Protective cerebral microcirculation, mitochondrial function and electrocortical activity by small-volume resuscitation with terlipressin in a model of haemorrhagic shock

Small-volume resuscitation with terlipressin (short running title)

K. K. Ida¹,²,*, K. I. Chisholm¹, L. M. S. Malbouisson², D. B. Papkovsky³, A. Dyson⁴, M. Singer⁴, M. R. Duchen⁵ and K. J. Smith¹

¹ Institute of Neurology, Queen Square, University College London, London, United Kingdom
² Laboratory of Medical Investigation 8, Postgraduate Program in Anaesthesiology, Medical School, University of São Paulo, São Paulo, Brazil
³ School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
⁴ Bloomsbury Institute of Intensive Care Medicine, University College London, London, United Kingdom
⁵ Cell and Developmental Biology, University College London, London, United Kingdom

*Corresponding author: Keila IDA, Anesthésiologie et Réanimation Vétérinaires, Dep. Clinique des Animaux de Compagnie et des Equidés, Quartier Vallee 2, Avenue de Cureghem 3, Bat 44, 4000, Liege, Belgique. Tel: +32 0 42147573. E-mail: keila.ida@ulg.ac.be
Abstract

Background: During early treatment of haemorrhagic shock, cerebral perfusion pressure can be restored by small-volume resuscitation with vasopressors. Whether this therapy is improved with additional fluid remains unknown. We assessed the value of terlipressin and lactated Ringer’s solution (LR) on the early recovery of the microcirculation, tissue oxygenation, and mitochondrial and electrophysiological function in the rat cerebral cortex.

Methods: Animals treated with LR replacing three times (3LR) the volume bled ($n=26$), terlipressin ($n=27$), terlipressin plus 1LR ($n=26$), 2LR ($n=16$), or 3LR ($n=15$) were compared with untreated ($n=36$) and sham-operated rats ($n=17$). *In vivo* confocal microscopy was used to assess cortical capillary perfusion, changes in tissue oxygen concentration, and mitochondrial membrane potential and redox state. Electrophysiological function was assessed by cortical somatosensory evoked potentials, spinal cord dorsum potential, and peripheral electromyography.

Results: Compared with sham, haemorrhagic shock reduced the mean (standard deviation) area of perfused vessels [82% (10%) vs 38% (12%); $P<0.001$] and impaired oxygen concentration, mitochondrial redox state [99% (4%) vs 59% (15%) of baseline; $P<0.001$], and somatosensory evoked potentials [97% (13%) vs 27% (19%) of baseline]. Administration terlipressin plus 1LR or 2LR was able to recover these measures, but terlipressin plus 3LR or 3LR alone were not as effective. Spinal cord dorsum potential was preserved in all groups, but no therapy protected electromyographic function.

Conclusion: Resuscitation from haemorrhagic shock using terlipressin with small-volume LR was superior to high-volume LR, with regard to cerebral microcirculation, and mitochondrial and electrophysiological function.

Key words: brain ischaemia; confocal microscopy; electrophysiology
Editor’s key points

- Haemorrhage is the cause of up to 40% of deaths after trauma.
- Early small volume resuscitation with terlipressin can restore cerebral perfusion after haemorrhagic shock.
- The effect of additional fluid is unclear.
- In an experimental haemorrhage model in rats, resuscitation with low but not high volume fluids plus terlipressin restored cerebral microcirculation and mitochondrial and electrophysiological function.
- Optimum restoration of perfusion after haemorrhage is likely to reduce morbidity and mortality.

Haemorrhage remains a major cause of early death, accounting for 30-40% of trauma mortality, with 33-56% of deaths occurring before arrival at hospital. Life-threatening loss of blood volume causes circulatory collapse. The consequent impairment in oxygen supply to the brain may cause neurological sequelae, most notably altered mentation (including loss of consciousness), seizures, and ischaemic stroke. The major mechanism is considered to be a cellular energy crisis arising from tissue hypoxia. In addition to a decrease in the cerebral macrocirculation, animal models of haemorrhagic shock suggest an impaired microcirculation and mitochondrial insufficiency. As cell damage potentially starts at the onset of the haemodynamic decompensation, blood supply to the brain must be restored rapidly. However, the optimal method for resuscitation is not established. Standard teaching is to restore adequate volaemia before commencing vasopressor agents. However, despite early fluid resuscitation to restore oxygen delivery to the tissues, cerebral perfusion pressure and oxygenation may fail to recover, especially if there is a persisting loss of vascular tone.
Vasopressors can reduce the volume of crystalloid required to recover blood pressure after haemorrhagic shock and can rapidly recover cerebral perfusion pressure during prehospital care. Terlipressin, a synthetic analogue of vasopressin, has been proposed for the treatment of haemorrhagic shock. Compared with vasopressin, terlipressin is longer acting and has higher selectivity for the vasopressin V1 receptor. Although studies in models of haemorrhage have demonstrated that terlipressin can improve cerebral perfusion pressure and tissue oxygenation, their efficacy in protecting brain microcirculatory, mitochondrial and electrophysiological function is unknown. We therefore used confocal imaging to study the circulation and metabolic state of the brain during shock in vivo, and in real time. We postulated that small-volume resuscitation with terlipressin would be superior to more aggressive fluid replacement therapy in protecting mitochondrial and electrophysiological function, and perfused vessel density, in a rodent model of haemorrhagic shock.
Methods

Experiments adhered to the Home Office (UK) 1986 Scientific Procedures Act and European Directive 2010/63/EU and results are reported according to relevant aspects of the Animal Research Reporting of In Vivo Experiments (ARRIVE) guidelines, with University College London Ethics Committee approval.

Rats (male, in-house, Sprague Dawley, ~150g) were housed in groups of five in pathogen free cages with a 12 h light/dark cycle at 22°C with standard rat pellets available ad libitum. Rats were anaesthetised without recovery throughout the experiments using isoflurane delivered via a vaporiser (induction 5% in an induction cage, maintenance 1.5-2% via nose cone; IsoFlo, Abbott Labs, Maidenhead) while spontaneously breathing room air. Adequacy of anaesthesia was assessed by ensuring the absence of withdrawal reflex following paw and ear pinch, and by monitoring the values of heart rate, mean arterial pressure, and respiratory rate to noxious stimulation. Rectal temperature (36-37°C; underblanket, Harvard Apparatus, Cambridge), direct mean arterial pressure (MAP; left femoral artery connected to a pressure transducer WPI, Hitchin, Herts), respiratory rate and end-tidal carbon dioxide (ETCO₂; via orotracheal intubation, Microcap, Oridion, Needham, MA, USA) were continuously monitored. The femoral vein was cannulated for fluid and drug administration. A craniotomy ~8 mm in diameter (centred at bregma -2 mm, lateral 2.5 mm) was performed over the left somatosensory cortex and the animals either imaged using in vivo confocal microscopy, or assessed electrophysiologically, for the rest of the experiment.

In vivo confocal microscopy

The skull was fixed to a custom-made titanium bar using dental cement (Contemporary Ortho-Jet Powder, Lang Dental Manufacturing Co., Wheeling, IL, USA)
mixed with cyanoacrylate glue. The dura was removed, and platinum(II)-5,10,15,20-
tetrakis(2,3,4,5,6-pentafluorophenyl)porphyrin (PtPFPP)-based phosphorescent oxygen-
sensitive microbeads (Luxcel Biosciences, Cork, Ireland) applied to the cortex. The
craniotomy was then sealed with a glass coverslip and petroleum jelly. Time-lapse
fluorescence images were acquired with a laser-scanning confocal microscope (512 by 512
pixels, optical slice 37.1μm; LSM 5 Pascal, Zeiss, Jena, Germany) to assess mitochondrial
redox state by imaging endogenous flavoprotein fluorescence (excitation: 488nm; emission:
505-570nm), and changes in local oxygen concentration (ex: 543nm; em: 650nm). At
termination, intravenous fluorescein isothiocyanate-isothiocyanate-dextran 70 kDA (FITC-dextran; 0.5mg
i.v.; ex: 488nm; em: 505-570nm; Sigma-Aldrich, Poole, Dorset) and topical
tetramethylrhodamine methyl ester (TMRM; 1µM; ex: 543nm; em: 585nm; T-668,
Molecular Probes, Invitrogen, Paisley, UK) were imaged to establish perfused vessel density
and mitochondrial membrane potential, respectively. Images were processed using
Fiji/Image J 1.48v (NIH, Bethesda, MD, USA).

Electrophysiology

The right tibial nerve was stimulated (DS2, Digitimer, Welwyn Garden City, Herts)
percutaneously at the ankle (10Hz, twice supramaximal), with recording electrodes at the
vertebral level T10/T11, and on the cortical dura (-2mm from bregma, 2.5mm from midline),
with reference electrodes on nearby inactive tissue. Another recording electrode was placed
over the ipsilateral metatarsal musculature, with a reference electrode in the third digit. The
ground electrode was inserted under the lumbar skin. Recordings of the somatosensory
evoked potentials, cord dorsum potentials and electromyographic signals were amplified
(Neurolog System, Digitimer), and observed on an oscilloscope (Sigma 60, Nicolet,
Madison, WI, USA) and stored as averaged (n=20) compound action potentials. They were monitored as measures of cortical, spinal and muscular function, respectively.

Study design

After instrumentation, repeated administrations of 1.5 ml i.v. fluid challenges were given over 10 s every 5 min to ensure normovolaemia at baseline, until MAP failed to increase >10%. Animals were allowed to stabilize for 20 minutes before randomization envelopes were opened with allocation into one of the seven following groups: [i] not subjected to haemorrhagic shock (Sham; n=17); [ii] subjected to haemorrhagic shock, but not treated (Shock; n=36); [iii] lactated Ringer’s solution (LR) given at three times the volume of blood withdrawn (3LR; aggressive fluid resuscitation: n=26); [iv] bolus of 10µg 100g$^{-1}$ of terlipressin alone (n=26) or combined with LR in low volumes of [v] one (Terli+1LR; n=26) or [vi] two times (Terli+2LR; n=26) the volume of blood withdrawn; or [vii] combined with LR in a high volume of three times (Terli +3LR; aggressive fluid resuscitation; n=26) the volume of blood withdrawn. The dose of terlipressin was titrated in a pilot study, starting from a dose previously described.14

Haemorrhagic shock was achieved by removing blood from the arterial line, targeting a MAP of 40 mmHg, maintained for 30 minutes by withdrawing or re-infusing blood when necessary, before treatment.

Data were recorded at baseline, after 30 minutes with MAP of 40 mmHg (shock), and at 5, 60, and 120 minutes (T5, T60 and T120) after treatment. After 150 min all surviving rats were culled at the end of the experiment.

Statistical analysis
The sample size was calculated in preliminary experiments using a power analysis that indicated a minimum of 26 rats/group was required for a 95% chance (with 5% risk) to detect a difference between groups of 60%, 40%, and 46% in the cortical somatosensory evoked potentials (n=6/group), mitochondrial redox state (n=10 rats/group), and changes in tissue oxygen concentration (n=10 rats/group), respectively, considering a standard deviation of 8%, 15%, and 5%, respectively. Endogenous flavoprotein fluorescence was analysed by determining the ratio between the mean intensity of areas adjacent to veins and arteries (perivenular:periarterial ratio). \(^{19,20}\) The mean phosphorescence of the oxygen-sensitive beads was analysed by selecting up to six beads representing proximity to different vascular regions (the beads distribute randomly). The emission signals of flavoproteins and oxygen-sensitive beads analysed at each time-point were compared with their corresponding emission signal at baseline. The TMRM images were analysed 150 minutes after shock, as described for flavoproteins. The FITC-dextran fluorescence was analysed at 120 minutes after shock by determining the number of vessels crossing three equidistant horizontal and vertical lines, divided by the total length of the lines, and the area occupied by fluorescent vessels above a threshold brightness. In the electrophysiological recordings, the measurements at each time-point were compared with the measurement at baseline. Data were assessed for normality using Kolmogorov Smirnov test and were compared within and between groups using repeated measure two-way ANOVA followed by Tukey’s \(\text{post hoc} \) testing (GraphPad Prism 5.03, GraphPad Software Inc., La Jolla, CA, USA). The ‘last observation carried forward’ method was used when animals died before the end of the study. Pearson’s coefficient was calculated to assess correlation between variables. A 0-40 scoring system was calculated for each variable according to the percentage difference at T120/T150 compared with baseline/sham: (0) for 0-20%, (1) for 21-40%, (2) for 41-60%, (3) for 61-80%, and (4) for 81-100%. The sum of the
scores (0=worst, 40=best) was calculated to compare the effectiveness of each treatment.

Data were presented as mean and SD. Statistical significance was considered at $P<0.05$.
Results

Bleeding and survival

Ten rats from the Shock group were not included in the statistical analysis because they were used to generate the data upon which to base the power calculation. Only a single bolus of 1.5 ml fluid challenge was necessary in all rats to ensure normovolaemia at baseline. Removal of approximately 40% (approximately 4 ml) of the estimated blood volume (EBV) of each rat [EBV (ml) = 0.06 × BW (g) + 0.77]\(^2\) (approximately 10 ml) was necessary to induce haemorrhagic shock as defined by a MAP <40 mm Hg (Fig. 1a). Most animals died when not treated after shock (P<0.001 Shock vs Sham; Fig. 1b). Survival was higher in all treated groups; the most effective treatment was Terli+2LR (1 death; P<0.001 vs Shock).

Cardiorespiratory variables

Haemorrhagic shock caused a decrease in respiratory rate, ETCO\(_2\) and MAP in all groups compared with Sham (P<0.001; Fig. 1). This cardiorespiratory impairment did not recover at any time in the Shock group. MAP was significantly higher at T120 in all treated groups (P<0.001 vs Shock), although it remained lower compared with Sham (P<0.001). The respiratory rate was restored by all treatments at T120. However, the improvement in ETCO\(_2\) was lower than in Sham, although higher than in Shock (P<0.001; Fig. 1).

Cortical tissue oxygenation

Haemorrhagic shock caused a significant decrease in tissue oxygenation near veins at T60 and T120 in the untreated Shock group compared with Sham (P<0.05; Fig. 2). At these same timepoints, the perivenular tissue oxygenation was significantly higher following all treatments (P<0.05 vs Shock). Oxygenation near arteries was maintained throughout.
Cerebral vascular density

The induction of haemorrhagic shock resulted in a highly significant decrease in both the density (0.05 (SD 0.01) vs 0.17 (0.01) n µm\(^{-2}\) for Sham, \(P<0.001\)) and percentage area of perfused vessels [38% (12%) vs 82% (10%) for Sham, \(P<0.001\)] at T120 (Fig. 3). Treatment with terlipressin and Terli+2LR improved both density and the percentage area of perfused vessels [0.14 (0.02) and 0.14 (0.02) n µm\(^{-2}\), \(P<0.001\) vs Shock; 66% (14%) and 73% (9%), \(P<0.001\) vs Shock, respectively) achieving results that were similar to Sham (Fig. 3). The other treatments were either inferior to Sham (3LR and Terli+1LR), or no better than untreated animals (Terli+3LR).

Cerebral mitochondrial redox potential

In all groups, haemorrhagic shock caused a significant decrease in flavoprotein fluorescence (i.e. increased reduced state) adjacent to veins, but fluorescence persisted in a ‘halo’ around arteries (Fig. 4A), reflected by a reduction in the perivenular:periarterial fluorescence ratio (\(P<0.05\); Fig. 4B). In the Shock group, the ratio was lower at T120 compared with Sham [59% (16%) vs 99% (4%) of baseline; \(P<0.001\); Fig. 4B]. All treatments were effective in increasing the fluorescence around veins at T5. At study end, administration of 3LR (73% (20%) of baseline; \(P<0.001\)) and Terli+3LR [74% (18%) of baseline; \(P<0.001\)] resulted in a lower perivenular:periarterial flavoprotein ratio compared with Sham, although higher than in Shock (\(P<0.05\)). At T120, animals treated with Terli, Terli+1LR and Terli+2LR showed ratios not significantly different to Sham [87% (20%), 82% (20%), and 92% (15%) of baseline, respectively], but higher than Shock (\(P<0.001\)) (Fig. 4).
Mitochondrial membrane potential, indicated by TMRM fluorescence (Fig. 5), revealed that most mitochondria were depolarised (non-functional) following haemorrhagic shock. Only the mitochondria located near arteries remaining polarised, resulting in arterial ‘halos’ similar to those observed with flavoproteins. At 150 minutes after shock the perivenular:periarterial ratio was worse in the Shock group [0.28 (0.08); \(P<0.001 \)], 3LR [0.39 (0.13); \(P<0.001 \)] and Terli+3LR [0.34 (0.01); \(P<0.001 \)], compared with Sham [0.97 (0.09)]. No significant differences in the perivenular:periarterial TMRM ratio were observed in the Terli [0.98 (0.31)], Terli+1LR [0.76 (0.22)] and Terli+2LR [0.71 (0.04)] groups compared with Sham; values were also better than in Shock (all \(P<0.001 \)).

Electrophysiological function

All bled groups decreased cortical function to approximately a third of baseline at shock (\(P<0.001 \) vs Sham). At T120, cortical function decreased further to 27±19\% of baseline in Shock (Fig. 6a); aggressive fluid (Terli+3LR and 3LR groups) were not significantly better than no treatment. The Terli+1LR [73\% (32\%) of baseline] and Terli+2LR [95 (30\%) of baseline] groups were indistinguishable from Sham [97\% (13\%) from baseline], and higher than in Shock (\(P<0.001 \)) at T120. A decrease was seen in peak-to-peak muscular function amplitude (\(P<0.001 \)); no treatments restored this to baseline values (Fig. 6a). In the Terli+1LR (\(P<0.05 \)) and Terli+2LR (\(P<0.001 \)) groups, the peak-to-peak amplitude was greater at T120 compared with Shock. The amplitude of the cord dorsum potential (Fig. 6) and the peak latency of all potentials did not change significantly in any group throughout the study (Fig 6b).
Correlations and scores for effectiveness of the treatments

A positive correlation was seen between the drop in MAP, and changes in flavoprotein ($r^2=0.84$, $P=0.0006$) and TMRM signals ($r^2=0.57$, $P=0.0484$), total perfused vessel density ($r^2=0.69$, $P=0.0055$), area fraction of perfused vessels ($r^2=0.78$, $P=0.0019$), and changes in cortical function ($r^2=0.72$, $P=0.0032$), at T120. At T120, the changes in fluorescence of the perivenular oxygen-sensitive microbeads showed a weak but significant correlation with MAP ($r^2=0.54$; $P=0.0185$), and with changes in flavoprotein fluorescence ($r^2=0.60$; $P=0.0235$) and periarterial oxygen-sensitive microbeads ($r^2=0.63$; $P=0.0187$) (Table 2). In addition, changes in fraction of perfused vessels were correlated with changes in flavoprotein fluorescence ($r^2=0.90$, $P=0.0003$), TMRM signals ($r^2=0.89$, $P=0.0172$), and somatosensory evoked potentials ($r^2=0.82$, $P=0.0018$).

The Terli+2LR (score of 33), Terli+1LR (score of 27), and Terli (score of 27) were the most effective treatments to improve the variables assessed. Scores of effectiveness were 40 in sham, 21 in 3LR, 20 in Terli+3LR, and 11 in Shock.
Discussion

We describe the consequences of different resuscitation regimens immediately after haemorrhagic shock, focusing on the vasculature, oxygenation and function of the nervous system. Although the cerebral cortex is profoundly affected by haemorrhagic shock, with a dramatic reduction in perfusion of the smaller vessels accompanied by loss of mitochondrial function, it is nonetheless possible to restore perfusion, mitochondrial and neurological function by the timely administration of effective therapy.

All treatments improved survival within the time course of the study. While administration of terlipressin was generally associated with improvement in the measured variables, the combination of terlipressin and aggressive fluid (i.e. Terli+3LR) did not. Whether this is due to negative cardiovascular effects and/or other causes remains uncertain. If the amplitude of the cortical evoked potential is taken as the benchmark of a good outcome, this was optimally achieved by Terli+2LR, and associated with a better mitochondrial membrane potential (required for ATP production) and well-perfused blood vessels. Mitochondrial and neuronal dysfunction were found to correlate with impaired capillary perfusion, illuminating an earlier discrepancy described between perfusion and total cerebral flow. Of note, we found that mitochondrial function was selectively preserved in cortical tissue surrounding arterioles, which reveals a profound spatial inhomogeneity in the vulnerability of cortical tissue to a reduced cerebral microcirculation. A major reduction in oxygen supply to tissues remote from arteries can compromise oxidative phosphorylation and thus cellular ATP availability. This may affect the ability to maintain neuronal excitability and signalling; in agreement we also report a loss of cortical evoked potential...
during shock. The status of both mitochondrial\(^2\) and neuronal\(^2\) function are known to have a close correlation with prognosis following shock.

The failure to recover capillary perfusion by standard aggressive fluid resuscitation is perhaps not unexpected, given the failure of all therapies to achieve persistent restoration of arterial pressure. This failure may result from the extravasation into interstitial tissues of large amounts of isotonic crystalloids,\(^2\) causing brain swelling and thus compression within the skull, diminishing the cerebral perfusion pressure gradient.\(^3\) Arguably the most important consequence is mitochondrial dysfunction, perhaps related to increased nitric oxide production\(^2\) combined with reduced oxygen transport to mitochondria. This is particularly pertinent in shock states as nitric oxide competes with oxygen for the same binding site on mitochondrial Complex IV (cytochrome oxidase).\(^2\) Thus a rise in oxygenation does not necessarily signal a good outcome, but perhaps a failure of oxygen utilization.

Small volume resuscitation has been proposed to avoid tissue oedema resulting from aggressive fluid resuscitation.\(^2\) Indeed, animal models of haemorrhage have demonstrated that terlipressin can restore cerebral perfusion pressure without increasing intracranial pressure,\(^1\) namely conditions required for an adequate microcirculation. An alternative approach has been to provide perfusion by small-volume isotonic fluid such as LR in combination with terlipressin, which results in a more sustained improvement in arterial pressure. The vasoconstrictor effect of terlipressin, which can be given by a single bolus injection, makes it a simple and practical treatment for use until hospital care is available.

Terlipressin improved survival in models of haemorrhagic shock,\(^1\) as we observed in the present study. The main adverse effect of terlipressin is the increase in systemic vascular resistance that can further compromise both heart function and local tissue blood flow.\(^3\) However, in a porcine model of haemorrhagic shock terlipressin was effective in
redistributing blood flow to recover cerebral perfusion pressure and oxygenation without deleterious effects on systemic perfusion. Accordingly, in human patients with catecholamine-resistant shock, terlipressin has been successfully used to improve cerebral perfusion pressure and oxygenation in cases of septic shock, acute liver failure, and traumatic brain injury.

A benefit of terlipressin on the brain was the higher number of perfused vessels when associated with LR in small volumes. This indicates that terlipressin can reduce the volume of LR necessary for resuscitation, thereby reducing the adverse effects of aggressive volume resuscitation, such as cerebral expansion and compression. Studies using other vasopressors, such as norepinephrine did not report improved cerebral perfusion pressure and oxygenation in models of haemorrhagic shock.

Study limitations include the fact that the study was focused on the effects of a vasopressor following haemorrhagic shock, which resulted in the absence of a groups treated with LR in a volume of two and three times the volume of blood removed to induce haemorrhagic shock. The absence of correlation between vessel perfusion and tissue oxygenation could be attributed to the fact that the method used to assess vessel perfusion could not differentiate arteries from veins as in the tissue oxygenation assessment. Finally, the data were limited to two hours after shock in an attempt to reflect a common prehospital resuscitation regimen, and long-term outcomes remain unknown.

The significant recovery of cerebral mitochondrial and electrophysiological function by administration of terlipressin and small volumes of LR was associated with restoration of a near-normal density of perfused cortical vessels and cortical mitochondrial function, at two hours, with recovery of cortical-evoked potentials. It is reasonable to expect that optimal resuscitation therapy may avoid the complications of haemorrhagic shock encephalopathy.
None of the other therapies tested were as effective as the combination of terlipressin and small volume LR.
Authors’ contributions

Designed the trial, obtained research funding, collected, analysed and interpreted the data, drafted the manuscript, and contributed substantially to its revision: K.K.I.

Contributed to experimental planning, to data analysis and interpretation, and contributed substantially to its revision: K.I.C.

Conceived the study, obtained research funding, and contributed substantially to its revision: L.M.S.M.

Contributed to provision of experimental chemicals, to analysis and interpretation of data, and contributed substantially to its revision: D.B.P.

Provided senior advice on data analysis and interpretation and contributed substantially to manuscript revision: A.D., M.S., M.R.D.

Obtained research funding, supervised the conduct of the trial and data collection, provided senior advice to study design, data analysis and interpretation, and contributed substantially to its revision: K.J.S.

Responsible for archiving the study files: K.K.I.

Read and approved the final manuscript: all authors.

Declaration of interest

The authors have no conflict of interest with any people or organization that could inappropriately influence this work. No potential competing interest is declared. D.P. is a stakeholder of Luxcel Biosciences which contributed oxygen-sensitive microbeads some materials for this study.
Funding

UK Multiple Sclerosis Society, the National Multiple Sclerosis Society (USA), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES Ciência sem Fronteiras #1064/61-24), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP #2011/14386-2), and Science Foundation Ireland (12/RC/2276).

References

5. Taccone FS, De Backer D. Is cerebral microcirculation really preserved in shock states? *Crit Care Med* 2010; **38**: 1008-1009

Figures

(a) Data showing mean bodyweight, mean estimated blood volume withdrawn to induce haemorrhagic shock, and mean time until death after shock. EBV: estimated blood volume. (b) Kaplan Meier curve and changes in mean arterial pressure, respiratory rate and end-tidal carbon dioxide induced by haemorrhagic shock, and treatment with LR, terlipressin and combined treatments of LR plus terlipressin. * vs Sham (at least $P<0.05$); † vs Not treated Shock group (at least $P<0.05$).
Figure 2. Changes in phosphorescence of oxygen-sensitive microbeads according to their location relative to the veins and arteries throughout the study. * vs Sham of the same time-point (at least \(P<0.05\)); + vs Not treated Shock group of the same time-point (at least \(P<0.05\)).
Figure 3. Vasculature of the cerebral cortex assessed by FITC-dextran administered intravenously in rats after 120 minutes of haemorrhagic shock. (a) Total perfused vessel density reflects the quantity of blood vessels with flow. (b) Representative in vivo confocal images of the cortical vasculature revealed by the FITC-dextran. (c) Area fraction of blood vessels represents the relative area covered by the FITC-dextran fluorescence. The marker was administered intravenously and, therefore, was only present in perfused blood vessels. The images of the Not treated Shock, 3LR and Terli+3LR groups show notably fewer vessels than Sham. Images of rats receiving Terli and Terli+2LR showed no significant differences with Sham. * vs Sham (at least $P<0.05$); + vs Not treated Shock group (at least $P<0.05$).
(a) [Image of angiograms showing different conditions over time]

(b) Endogenous Flavoprotein Fluorescence

- Sham
- Terlipressin
- Terlipressin + 1LR
- Terlipressin + 2LR
- Terlipressin + 3LR
- Shock

Legend:
- Black: Sham
- Orange: Terlipressin + 2LR
- Gray: Terlipressin
- Cyan: Terlipressin + 1LR
- Purple: Terlipressin + 3LR
- Brown: 3LR
- Black with crosshatch: Shock

Graphs show changes in fluorescence ratio over time after shock.
Figure 4. Changes in endogenous flavoprotein fluorescence induced by haemorrhagic shock followed by different treatments. (a) *In vivo* confocal images of rat cerebral cortex showing mitochondrial function revealed by the intrinsic fluorescence of oxidized endogenous flavoprotein (green). Whereas the normal brain displays a quite uniform green fluorescence for flavoproteins before haemorrhagic shock, the fluorescence was lost almost everywhere except for a ‘halo’ around arteries after shock. All treatments gave some recovery of fluorescence at 5 minutes, but the recovery after some treatments was only temporary. At 120 minutes after shock, the flavoprotein fluorescence persisted only in the Terli and Terli+2LR groups. (b) Changes in the perivenular:periarterial ratio of the endogenous flavoprotein fluorescence throughout the study. * vs Sham (at least *P*<0.05); + vs Not treated Shock group (at least *P*<0.05).

Figure 5. Graph and confocal *in vivo* images showing changes in mitochondrial membrane potential revealed by TMRM in the cerebral cortex of rats at 150 minutes after haemorrhagic shock.
shock. TMRM fluorescence only accumulates within mitochondria possessing a membrane potential. In the not-treated Shock group many mitochondria were depolarized, and presumably non-functional; only mitochondria near arteries remained polarized, resulting in the formation of periarterial TMRM ‘halos’. A similar pattern of periarterial halos was observed in rats treated with 3LR and Terli+3LR, though polarized mitochondria were distributed more widely in rats treated with Terli, Terli+1LR and Terli+2LR: indeed, rats treated with these regimens had a spread of polarized mitochondria that was not significantly different to Sham, * vs Sham (at least $P<0.05$); + vs Not treated Shock group (at least $P<0.05$).
Figure 6. Changes in the amplitude of the somatosensory cortical evoked potential, cord dorsum potential and electromyography in response to haemorrhagic shock and the different treatments. * vs Sham (at least $P<0.05$); $^+$ vs Not-treated Shock group (at least $P<0.05$).