Boehringer Ingelheim and Johnson & Johnson. RSP has received personal fees from Biotronic and Medtronic; non-financial support from Kardic; and research support from Pfizer. HR has received personal fees and non-financial support from Bristol-Myers Squibb and Pfizer. WZ has received research support from Boston Scientific and Zoll. DCW has served as a consultant to Amgen, AstraZeneca, Boehringer Ingelheim, GSK, Janssen, and Vifor Fresenius Medical Care Renal Pharma; and has received speaker honoraria from Amgen and Kyowa Kirin. WCW has served as a scientific advisor to AMAG, Amgen, AstraZeneca, Bayer, Daiichi Sankyo, Vifor Fresenius Medical Care Renal Pharma, and ZS Pharma; has served on clinical trial executive committee for Akebia and endpoint adjudication committee for Medtronic; he has also served as a consultant to Relypsa and received speaker honorarium from Fibrogen. CW has served as a consultant to Boehringer-Ingelheim and Sanofi Genzyme. All other authors have nothing to disclose.
TABLES & FIGURES
Table 1. Evidence from randomized trial data regarding therapeutic anticoagulation on the basis of kidney function4, 63, 177

<table>
<thead>
<tr>
<th>eCrCl, ml/min1</th>
<th>Warfarin</th>
<th>Apixaban2</th>
<th>Dabigatran</th>
<th>Edoxaban</th>
<th>Rivaroxaban</th>
</tr>
</thead>
<tbody>
<tr>
<td>>95</td>
<td>Adjusted dose (INR 2-3)</td>
<td>5 mg BID</td>
<td>150 mg BID</td>
<td>60 mg QD3</td>
<td>20 mg QD</td>
</tr>
<tr>
<td>51-95</td>
<td>Adjusted dose (INR 2-3)</td>
<td>5 mg BID</td>
<td>150 mg BID</td>
<td>60 mg QD3</td>
<td>20 mg QD</td>
</tr>
<tr>
<td>31-50</td>
<td>Adjusted dose (INR 2-3)</td>
<td>5 mg BID (eCrCl cutoff 25 ml/min)</td>
<td>150 mg BID 110 mg BID*</td>
<td>30 mg QD3</td>
<td>15 mg QD</td>
</tr>
</tbody>
</table>

1 Cockcroft-Gault estimated creatinine clearance (eCrCl)
2 Apixaban dose modification from 5 mg BID to 2.5 mg BID if patient has any 2 of the following: serum creatinine ≥1.5 mg/dl, age ≥80 years, or body weight ≤60 kg.
3 For patients in either group of edoxaban dosing, the dose was halved if any of the following: eCrCl of 30-50 ml/min, body weight ≤60 kg, or concomitant use of verapamil or quinidine (potent P-glycoprotein inhibitors).
*This dose has not been approved for use by the US Food and Drug Administration in this category of kidney function.
INR, international normalized ratio.
Table 2. Chronic kidney disease categories lacking randomized clinical trial data on the utility of anticoagulation4, 63, 177

<table>
<thead>
<tr>
<th>eCrCl, ml/min1</th>
<th>Warfarin</th>
<th>Apixaban2</th>
<th>Dabigatran</th>
<th>Edoxaban</th>
<th>Rivaroxaban</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-30</td>
<td>Adjusted dose for INR 2-3 could be considered</td>
<td>2.5 PO BID could be considered</td>
<td>Unknown (75 mg PO BID)**4</td>
<td>30 mg daily3 could be considered</td>
<td>15 mg daily could be considered</td>
</tr>
<tr>
<td><15 not on dialysis</td>
<td>Equipoise based on observational data and meta-analysis</td>
<td>Unknown (2.5 mg PO BID)4</td>
<td>Not recommended</td>
<td>Not recommended</td>
<td>Unknown (15 mg daily)4</td>
</tr>
<tr>
<td><15 on dialysis</td>
<td>Equipoise based on observational data and meta-analysis</td>
<td>Unknown (2.5 mg PO BID)4</td>
<td>Not recommended</td>
<td>Not recommended</td>
<td>Unknown (15 mg daily)4</td>
</tr>
</tbody>
</table>

Shading indicates dosing based solely on limited pharmacokinetic and pharmacodynamic data (no randomized efficacy or safety data exist).

1Cockcroft-Gault estimated creatinine clearance.

2Apixaban dose needs modification to 2.5 mg BID if patient has any 2 of the following: serum creatinine \geq1.5 mg/dl, age \geq80 years, or body weight \leq60 kg.

3The dose was halved if any of the following: estimated CrCl of 30-50 ml/min, body weight of \leq60 kg, or concomitant use of verapamil or quinidine (potent P-glycoprotein inhibitors).

4The doses of DOACs apixaban 5 mg BID2, rivaroxaban 15 mg QD and dabigatran 75 mg BID are included in the United States Food and Drug Administration approved labeling based on limited dose pharmacokinetic and pharmacodynamics data with no clinical safety data. We suggest consideration of the lower dose of apixaban 2.5 mg PO BID in CKD G5/G5D to reduce bleeding risk until clinical safety data are available. **Dabigatran 75 mg available only in the United States.
Table 3. Recommendations for discontinuation of DOAC prior to elective procedures, according to the risk of bleeding of any specific procedure intervention (low versus high risk procedures)

<table>
<thead>
<tr>
<th>Dabigatran</th>
<th>Apixaban–Edoxaban–Rivaroxaban</th>
</tr>
</thead>
<tbody>
<tr>
<td>No important bleeding risk and/or adequate local hemostasis possible:</td>
<td>perform at trough level (i.e., ≥12 or 24 h after last intake)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>CrCl ≥ 80 ml/min</td>
<td>≥24 h</td>
</tr>
<tr>
<td>CrCl 50–80 ml/min</td>
<td>≥36 h</td>
</tr>
<tr>
<td>CrCl 30–50 ml/min<sup>a</sup></td>
<td>≥48 h</td>
</tr>
<tr>
<td>CrCl 15–30 ml/min<sup>a</sup></td>
<td>No official indication</td>
</tr>
<tr>
<td>CrCl< 15 ml/min</td>
<td>No official indication for use</td>
</tr>
</tbody>
</table>

There is no need for bridging with LMWH/UFH

^aMany of these patients may be on the lower dose of dabigatran (110 mg BID) or apixaban (2.5 mg BID), or have to be on the lower dose of rivaroxaban (15 mg OD) or edoxaban (30 mg OD). Dabigatran 110 mg BID has not been approved for use by the US Food and Drug Administration. Bold values deviate from the common stopping rule of ≥24 h low risk, ≥48 h high risk. Low risk is defined as a low frequency of bleeding and/or minor impact of a bleeding. High risk is defined as a high frequency of bleeding and/or important clinical impact.

CrCl, creatinine clearance; DOAC, direct oral anticoagulant; LMWH, low molecular weight heparin; UFH, unfractionated heparin.

Adapted from Heidelbuchel et al.⁴
Table 4. Characteristics of antiarrhythmic drugs for rate control in chronic kidney disease

<table>
<thead>
<tr>
<th>Drug</th>
<th>Protein Binding</th>
<th>Elimination</th>
<th>Dialyzable</th>
<th>Dosing in CKD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atenolol</td>
<td>5%</td>
<td>Excreted unchanged in urine</td>
<td>Yes</td>
<td>Dose may need to be reduced</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Serum creatinine may increase, but no dose adjustment is needed</td>
</tr>
<tr>
<td>Propranolol</td>
<td>>90%</td>
<td>Hepatic metabolism</td>
<td>No</td>
<td>Dose may need to be reduced in advanced CKD</td>
</tr>
<tr>
<td>Bisoprolol</td>
<td>30%</td>
<td>50% excreted unchanged in urine</td>
<td>No</td>
<td>No dosage reduction needed</td>
</tr>
<tr>
<td>Metoprolol</td>
<td>12%</td>
<td>Hepatic metabolism</td>
<td>Yes</td>
<td>No dosage reduction needed</td>
</tr>
<tr>
<td>Carvedilol</td>
<td>99%</td>
<td>Mainly biliary and 16% urinary</td>
<td>No</td>
<td>Dose adjustment usually not required except with advanced kidney failure or in elderly patients</td>
</tr>
<tr>
<td>Labetalol</td>
<td>50%</td>
<td>Inactive metabolites excreted in urine (5% unchanged) and bile</td>
<td>No</td>
<td>Dose reduction recommended in the elderly</td>
</tr>
<tr>
<td>Verapamil</td>
<td>90%</td>
<td>70% is excreted in the urine and 16% in feces</td>
<td>No</td>
<td>Dose reduction by 20-25% if CrCl <10 ml/min, not cleared by hemodialysis</td>
</tr>
<tr>
<td>Diltiazem</td>
<td>70–80%</td>
<td>2–4% unchanged drug excreted in the urine</td>
<td>No</td>
<td>Use with caution</td>
</tr>
<tr>
<td>Digoxin</td>
<td>20–30%</td>
<td>Main route of elimination is renal (closely correlated with the GFR) with 25–28% of elimination by non-renal routes</td>
<td>No</td>
<td>Dosage adaptation is required, monitoring of serum digoxin levels</td>
</tr>
</tbody>
</table>

CKD, chronic kidney disease; CrCl, creatinine clearance; GFR, glomerular filtration rate.
Modified from Potpara et al.178 and Weir et al.179
Metoprolol elimination data from Hoffman et al.180
Labetalol protein binding data from Drugbank.ca181 and dialyzability data from in vitro data by Daheb et al.182
All other dialyzability data from Frishman183
Table 5. Characteristics of antiarrhythmic drugs for maintaining sinus rhythm in chronic kidney disease

<table>
<thead>
<tr>
<th>Drug</th>
<th>Protein Binding</th>
<th>Elimination</th>
<th>Dialyzable</th>
<th>Dosing in CKD</th>
<th>Special Considerations in CKD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flecainide</td>
<td>40%</td>
<td>35% excreted unchanged in urine</td>
<td>No</td>
<td>Dose reduction if GFR <35 ml/min/1.73 m²</td>
<td>Do not use if significant structural heart disease present</td>
</tr>
<tr>
<td></td>
<td></td>
<td>38-50% excreted in urine as active metabolites (1% unchanged)</td>
<td>No</td>
<td>Careful monitoring recommended (in hospital initiation if advanced CKD)</td>
<td>Do not use if significant structural heart disease present</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propafenone</td>
<td>95%</td>
<td>No renal elimination</td>
<td>No</td>
<td>No dosage requirements; not dialyzable; many drug-to-drug interactions</td>
<td>Do not use if significant structural heart disease present</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amiodarone</td>
<td>99%</td>
<td>No renal elimination</td>
<td>No</td>
<td>No dosage adaptation required in kidney failure</td>
<td>Do not use if EF <35% or recent CHF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dronedarone</td>
<td>98%</td>
<td>6% excreted in urine</td>
<td>No</td>
<td>No dosage adaptation required in kidney failure</td>
<td>Do not use if GFR <20 ml/min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dofetilide</td>
<td>60–70%</td>
<td>80% renally excreted, as unchanged (80%) or inactive/minimally active metabolites</td>
<td>No</td>
<td>Dose individualized on the basis of GFR; contraindicated if GFR <20 ml/min</td>
<td>Do not use if significant structural heart disease present</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sotalol</td>
<td>Not protein bound</td>
<td>70% excreted unchanged in urine</td>
<td>Yes – give maintenance dose after dialysis or supplement with 80mg after HD</td>
<td>A relative contraindication in view of the risk of proarrhythmic effects; in rare and selected cases —dose to be halved or reduced to one quarter in CKD</td>
<td>A relative contraindication in view of the risk of proarrhythmic effects</td>
</tr>
</tbody>
</table>

CHF, congestive heart failure; CKD, chronic kidney disease; EF, ejection fraction; GFR, glomerular filtration rate; HD, hemodialysis. Modified from Potpara et al.178 Propafenone elimination data from Drugbank.ca184 Dialyzability data from Frishman183
Table 6. AF and CKD: Current knowledge gaps and future research recommendations

- Should AF be a required secondary endpoint in future cardiovascular clinical trials among CKD patients? This will enable future studies to examine the contribution of AF to various outcomes (e.g., cognitive impairment).

- Can we improve upon risk assessment in patients with CKD/CKD G5D by examining unique risk factors for stroke (e.g., proteinuria) and bleeding (e.g., proteinuria, platelet dysfunction, vascular access, dialysis anticoagulation)?

- Based on a review of large observational studies, can we ascertain the combinations of risk factors that predict competing SCD versus non-SCD and cardiac versus non-cardiac death endpoints in patients with CKD /CKD G5D?

- Are there modifiable risk factors (e.g., long chain omega-3 fatty acids) or pharmacological therapies for SCD worth investigating?

- What is the incidence and prognostic significance of syncope in dialysis patients (on conventional or novel modalities) and transient hypotension, hypovolemia, and bradycardia during and outside dialysis sessions?

- Is there a role for biomarkers (e.g., troponins, BNP) and markers of autonomic dysregulation and sympathetic overactivity in predicting cardiac death and SCD? Is there prognostic significance in incidentally detected arrhythmias?

- Among patients on dialysis, can we use modern imaging techniques (e.g., cardiac magnetic resonance imaging with T1 mapping and speckle tracking imaging echocardiography both during hemodialysis and on a non-dialysis day), long-term ECG monitoring, and emerging biomarkers to ascertain predisposing factors to SCD?

- Since patients with CKD G5D have consistently lower time in TTR values (despite comparable intensity of monitoring) that may contribute to higher risk of bleeding, what is the evidence regarding the role of TTR in decision-making and transitioning to DOAC therapy with suboptimal TTR?

- Should serial measurements of kidney function be considered to determine if anticoagulation (e.g., DOACs) is associated with changes in kidney function?

- Does heparin use during hemodialysis alter the risk-benefit ratio when used with concomitant oral anticoagulation? Are there clinical efficacy or safety data evaluating whether the use of erythropoietin therapy influences stroke reduction with anticoagulant therapy?

- Is there utility in employing left atrial appendage occluder devices in patients with CKD G5D who are already at high risk of bleeding and endovascular infections?

- What is the role of DOACs among kidney transplant patients? Do specific drug-drug interactions favor certain agents over others?
• Is ICD therapy efficacious in the primary and secondary prevention ESKD? If so, what are the risk-benefit ratios? Utility of leadless pacemakers? Additional studies examining transvenous, subcutaneous, and wearable defibrillators are needed in CKD patients with EF >35% since they account for 90% of CKD patients.

• What are the long-term outcomes of rate versus rhythm control in CKD or dialysis patients? What should guide the selection of rate versus rhythm control in this patient population? For the former, what is the optimal rate control and what are the preferred rate-controlling agents? Utility of transvenous versus leadless permanent pacemaker following AV node ablation? For rhythm control, what is benefit-risk ratio for ablation versus antiarrhythmic drugs?

• What is the ideal ablation approach? For antiarrhythmic drugs, are there comparative trials to provide information on safety, pharmacokinetics and efficacy on various agents (especially amiodarone)? Is there a long-term need for oral anticoagulation in patients with successful rhythm control?

• Does personalizing dialysis prescription (e.g., electrolyte dialysate, close monitoring of potassium levels or volume management) reduce the risk for SCD? Do changes in other electrolytes associated with arrhythmic predisposition in hemodialysis patients (such as magnesium) affect clinical outcomes?

AF, atrial fibrillation; AV, atrioventricular; BNP, B-type natriuretic peptide; CKD, chronic kidney disease; DOAC, direct oral anticoagulant; ECG, electrocardiogram; EF, ejection fraction; ESKD, end-stage kidney disease; ICD, implantable cardioverter-defibrillator; SCD, sudden cardiac death; TTR, time in therapeutic range.
Figure 1. Relationship between chronic kidney disease (CKD) and atrial fibrillation: Shared risk factors and outcomes.
CKD and atrial fibrillation share a number of risk factors and conditions that promote their incidence, possibly via systemic processes such as inflammation, oxidative stress or fibrosis. It is established that CKD increases the incidence of atrial fibrillation and there is some evidence to suggest that atrial fibrillation also increases CKD progression. When examining the strength of these associations, we acknowledge the potential impact of detection bias in observational studies where more frequent exposure to healthcare likely prompts more clinical findings in this comorbid population. AF, atrial fibrillation; CKD, chronic kidney disease; CVD, cardiovascular disease.
Figure 2. Efficacy and safety of direct oral anticoagulants versus warfarin in the subgroup of patients with moderate chronic kidney disease (CKD) from randomized controlled trials in atrial fibrillation.

Comparison of hazard ratios and 95% confidence intervals (CIs) for primary efficacy and safety outcomes for 150 and 110 mg dabigatran twice daily, 15 mg rivaroxaban once daily, 5 mg apixaban twice daily, and 30 mg edoxaban once daily. CKD was defined as estimated creatinine clearance (eCrCl) of 30 to 49 ml/min/1.73 m² or as 25 to 49 ml/min for apixaban. *Apixaban 2.5 mg twice daily if patient had any 2 of the following: age ≥80 years, body weight ≤60 kg, or serum creatinine ≥1.5 mg/dl. Reproduced from Qamar and Bhatt with permission from the publisher.
Figure 3. Algorithm for decision-making about rate versus rhythm control in chronic kidney disease (CKD).

Especially since CKD patients show a lot of specific characteristics regarding history, comorbidities and personal preferences, in each patient an individualized decision should be made. Many aspects should be taken into account: the duration of atrial fibrillation (AF), the symptom severity, renal clearance (risk of toxicity, dialyzability), and potential contraindications for antiarrhythmic drugs due to structural heart disease, which is very frequent in these patients (such as LVH, reduced EF, obstructive coronary artery disease [CAD]). Moreover, proarrhythmic effects (such as QT prolongation) may be pronounced because of electrolyte imbalances in CKD. The figure suggests an algorithm presenting the most relevant criteria that should be incorporated into a multidisciplinary decision-making process, including the treating nephrologist, a heart rhythm specialist, and eventually also physicians of other disciplines. Of note, regardless of which strategy is chosen, oral anticoagulation should always be administered in early stages of CKD and at least be considered in advanced stages of CKD (see section on Stroke Prevention in Atrial Fibrillation).

AF, atrial fibrillation; CKD, chronic kidney disease; EF, ejection fraction; eGFR, estimated glomerular filtration rate; LA, left atrial; LVEF, left ventricular ejection fraction; LVH, left ventricular hypertrophy; HD, hemodialysis.

Adapted in part from Kirchhof et al.5
Figure 4. Annual rates of sudden cardiac death.
CKD, chronic kidney disease; GP, general population
Figure 5. Mechanisms of death in CKD patients.
Figure 6. Potential predisposing factors of sudden cardiac death.
CHF, congestive heart failure; CKD-MBD, chronic kidney disease-mineral and bone disorders; LV, left ventricular; LVH, left ventricular hypertrophy
REFERENCES

183. Frishman WSD. Cardiovascular Pharmacotherapies. Minneapolis, Minnesota: Cardiotext Publisher; 2011.