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Abstract 

The ability to learn and retain new motor skills is pivotal for everyday life activities 

and motor rehabilitation after stroke. However, people show considerable 

individual differences in motor learning. Understanding the neurophysiological 

processes underlying these individual differences is of significant scientific and 

clinical importance. At a mechanistic level, oscillations in the beta frequency 

range (15–30 Hz), fundamental for motor control, reflect underlying cortical 

inhibitory and excitatory mechanisms. As such, they may provide appropriate 

biomarkers with which to bridge the gap between cellular and behavioural 

accounts of cortical plasticity in both healthy and diseased states. This thesis 

explores the interplay between cortical beta oscillations and individual differences 

in short-term motor learning within the context of healthy ageing and after stroke. 

First, I assess the test-retest reliability of resting and movement-related beta 

estimates in a group of healthy subjects across several weeks. By demonstrating 

that EEG-derived power measures of beta activity are highly reliable, I validate 

the notion that these measures reflect meaningful individual differences that can 

be utilized in basic research and in the clinic. 

Second, I probe the neurophysiological mechanisms underlying natural inter-

individual differences in short-term motor learning. I demonstrate comparable 

motor learning ability between young and elderly individuals, despite age-related 

alterations in beta activity. Implementing a multivariate approach, I show that beta 

dynamics explain some of the individual differences in post-training tracking 

performance. 

Third, I extend this line of research by focusing on stroke-related inter-individual 

variations in motor learning. Employing the same tasks and analyses, I 

demonstrate preserved, albeit reduced motor learning ability and no aberrant 

beta activity after stroke. Beta dynamics explained some of the individual 

differences in stroke patients’ performance 24 hours after training, and may thus 

offer novel targets for therapeutic interventions. 
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 Introduction 

This thesis explores candidate biomarkers with which to bridge the gap between 

cellular and behavioural accounts of cortical plasticity by investigating the 

interplay between these neurophysiological markers and individual differences in 

short-term motor learning in both healthy and diseased states. It builds on a large 

body of physiological, pharmacological, behavioural and neuroimaging work 

proposing a role for cortical plasticity in motor skill learning and recovery after 

stroke. In this chapter, I review and draw together insights from the existing 

literature, and highlight the translational value of the questions addressed in this 

thesis. I define key terms that will be used throughout, and present an overview 

of the following chapters. 

 

1.1 Motor learning: a key feature of human motor control 

Successful interaction with the world and other people requires the ability to learn 

and adapt our motor behaviour to an ever-changing environment. Motor learning 

is the process associated with practice or experience rather than maturation that 

leads to a fairly permanent change in a person’s ability to perform motor skills 

(“ability to reliably deliver accurate execution” (Kitago and Krakauer, 2013)). 

These motor skills such as writing, playing an instrument or using a touchscreen 

require, for example, smooth co-activation of muscle groups into a specific 

sequence, multi-joint movement synergies, and eye-body coordinated actions 

(Schmidt, R. A. and Lee, 1999). The goal of motor learning, in general, is to 

improve performance and acquire new motor skills, which is fundamental to 

human development. The process itself is dynamic as changes are mostly 

unpredictable. Thus, it allows an individual to progress from novice to expert in a 

particular motor skill, and to flexibly maintain motor abilities throughout the 

lifespan (Schmidt and Wrisberg, 2008a; Willingham, 1998; Wolpert et al., 2011). 

Consequently, the capacity to (re)learn and retain new motor skills is essential 

for accommodating neurophysiological changes that often occur gradually with 

ageing and suddenly following neurological injury. However, daily life experience 

makes it evident that people show considerable inter-individual differences in 

their capacity to learn and retain new skills (Frensch and Miner, 1994; Golenia et 
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al., 2014; Tubau et al., 2007; Unsworth and Engle, 2005; Vegter et al., 2014), 

possibly due to variations in the structure and function of brain regions involved 

in motor control (Tamás Kincses et al., 2008; Tomassini et al., 2011). 

Understanding the neurophysiological processes underlying these differences in 

the capacity to learn is of significant scientific and clinical importance for 

improving long-term rehabilitative outcomes in the elderly and patients with brain 

injury (Stinear, 2010; Ward, 2017). 

 

1.1.1 Motor learning in the lab: motor skill learning vs motor adaptation 

In order to study the cognitive processes and neural substrates mediating the 

ability to learn motor behaviour in the laboratory, a variety of tasks and 

experimental paradigms have been used. In general, these tasks fall into two 

categories (for review see (Doyon et al., 2003; Kitago and Krakauer, 2013; 

Krakauer and Mazzoni, 2011a; Willingham et al., 1989)). The first is motor 

adaptation, in which our capacity to compensate and return to baseline 

performance following externally induced perturbations (i.e. prisms, rotations, 

force fields) is tested (Figure 1.1A) (Krakauer et al., 2000; Martin et al., 1996; 

Shadmehr and Mussa-Ivaldi, 1994a). Individuals, in general, rapidly reduce 

performance errors and once adapted, show ‘after-effects’ and have to gradually 

‘de-adapt’ their behaviour with practice back to the original state when the 

perturbations are removed again. Importantly, adaptation does not require the 

acquisition of new motor synergies. Motor adaptation will not be discussed further 

here, as it was not used to probe motor learning in this thesis and a 

comprehensive review of both types of learning would be beyond the scope of 

this thesis.  

The second is motor skill learning, the incremental acquisition of sequential 

movements into well-executed behaviour with lasting improvements beyond 

baseline performance (Figure 1.1B) (Karni et al., 1995; Nissen and Bullemer, 

1987). In contrast to motor adaptation, this form of motor learning involves the 

acquisition of new movement patterns and/or muscle synergies. Thus, the 

acquisition of motor skill takes longer than adaptation, and sometimes does not 

reach plateau level for years (i.e. learning to play the violin) (Karni and Sagi, 

1993). In both animals and humans, motor skill learning is typically measured by 



Introduction 
 

21 
 

a reduction in reaction time, the number of errors, and changes in the speed-

accuracy trade-off, and/or by a change in muscle activation patterns and 

kinematics (e.g. (Hikosaka et al., 1995; Reis et al., 2009; Shadmehr and 

Brashers-Krug, 1997).  

In general, motor adaptation and motor skill learning both involve learning novel 

kinematic and dynamic mappings between motor outputs and sensory inputs, 

determined by the structure of the task (Wolpert et al., 2011). However, in the 

case of motor adaptation, these adjustments are mostly temporary, limiting its 

use in the clinic. In contrast, due to the durable effects of motor skill learning, this 

type of learning plays a central role for post-stroke recovery and has important 

implications for neurorehabilitation (Kitago and Krakauer, 2013; Krakauer, 2006). 

Thus, this thesis is concerned with motor skill learning in relation to smooth 

movements of the wrist. 

 

Figure 1.1 | Schematics of typical motor learning tasks in the lab.  

A, Motor adaptation task in which subjects perform reaching movements using a 

manipulandum in a force field. During initial exposure to the force field, movement 

performance is grossly distorted compared to movement without force field 

perturbation. With practice, performance within the changed mechanical 

environment is recovered. B, Motor skill learning task in which subjects are cued 

by a target dot to press a corresponding key with the respective finger. Unknown 

to the subjects, the location of the target dot is structured according to a repeated 

sequence. Subjects improve their performance on the repeated but not on the 

random sequence as indicated by a reduction in mean reaction time. Figure 

adapted from (Doyon et al., 2003; Shadmehr and Mussa-Ivaldi, 1994b), with 

permission from Elsevier. 
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1.1.1.1 Phases in the process of motor skill learning 

The incremental acquisition of motor skills follows behaviourally relevant phases. 

Initially, motor skills develop relatively fast within a single training session (fast 

learning) and later more slowly, with further improvements developing 

incrementally over multiple training sessions (slow learning) (Figure 1.2) (for 

review see (Brashers-Krug et al., 1996a; Doyon and Benali, 2005; Doyon and 

Ungerleider, 2002b; Doyon et al., 2003; Halsband and Lange, 2006; Luft and 

Buitrago, 2005; Magill, 2011; Robertson et al., 2004a; Schmidt and Wrisberg, 

2008b)). Of note, the relative duration of the fast and slow phases in motor 

learning is highly task-specific depending on factors such as movement 

complexity (Dayan and Cohen, 2011). For example, learning a simple key-press 

sequence could only last minutes, while learning to play the violin may take 

months, or even years.  

However, in order for motor learning to be truly useful, the learned motor skill 

needs to be retained, following a short or longer time delay, with or without sleep, 

in which the task is not practised, commonly referred to as offline learning 

(Brashers-Krug et al., 1996b; Doyon and Benali, 2005; Karni and Sagi, 1993; 

Muellbacher et al., 2002; Robertson et al., 2005; Walker et al., 2002). This 

process involves the consolidation of motor memories, resulting in either a 

stabilization or enhancement of a motor memory encoded during practice 

(Hotermans et al., 2006; Robertson et al., 2004a; Walker, 2005). In general, 

enhancement refers to an increase in performance that exceeds the performance 

level prior to the time delay.  

However, during the initial stages of the consolidation process, motor memories 

are fragile and susceptible to interference through practice of a competing task 

within a certain time window. When interference occurs within the first ~6 hours 

following training, for example due to learning on a competing motor task, the 

consolidation of the motor memory is disrupted and thus, retention is 

compromised (Brashers-Krug et al., 1996b; Karni and Sagi, 1993; Korman et al., 

2007a). Once a motor skill is mastered and the motor memory properly encoded, 

it can be maintained for long periods of time (long-term retention) and readily 

retrieved with reasonable performance. An additional interesting concept is the 

term transfer or generalization which refers to the ability to apply a motor skill 
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learned in a specific context to a novel task or context, thereby saving a 

considerable amount of time and effort attached with the learning process. 

 

Figure 1.2 | Temporal phases in the process of motor skill learning.  

The learning curve illustrates the increase in motor skill with practice over time. 

Motor skills are initially learned fast during single-session training, and then more 

slowly over multiple training sessions. Changes in motor skill can occur during 

training (online) but also after training ended between sessions (offline). 

Consolidation occurs after practice, incorporating stabilization and offline 

enhancement of a motor memory. Previous learning manifests in savings, a 

concept mostly used in the motor adaptation literature, which denotes faster 

retraining in consecutive sessions. Figure taken (Wessel et al., 2015), with 

permission from Frontiers.  

  

1.1.1.2 Types of motor skill learning tasks: discrete vs continuous 

Many skilled motor behaviours, such as playing the piano or running on complex 

terrain, consist of a sequence of movements. These motor behaviours can be 

classified into discrete and continuous skills (Schaal et al., 2004a). Discrete skills 

are those in which the movement has a clear beginning and end, such as 

pressing a key on a keyboard, reaching or grasping. In contrast, continuous motor 

skills represent cyclical and repetitive movements with no recognizable beginning 

and end. Examples of continuous skills include swimming, running or performing 

a tracking task. Of note, discrete movements, due to their rapid nature, are often 

made without the use of online feedback, while continuous movements involve 
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the modification/correction of movements while they are being executed using 

sensory feedback (Schaal et al., 2004b; Seidler et al., 2004).  

Most of the studies examining motor skill learning have utilized discrete tasks 

such as the classical and most established serial reaction time task (SRTT), in 

which subjects perform a series of button presses (Nissen and Bullemer, 1987; 

Willingham et al., 1989). Studies employing continuous tasks, commonly utilize 

continuous tracking tasks, which are characterised by a moving target that 

subjects attempt to follow with a device (i.e. joystick, computer mouse or other 

specialised devices) via certain limb movements (Pew, 1974; Shea et al., 2001a; 

Wulf and Schmidt, 1997). In both paradigms, the subject is often unaware that 

the sequence of events is not random but consists of a continuous cycle of the 

same (repeated) sequence embedded in random sequences (implicit learning).   

Learning on both tasks is measured as either a reduction in reaction time (i.e. 

SRT task, Figure 1.1B) or an improvement in tracking accuracy (i.e. tracking 

task). In general, changes in performance are evident for both repeated and 

random sequences; however, performance on the repeated sequence compared 

to the random sequence is generally improved. Thus, not only generalized motor 

components of the task are learned but also characteristics of the specific 

sequence, which is typically referred to as sequence-specific learning (Wulf and 

Schmidt, 1997).  

Awareness about the structured nature of the repeated sequence to be learned 

has emerged as an influential factor for sleep-dependent memory consolidation 

as discussed later in section 1.1.1.3. Two types of awareness can be 

distinguished. If awareness is explicit, participants are aware of the task 

regularities, whereas if it is implicit, participants do not have conscious awareness 

of the task regularities (Willingham, 1998). Few, if any tasks have purely explicit 

or implicit characteristics (Shanks and St. John, 1994) and thus, the debate about 

the overlap of implicit and explicit learning remains open. 

 

1.1.1.3 Factors facilitating motor skill learning 

The amount of practice on a task is generally considered the most important 

factor for permanent improvements in the ability to perform a motor skill - “practice 

makes perfect” as the old adage goes. This positive relationship between practice 
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and skill has been mathematically modelled and referred to as the power law of 

practice (Newell and Rosenbloom, 1980). Nevertheless, numerous studies have 

proposed several factors that can facilitate and optimize the learning of motor 

skills, with a strong emphasis on movement feedback, practice distribution 

(massed vs distributed practice), scheduling (blocked vs random practice), 

variation of motor tasks (constant vs variable practice), and sleep (Kitago and 

Krakauer, 2013; Magill, 2011).  

Feedback during a motor task has been shown to modulate motor skill acquisition 

(for reviews see (Magill, 1994; Schmidt, 1991; Sigrist et al., 2013; Swinnen, 

1996). Intrinsic feedback, in the form of sensory-perceptual information that is a 

natural part of performing the skill, is indispensable for performance and learning. 

Augmented or extrinsic feedback provides an addition to the normally available 

task intrinsic feedback. Two types of performance-related information are 

commonly used: information about the outcome of performing a skill (termed 

Knowledge of Result, KR) and information about movement characteristics that 

led to the outcome (termed Knowledge of Performance, KP). Typically, these 

sources of information are provided after the performance of the skill, but can 

also be provided during the movement. However, augmented feedback is not 

necessary for learning and, under certain circumstances, can even be detrimental 

(i.e. erroneous feedback or concurrent feedback when it distracts attention away 

from intrinsic feedback), highlighting the necessity of designing valuable 

feedback in order to motivate, reinforce and speed up learning. Thus, when 

designing a motor learning experiment, variables such as the type of feedback, 

which performance-related information to provide, and timing and frequency of 

feedback need to be considered.   

Although practice is the most effective way of improving performance during 

training, the structure of practice influences long-term retention of motor skills. 

Distributing practice sessions across days, thereby introducing rest periods,  has 

consistently been shown to be beneficial for motor skill learning as compared to 

massed practice, where learning is crammed into one long session without 

breaks (e.g. (Arthur et al., 2010; Dail and Christina, 2004; Shea et al., 2000)), for 

review see (Smith and Scarf, 2017)). This effect termed distributed-practice or 

spacing effect has been known for more than a century (Ebbinghaus, 1885), with 
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memory consolidation taking place over periods of rest and sleep between 

sessions, which is thought to be the mechanism underlying the performance-

enhancing impact of the spacing effect. The influence of practice structure on 

memory consolidation and retention of acquired motor skills also has potential 

clinical applications for improving neurorehabilitative interventions after brain 

injury (for review see e.g. (Muratori et al., 2013). Several studies have further 

shown that introducing task variability during practice improves retention (e.g. 

(Moxley, 1979; Shea and Kohl, 1990; Wulf and Schmidt, 1997)). In addition, 

practice under interleaved or random practice order degrades performance 

during the acquisition phase, but it results in superior retention and transfer 

performance compared to blocked practice schedules. This rather 

counterintuitive phenomenon is referred to as contextual interference (CI), 

describing the beneficial effect of interference during practice for skill learning 

(Magill and Hall, 1990; Shea and Morgan, 1979). However, it should be noted 

that practice under conditions of high contextual interference (i.e. random 

practice order), where practice takes place on a variety of tasks makes the 

identification of the cause of performance improvements challenging.  

In recent years, a growing literature has suggested that sleep plays a crucial role 

in learning and memory consolidation across a variety of skill domains, with a 

wide belief that it benefits memory consolidation (for reviews see (Diekelmann 

and Born, 2010; Stickgold et al., 2001)). Evidence that a night of sleep triggers 

performance improvements, whereas an equivalent period of wakefulness merely 

leads to performance stabilization, mainly stems from studies employing explicit 

motor-sequence learning tasks (Korman et al., 2007; Walker et al., 2002). 

Notably, the process of sleep-dependent consolidation appears to be reduced 

with ageing (Brown et al., 2009; Spencer et al., 2007; Wilson et al., 2012), most 

likely due to age-related changes in sleep patterns (Ohayon et al., 2004). Some 

studies, however, claim that the observed sleep-dependent performance 

enhancement is an artefact of the study design and is no longer evident when 

controlling for confounding factors such as fatigue and reactive inhibition (Brawn 

et al., 2010; Nettersheim et al., 2015; Rickard et al., 2008).  

Notably, sleep does not appear to be beneficial for learning of implicit motor-

sequence tasks (Al-Sharman and Siengsukon, 2014; Robertson et al., 2004b; 
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Siengsukon and Al-sharman, 2011), implying a modulatory effect of an 

individual’s awareness of learning a new skill on the benefits of sleep. The role of 

sleep in consolidating motor memories further has implications in clinical settings 

as stroke patients have shown sleep-dependent improvements in motor 

performance for both implicit and explicit motor learning (Siengsukon and Boyd, 

2009, 2008; Siengsukon et al., 2015).  

Together, these and other factors should be taken into account when designing 

learning studies in order to maximise motor learning in healthy adults and, in the 

context of stroke-related brain damage, may have consequences for movement 

rehabilitation, which depends on motor learning and consolidation. 

 

1.1.2 Neural correlates of motor skill learning 

Over the past few years, a plethora of animal and neuroimaging studies have 

demonstrated that several brain structures, including sensorimotor networks and 

higher-order associative networks, are critical for the acquisition and/or retention 

of skilled motor behaviour (e.g. (Dayan and Cohen, 2011; Doyon and Benali, 

2005; Doyon and Ungerleider, 2002a; Doyon et al., 2003; Floyer-Lea, 2005; 

Grafton et al., 1992; Sanes and Donoghue, 2000)). In humans, the neural 

substrates of the fast and slow components of motor learning have been studied 

with functional magnetic resonance imaging (fMRI) and positron emission 

tomography (PET). These methods measure task-related modulations of blood 

oxygenation level-dependent (BOLD) signals or regional cerebral blood flow 

(rCBF), thereby providing indirect measures of cortical activity.  

In general, these studies revealed increased activity in premotor cortex (PM), 

supplementary motor area (SMA), parietal regions, striatum, and the cerebellum 

(Floyer-Lea and Matthews, 2005; Grafton et al., 2002, 1992) and decreased 

activity in dorsolateral prefrontal cortex (DLPFC), pre-supplementary motor area 

(preSMA), and primary motor cortex (M1) (Floyer-Lea and Matthews, 2005) 

during the fast learning stage (Dayan and Cohen, 2011; Halsband and Lange, 

2006) (Figure 1.3A). Slow learning, over several days or weeks, modulates brain 

activity in M1 (Floyer-Lea and Matthews, 2005; Karni et al., 1995), primary 

somatosensory cortex (Floyer-Lea and Matthews, 2005), SMA (Lehericy et al., 

2005), and putamen (Floyer-Lea and Matthews, 2005; Lehericy et al., 2005), 
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which show increased activation, while the cerebellum shows decreased activity 

(Lehericy et al., 2005) (Figure 1.3B). Thus, progression from fast to slow motor 

skill learning is associated with a shift in brain activity from anterior to more 

posterior cortical regions, which is thought to reflect the reduced need for the 

engagement of attentional and control areas (Kelly and Garavan, 2005).  

 

Figure 1.3 | Neural correlates of motor learning in humans.  

Schematic depiction of major brain regions involved in fast (A) and slow (B) 

stages of motor learning. The arrows and colours illustrate increases or 

decreases in particular brain structures based on fMRI and PET findings. DLPFC: 

dorsolateral prefrontal cortex; M1: primary motor cortex; PM: premotor cortex; 

SMA: supplementary motor area; preSMA: pre-supplementary motor area; PPC: 

posterior parietal cortex; DMS: dorsomedial striatum. Figure adapted from 

(Dayan and Cohen, 2011), with permission from Elsevier. 

 

Two major models for interpreting the complex pattern of activity have been 

proposed. The model by Hikosaka and colleagues focuses on the interaction of 

two parallel loop circuits which are operational in learning spatial and motor 

features of sequences (Hikosaka et al., 2002). The model proposed by Doyon 

and colleagues suggests that two distinct cortico-striatal and cortico-cerebellar 

circuits contribute differentially to motor sequence learning and motor adaptation, 

respectively, particularly during the slow learning phase (Doyon and Benali, 2005; 

Doyon and Ungerleider, 2002a). Although the two models propose different 

patterns of activity, they both affirm that motor skill learning involves interactions 
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between cortical and subcortical circuits associated with cognitive and control 

functions, which are important for motor skill learning. 

 

1.1.3 Role of M1 in motor skill learning: acquisition and consolidation 

As discussed above, motor learning is associated with activity in a distributed 

network of cortical structures, including sensorimotor and higher-order 

associative brain areas. However, non-invasive brain stimulation (NIBS) methods 

have been used to investigate the functional role of particular brain regions in 

motor learning, and most have focused on M1, a key structure in the control of 

voluntary movements. Given this premise and the fact that motor deficits are 

amongst the most common impairments after stroke-related brain damage, the 

motor system is the focus of the current work.  

Studies employing transcranial magnetic stimulation (TMS) were able to 

associate different aspects of motor learning with M1, e.g. acquisition and 

consolidation of motor skills (Muellbacher et al., 2002; Pascual-Leone et al., 

1994). For example, synchronous application of single pulse TMS, a procedure 

that stimulates neurons in a small area underneath the coil, over M1 engaged in 

thumb abduction learning resulted in enhanced motor memory encoding and 

longevity (Butefisch, 2004). Importantly, this effect was specific to the 

synchronous Hebbian stimulation of M1 that drives the training motions and was 

not evident when TMS was applied between movements.  

An influential study conducted by Muellbacher and colleagues further 

demonstrated that the role of M1 in consolidation can dissociate from initial motor 

skill acquisition (Muellbacher et al., 2002). By applying repetitive transcranial 

magnetic stimulation (rTMS), a procedure that interferes with cortical functioning, 

to M1, they showed that retention of behavioural improvements on a thumb-to-

finger opposition task was disrupted when applied immediately after training. The 

disruptive effect was specific for M1 in a time-dependent manner as rTMS applied 

6 hours after practice or to other cortical areas such as DLPFC did not impact 

retention (Figure 1.4). These findings highlight the involvement of M1 during the 

early stage of motor consolidation. Also, rTMS applied over M1 immediately after 

practice of a SRTT degrades over-day but not overnight improvements, indicative 
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of different consolidation processes relating in a different manner to M1 and a 

role of sleep in rescuing memories (Robertson et al., 2005).  

Thus, M1 is a key brain region involved in the acquisition and early consolidation 

of motor skills and thus, functional reorganization within motor cortical circuitry in 

association with learning should be evident.  

 

Figure 1.4 | Repetitive TMS over M1 disrupts early motor consolidation.  

A, Stimulation of M1 (MP+rTMS-M1) but not occipital (MP+rTMS-OC ) or DLPFC 

(MP+rTMS-DLPFC) areas specifically disrupted retention of behavioural 

improvements on a ballistic pinch task (mean peak acceleration) of practice 1 and 

2 (P1, P2). However, motor learning by subsequent practice 3 (P3) was 

unaffected. B, Stimulation of M1 when applied 6 hours after practice did not 

impair retention of a newly acquired skill. MP: Motor practice. Figure adapted 

from (Muellbacher et al., 2002), with permission from Macmillan Publishers Ltd. 

 

1.1.3.1 Functional organisation of M1 

The primary motor cortex has a complex, interconnected architecture with 

dynamic properties. It is associated with the regulation of muscle activity and 

voluntary movement and importantly, is a key contributor in the process of motor 

learning. Early studies by Penfield and Rasmussen employing microstimulation 

on the surface of M1 revealed a somatotopically ordered representational map 

for movements (or muscles), commonly referred to as the ‘motor homunculus’ 

(Penfield, W. and Rasmussen, 1950). However, it appears that different body 
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parts show a distributed representation with extensive overlap, with a system of 

horizontal connections functionally associating motor cortex neurons into 

dynamically structured assemblies (Sanes and Donoghue, 2000). These 

organizational principles of motor representations have important consequences 

for motor learning as well as recovery after stroke as they provide a basis for 

flexible reorganization of networks as discussed in the next section.  

 

1.2 The interaction of motor learning with brain plasticity 

Over the last two decades, neuroimaging and non-invasive brain stimulation in 

humans coupled with insights from animal studies have demonstrated that the 

acquisition of motor skills is associated with significant neural plasticity within the 

brain (e.g. (Dayan and Cohen, 2011; Doyon and Benali, 2005)). While previously 

thought to be a physiologically static organ, these findings have advanced the 

idea that the neural circuitry as well as the functional properties of neurons within 

different brain areas are malleable and retain a degree of plasticity throughout life 

(e.g. (Bavelier et al., 2010; Hensch, 2005)). In particular, changes within M1 have 

been evidenced to make fundamental contributions to learning and remembering 

of motor skills. In the following section, I thus focus on plasticity, here defined as 

“changes in the strength of synaptic connections in response to either an 

environmental stimulus or an alteration in synaptic activity in a network” (Murphy 

and Corbett, 2009a), within the primary motor cortex in the context of motor 

learning. Neural plasticity has been shown to be induced not only in response to 

practice and experience, but also as a result of pathological changes such as 

stroke, which will be discussed in detail later in this thesis (see section 1.3.2). 

 

1.2.1 Motor learning-related plasticity in M1 

The brain’s capacity for motor learning induced cortical reorganization of M1 has 

been observed in various animal models and in humans. Adult rats trained on a 

prehension task that requires animals to reach for and grasp a food pellet show 

an expansion of forelimb movement representations (evoked with 

microstimulation) within motor cortex (Kleim et al., 1998). Similar expansions of 

finger representations with digit training, at the expense of wrist and forearm 

representations, were evidenced in squirrel monkeys (Figure 1.5) (Nudo and 
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Milliken, 1996), demonstrating a dynamic relationship between motor skill 

learning and motor cortical plasticity. It is important to note that reorganization of 

motor maps is not simply due to repetitive activity of muscle groups involved in 

movement execution but is specific to the trained task (Kleim et al., 1998; Molina-

Luna et al., 2008; Plautz et al., 2000). For example, simple lever pressing in rats 

(Kleim et al., 1998) and repetitive performance of digit movements (~13,000 

movements) in squirrel monkeys (Plautz et al., 2000) was insufficient to drive 

changes in M1 motor maps.  

Consistently, in humans, imaging studies using PET (Grafton et al., 2002, 1992) 

or fMRI (Karni et al., 1995) and functional testing with TMS (Pascual-Leone et al., 

1995, 1994) have demonstrated reorganizational changes in M1 with motor skill 

learning. Structural changes in grey matter have also been reported in individuals 

with highly developed motor skills (Draganski et al., 2004). Taken together, these 

studies imply that changes in motor cortex representations are specific for the 

trained skill and confined to the cortical area involved in the movement. 

Understanding the mechanisms that mediate such plastic changes is 

fundamental in order to exploit the brain’s capacity for learning induced 

reorganization. 
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Figure 1.5 | Representational changes in motor maps with skill training. 

Motor maps derived before (A) and after (B) digit skill training show a clear 

expansion in representational areas of the digit (red) in squirrel monkeys trained  

on a small well food pellet retrieval task requiring manipulation of 1-2 digits (C). 

Figure taken (Nudo, 2013), with permission from Frontiers. 

 

1.2.1.1 Mechanisms underlying motor learning-related plasticity 

The learning-related reorganization of motor maps in M1 depends on synaptic 

changes in cortical circuitry such as synaptogenesis and alterations in synaptic 

strength ((Rioult-Pedotti et al., 1998; Wang et al., 2011; Xu et al., 2009), for 

review see (Sanes and Donoghue, 2000)). Besides structural changes, 

alterations in synaptic efficacy of M1 neurons contribute to learning-related 

reorganization. Consistent with the increase in synapse number, cortical slice 

preparations obtained from rats trained on a prehension task for 5 days 

demonstrated long-lasting increases in synaptic strength in layer II-III of rat M1 

contralateral to the trained paw (Rioult-Pedotti et al., 2000, 1998). This 

enhancement in synaptic efficacy was linked to long-term potentiation (LTP) and 

long-term depression (LTD)-like mechanisms. LTP and LTD reflect rapid and 

sustained alterations in synaptic efficacy in response to simultaneous 

depolarisation of presynaptic and postsynaptic neurons (for review see (Bliss and 

Lomo, 1973)), obeying Hebbian principles (Hebb’s learning rule, “neurons that 
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fire together, wire together”, (Hebb, 1949)). Interestingly, learning-induced LTP is 

associated with temporary occlusion of the ability to induce LTP in the trained 

hemisphere (but not in the untrained hemisphere) which is thought to be mediated 

by the saturation of synaptic modification (Rioult-Pedotti et al., 2007, 2000, 1998). 

Similar results were obtained in an in vivo animal model introduced by Monfils 

and colleagues (Monfils and Teskey, 2004).  

Corroborative evidence that motor skill learning is associated with LTP-like 

plasticity has been obtained in humans using non-invasive brain stimulation 

techniques (Cantarero et al., 2013; Rosenkranz et al., 2007; Stefan et al., 2006; 

Ziemann et al., 2004). These studies provide direct evidence for synaptic 

modifications in M1 circuitry accompanying acquisition of a new motor skill 

through mechanisms of motor cortical LTP, and imply that M1 is a dynamic 

substrate for motor learning (Sanes and Donoghue, 2000).  

At the molecular level, substantial evidence supports the idea that the modulation 

of gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the 

adult brain, is necessary for synaptic changes in M1 associated with motor 

learning (Clarkson et al., 2010; Hess et al., 1996; Sanes and Donoghue, 2000; 

Trepel and Racine, 2000). In particular, a decrease in GABAergic inhibitory 

activity is essential for LTP-like plasticity to occur within M1. For example, focal 

application of the GABA antagonist bicuculline facilitates LTP-like activity 

(Castro-Alamancos et al., 1995) and unmasks existing horizontal connections in 

M1 in animal models (Jacobs and Donoghue, 1991). While a reduction in 

GABAergic inhibition facilitates the ability to induce LTP-like plasticity, preventing 

a decrease in GABA prohibits LTP-like plasticity (Castro-Alamancos et al., 1995; 

Trepel and Racine, 2000), thereby highlighting the importance of the balance 

between cortical excitatory and inhibitory processes within M1 circuits for motor 

learning-related plasticity.  

Evidence implying that changes in the balance between excitation and inhibition 

determine motor cortex plasticity in humans comes from pharmacological 

elevation of GABA levels with lorazepam which results in suppression of use-

dependent plasticity in motor cortex  (Buetefisch et al., 2000; Pleger et al., 2003). 

In addition, magnetic resonance spectroscopy (MRS) studies demonstrated a 

reduction in M1 GABA concentration during short-term learning of a visuo-motor 
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tracking task, with the decrease in GABA being specific to motor learning and not 

evident in response to a task without a learning component (Floyer-Lea et al., 

2006). Consistent with this role of GABA, individual differences in the 

responsiveness of the GABA system have recently been linked to the degree to 

which subjects learnt on a motor sequence task (Stagg et al., 2011a). Specifically, 

subjects who showed greater learning of the task also showed a greater decrease 

in their GABA levels in response to M1 stimulation, suggesting that the intrinsic 

ability to decrease GABA within the cortex is important for the early phase of 

motor learning and might, at least partly, explain individual differences in the 

ability to learn new motor skills. 

In summary, these findings strongly support the hypothesis that modulations of 

GABAergic inhibition are essential for the induction of motor cortical plasticity 

observed with motor learning and, therefore represent targets for promoting the 

capacity for motor learning in the intact brain, and importantly in patients with 

motor impairments due to brain damage.  

 

1.2.1.2 Non-invasive brain stimulation can facilitate motor learning 

As discussed previously (see section 1.1.3), non-invasive brain stimulation 

methods have been used to explore the functional role of M1 during initial motor 

learning and consolidation (Muellbacher et al., 2002; Robertson et al., 2005). In 

addition, cortical excitability and LTP-like plasticity can be modulated using NIBS 

techniques and thus, may be utilized in order to promote motor skill acquisition 

and subsequent retention. If the modulation of cortical GABAergic activity is 

necessary for plasticity and human motor learning to occur, NIBS protocols 

should modulate learning.  

Transcranial direct current stimulation (tDCS) allows the transient modulation of 

cortical excitability in a polarity-specific manner. Anodal tDCS delivered over M1 

has been shown to decrease GABA levels (Stagg et al., 2011a, 2009), thus 

leading to an increase in cortical excitability and improved performance on a 

variety of motor learning tasks (Antal et al., 2004; Nitsche et al., 2003; Reis et al., 

2009; Stagg et al., 2011a; Tecchio et al., 2010; Vines et al., 2006). In contrast, 

cathodal tDCS appears to have no effect on learning (Nitsche et al., 2003; Reis 

et al., 2009). However, the timing of the application of tDCS relative to motor 
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learning has a differential effect since it exhibits a facilitatory effect only when 

applied during the motor task. If applied prior to training on a motor task, learning 

can be unchanged (Kuo et al., 2008) or actually be slowed (Stagg et al., 2011a).  

While these studies only investigated the effect of tDCS within a single session, 

a study by Reis and colleagues demonstrated that anodal tDCS over 5 

consecutive days of training on a sequential visual isometric pinch task (SVIPT) 

resulted in greater motor skill acquisition due to selective enhancement of 

consolidation (Reis et al., 2009). In addition, enhanced motor skill performance 

was observed even at 3 months after the end of training (Figure 1.6), which may 

have important clinical implications for long-term functional improvements 

following rehabilitation. Overall, there is accumulating evidence that tDCS is 

effective in modulating cortical excitability and therefore, may promote plastic 

changes associated with motor learning in the healthy brain. The fact that cortical 

excitatory and inhibitory processes that underlie neuroplasticity are amenable to 

NIBS highlights that these processes are exciting targets that can promote motor 

skill acquisition and retention and, in the context of pathology, could promote 

functional outcomes after stroke, as will be discussed later in this thesis (see 

section 1.3.4.2).  
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Figure 1.6 | Effect of tDCS on extended time course of motor skill learning. 

A, The cortical target for tDCS over left M1 was determined using TMS. Subjects 

trained over 5 consecutive days on the SVIPT, with 20 min of anodal or sham 

tDCS applied over M1. Retention of skill was tested at 5 follow-up sessions (day 

8, day 15, day 29, day 57, and day 85). B, Learning curves for the sham (white 

diamond) and anodal tDCS (grey square) groups. While both groups started with 

comparable skills at the beginning of day 1, the anodal tDCS group showed 

greater skill acquisition over the course of training than the sham group. C, Skill 

remained superior with anodal tDCS (grey square) compared to sham (white 

diamond) at all time points over a 3-month follow-up period. Figure adapted (Reis 

et al., 2009), with permission from National Academy of Sciences.  

 

1.3 Recovery from stroke through plasticity and motor learning  

The consequences of stroke are often devastating, with the majority of stroke 

survivors suffering from persistent motor deficits. Stroke recovery is a complex 

process. A substantial amount of work in animals has been undertaken to 

elucidate the molecular and cellular events that underlie the profound structural 

and functional reorganization that occurs during the first weeks and months after 

focal brain injury (for review see e.g. (Cramer, 2008; Krakauer et al., 2012; 
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Murphy and Corbett, 2009)). Evidence from these studies suggest a time-limited 

window of heightened neural plasticity early post-stroke during which most 

recovery from impairment occurs due to spontaneous biological recovery and 

increased responsiveness to motor training. The presence of a critical period of 

plasticity thus advocates for the delivery of behavioural training early after stroke, 

but many stroke patients nevertheless continue to improve in the chronic phase. 

Post-stroke recovery and rehabilitation rely on mechanisms of learning and 

neural plasticity (Krakauer, 2006) and thus, understanding the underlying neural 

processes enabling both, are of great interest for optimizing the timing, intensity 

and amount of post-stroke rehabilitation in order to maximise patient outcomes 

(Kitago and Krakauer, 2013; Krakauer, 2006).  

 

1.3.1 The burden of stroke 

Stroke is a major global health problem, being the second most common cause 

of death and the leading cause of long-term physical disability worldwide (Figure 

1.7) (Feigin, 2016; Feigin et al., 2014; World Health Organization, 2010). 

Although rates of stroke mortality are declining worldwide, a growing number of 

people will have to cope with the consequences of stroke. Because of this and 

demographic changes (i.e. ageing of the population and health transitions in 

developing countries), the global socio-economic burden of stroke is likely to grow 

in the future, with a predicted rise in stroke survivors from 25 million in 2013 to 70 

million by 2030 (Feigin, 2016; Feigin et al., 2014). The majority of strokes are 

ischaemic in origin and result in sensorimotor impairments. Cognitive 

impairments are evident as well in patients with stroke. Loss of function is due to 

death of neurons in the infarcted tissue and cell dysfunction in the surrounding 

areas. Recovery from stroke is often incomplete, with ~80% of stroke survivors 

experiencing motor impairments on one side of the body, which leave them 

incapable of performing daily activities and thus, dependent on others for their 

care (Langhorne et al., 2009). In particular, recovery of upper limb function is 

unacceptably poor and a major contributor to reduced quality of life (Kwakkel et 

al., 2003; Nakayama et al., 1994; Raghavan, 2015). Thus, more effective stroke 

rehabilitation to maximise recovery and long-term outcomes is an important 

clinical and scientific goal. 
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Figure 1.7 | The top 10 causes of death world-wide in 2015.  

Stroke is the second most common cause of death after heart diseases, 

accounting for a combined 15 million deaths in 2015. Cause group: yellow: 

communicable, maternal, perinatal, and nutritional conditions; blue: non-

communicable diseases; green: injuries. Figure taken from (World Health 

Organization, 2016). 

 

1.3.2 Individual differences in motor recovery after stroke 

Motor recovery after stroke, the improvement in movement ability over time, is 

complex and variable across patients, making accurate predictions of motor 

recovery and treatment response difficult (Prabhakaran et al., 2015; Stinear, 

2010). Of note, improvement in movement ability after stroke can be achieved 
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through either true recovery or compensation. The first refers to the restitution of 

the same motor patterns as before injury, while the latter denotes the 

performance of a movement using alternative motor patterns compared to the 

pre-morbid state (Levin et al., 2009). For example, a patient with hand weakness 

can reacquire the ability to use a touchpad through regaining normal movement 

patterns of the affected hand, through use of alternative muscles of the affected 

hand, or through learning to use the unaffected hand. Despite differences in the 

underlying neuronal mechanisms, they both require learning (Kitago and 

Krakauer, 2013). In this thesis, the term recovery is used without a formal 

distinction between the mechanisms of true recovery and compensation; 

however, it is important to note that the motor learning task employed here did 

not allow for compensation-related improvements.   

A commonly cited factor influencing long-term functional recovery is the initial 

degree of motor impairment, which is quantified by the proportional recovery rule 

(Kwakkel et al., 2003; Prabhakaran et al., 2015). In general, patients with mild-

to-moderate deficits are predicted to regain 70 % of their initially lost function by 

3 months after stroke, but this proportional relationship does not apply for patients 

who present with high initial severity. Within this patient subgroup, roughly 50 % 

of patients have good (proportional) recovery, whereas no substantial recovery 

is seen in the other half (Figure 1.8). The reasons for this clinical phenomenon 

are unclear, but understanding the underlying neurophysiological processes and 

identifying factors that are important for recovery would be instrumental in 

providing novel therapeutic targets for improving post-stroke recovery.  
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Figure 1.8 | Proportional recovery of motor function after stroke.  

A, Predicted versus observed change in motor impairment at 3 months post-

stroke, with patients in the blue area demonstrating proprtional recovery as 

predicted while recovery of patients in the red area is poor and unpredictable. 

Patients above dotted line initially show severe levels of impairment. Roughly 

50% of patients in this subgroup display good (proportional) or poor recover. B, 

Recovery curves of initially severely affected patients (shown in part a above the 

dotted line) who either recover as predicted (blue) or poorer (red). Figure taken 

from (Ward, 2017), with permission from Macmillan Publishers Ltd. 

 

1.3.3 Spontaneous biological recovery: a window of opportunity 

Most of the behavioural recovery seen in animals and humans occurs during the 

first weeks to months after a stroke, during the period of spontaneous biological 

recovery. This time is characterised by rapid, generalized improvement in 

impairment that is in contrast to the modest functional improvements observed in 

the chronic phase (Zeiler and Krakauer, 2013). Further, heightened 

responsiveness to motor training is apparent during this early post-stroke phase, 

offering a window of opportunity to promote recovery and restore function after 

stroke (Cramer, 2008; Krakauer et al., 2012; Murphy and Corbett, 2009; Ward, 

2017; Zeiler and Krakauer, 2013).  

Early evidence of this critical period during which the brain exhibits heightened 

receptiveness to rehabilitative experience was provided by Biernaskie and 

colleagues. In their experiment, rats that were given motor training of the affected 

forelimb early, at 5–14 days post-stroke, displayed significant improvement, while 

rats given delayed treatment (starting at 30 days post-stroke) exhibited little 
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recovery (Biernaskie et al., 2004). Although the debate about the optimal timing 

of rehabilitation continues (Kozlowski et al., 1996; Risedal et al., 1999), these 

results, together with recent clinical findings (Horn et al., 2005; Salter et al., 2006), 

lend strong support to the existence of an early post-stroke phase of heightened 

brain plasticity which interacts with types of behavioural training, and advocates 

that early initiation of rehabilitation is more effective. 

Paradoxically, Zeiler and colleagues demonstrated that experimental induction of 

a second stroke can reinitiate a critical post-stroke period during which training 

can support dramatic motor recovery (Figure 1.9) (Zeiler et al., 2016). This 

finding highlights that focal brain damage triggers a series of biological events 

that create a plastic milieu, which combined with training, enhances recovery. 

Understanding the biological basis of early post-stroke recovery and its unique 

interaction with behavioural training is critical as opportunities to augment or 

prolong spontaneous biological recovery could radically improve recovery. 

 

Figure 1.9 | Reinitiation of critical period after induction of second stroke. 

A, Schematic of experimental timeline. B, Mice were trained on a prehension task 

to an asymptotic performance after which a stroke was induced (t1). Intensive 

training for 19 days was initiated after a 7-day post-stroke delay. A second stroke 

was then induced in the premotor cortex (t2) and training commenced 2 days 

later. Notably, recovery was incomplete when training was initiated 7 days after 

the first stroke. However, training commencing 2 days after the second stroke 

mediated full recovery from the previous stroke. Figure adapted from (Zeiler et 

al., 2016), with permission from Sage Publications. 

 

Based on work in rodents, Murphy and Corbett suggested a simple model for 

recovery of motor function, with two key elements necessary for the occurrence 

of spontaneous biological recovery (Murphy and Corbett, 2009). Firstly, recovery 

requires preserved neural circuitry that routes both sensory and motor signals 
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during behavioural interventions and thus, allows post-stroke remapping of 

sensorimotor functions from damaged brain areas to intact tissue. The second 

part of the model refers to an increase in the potential for plasticity early post-

stroke. In the work presented here, I will focus on the second part of the model, 

the brain’s intrinsic capacity to react as a highly dynamic system that changes in 

response to injury, as discussed next, and experience (see section 1.2).  

  

1.3.4 Plasticity during recovery from stroke 

An extensive body of work in animal models of stroke and neuroimaging of 

humans have provided insight into the molecular and physiological events 

underlying post-stroke motor recovery. Gradual reorganization of the motor 

system and recovery of movement after stroke begins early and involves brain 

regions distant to the damaged site. In animal models of stroke, Nudo and Milliken 

demonstrated profound reorganization in the damaged hemisphere 3-4 months 

after focal lesioning of M1 in monkeys, which co-occurred with spontaneous 

recovery of animals, without any specific training (Nudo and Milliken, 1996). The 

cortical changes included loss of the areal extend of digit representation adjacent 

to the insult, and increased adjacent proximal (elbow and shoulder) 

representations. However, in animals that underwent rehabilitative training with 

the impaired limb, the shrinkage of the hand representation could be prevented 

(Nudo et al., 1996b), supporting the functional significance of post-stroke training 

for cortical reorganization. Again, there is evidence that early training is more 

effective and that delaying training does not prevent shrinkage of motor maps 

within the affected M1 (Barbay et al., 2009). Of note, the training consisted of 

restricting the use of the unimpaired hand, thereby enforcing the use of the 

affected hand, a therapy commonly known as constraint-induced movement 

therapy (CIMT) in humans (Wolf et al., 2006).  

Over the last 15 years, numerous studies in humans have demonstrated similar 

reorganisation of motor maps, with shifts in activity to more lateral and posterior 

regions, which correlates with clinical improvement (Jaillard et al., 2005; Rossini 

et al., 1998; Traversa et al., 1997a). Using TMS, it has been demonstrated that 

motor cortex excitability is reduced near the site of stroke injury, and the cortical 

representation of the affected muscles is decreased (Traversa et al., 1997b). 



Introduction 

44   
 

Together, the above results illustrate that reorganization in M1 networks of the 

affected cortex and beyond occurs in relation to recovery after stroke, however, 

it remains to be determined whether these new motor maps produce and control 

movements in the same way as did the damaged region.  

Apart from changes in the ipsilesional (affected) hemisphere, increased 

movement-related activation of the contralesional (unaffected) hemisphere has 

been shown in human fMRI and PET studies, highlighting an initial pattern of 

over-activation of motor cortical networks. Over time, this activity normalizes into 

a more lateralised and ‘physiological’ activity pattern as the patient recovers 

motor function (Johansen-Berg, 2002a; Marshall et al., 2000a; Ward et al., 2003a, 

2003b). Persistence of contralesional activity in M1 (Carey et al., 2006; 

Johansen-Berg, 2002b) and secondary motor areas (Ward et al., 2003a) is 

associated with poor recovery. However, the functional role of more widespread 

neural activation within the motor cortex network after stroke, being either 

adaptive or maladaptive, and its contribution to recovery remains controversial 

(Di Pino et al., 2014; Fridman et al., 2004; Lotze et al., 2006; Murase et al., 2004; 

Ward and Cohen, 2004).  

 

1.3.4.1 Mechanisms underlying plasticity during stroke recovery 

Although some of the spontaneous biological recovery observed after stroke is 

likely due to resolution of cerebral oedema, resolution of inflammation, and 

normalization of metabolic disturbances in the acute and subacute phase 

(Cramer, 2008; Guadagno et al., 2006; Heiss et al., 1998), structural and 

functional reorganization over the weeks and months following the stroke play a 

major role. The structural changes that have been observed in animal models of 

stroke include neuronal growth, synaptogenesis, and the proliferation of dendritic 

spines in the area adjacent to the lesion, the peri-infarct cortex (PIC), and 

surrounding areas (for review see e.g. (Carmichael, 2012; Cramer and Chopp, 

2000; Cramer, 2008; Murphy and Corbett, 2009)).  

In addition to these structural changes, stroke triggers alterations in neuronal 

excitability through GABA and glutamate signalling (Carmichael, 2012). 

Immediately after stroke, excitotoxicity mediated by the excitatory 
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neurotransmitter glutamate contributes to cell death, whereas inhibitory 

GABAergic signalling can counteract this neurotoxicity (Lai et al., 2014). Thus, 

this phase is characterised by elevated cortical excitability with deleterious 

effects. However, the beneficial and detrimental effects of GABA and glutamate 

signalling seem to reverse after the hyperacute stroke period (up to 3 days post-

stroke) (Clarkson et al., 2010). Specifically, changes to the balance between 

cortical excitatory and inhibitory processes are crucial for the potential for 

plasticity and may, in the context of stroke, reopen critical periods of heightened 

plasticity in the adult brain similar to that seen during normal development 

(Bavelier et al., 2010; Benali et al., 2008). Consequently, interest in assessing 

cortical excitatory and inhibitory mechanisms as a biomarker of the potential for 

post-stroke plasticity is growing.  

In support of this rational, in-vitro and animal work has suggested that reduced 

GABAergic and increased glutamatergic signalling (Que et al., 1999) leads to 

expanded and less-specific receptive fields (Alia et al., 2016; Winship and 

Murphy, 2008), enhanced LTP (Hagemann et al., 1998), facilitation of 

downstream changes in neuronal structure (Chen et al., 2011), and re-mapping 

of motor representations to intact cortical areas (Takatsuru et al., 2009). 

Restitution of neuronal activity induced by stroke-related hyperexcitability has 

been interpreted as a homeostatic response to injury (Murphy and Corbett, 2009). 

For example, increased excitatory glutamatergic signalling through AMPA 

receptors with downstream induction of brain-derived neurotrophic factors 

(BDNF) is associated with improved recovery in mouse models of stroke 

(Clarkson et al., 2011). In addition, reduction in GABAergic inhibition is evident in 

the first few weeks after stroke due to downregulation of GABA receptors (Que 

et al., 1999) and reduction in inhibitory interneurons (Zeiler et al., 2013). These 

findings corroborate the idea that homeostatic restitution of neuronal activity 

(Murphy and Corbett, 2009) is mediated by both increased glutamatergic and 

reduced GABAergic signalling.  

In contrast, recent work suggested that the dominant response to stroke may in 

fact be excessive peri-lesional inhibition mediated through extrasynaptic 

GABAergic signalling, which impedes functional plasticity. Interestingly, the 

administration of an extrasynaptic GABA-receptor inverse agonist (α5IA) 
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reversed this effect and lead to improved motor recovery (Clarkson et al., 2010; 

Lake et al., 2015). These findings highlight that the plasticity of the brain that 

occurs after stroke is important as it may facilitate or hinder recovery of function. 

 

Figure 1.10 | Cortical excitability changes following stroke.  

Post-stroke hypoexcitability and hyperexcitability is observed in peri-infarct 

cortex. Figure taken from (Carmichael, 2012).  

 

In humans, corroborative evidence that GABAergic signalling is one of the key 

modulators of plasticity has also been obtained using TMS (Swayne et al., 2008), 

MRS (Blicher et al., 2015), and PET (Kim et al., 2014). These studies mostly 

report a decrease in inhibitory activity after stroke.  

The abundant evidence from animal studies and recent neuroimaging studies in 

humans clearly suggest that, beyond the hyperacute stroke period, alterations in 

cortical inhibitory and excitatory mechanisms are important for the potential for 

plasticity and therefore, represent novel and exciting therapeutic targets for 

promoting recovery post-stroke. In particular, inhibitory GABAergic and excitatory 
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glutamatergic signalling is amenable to pharmacological manipulations, thus 

serving as viable clinical targets for plasticity enhancement.  

 

1.3.4.2 Promoting recovery after stroke in humans 

Among the therapeutic strategies under study to enhance functional outcome 

after stroke in humans are pharmacological and NIBS modulations, targeting 

alterations in cortical excitatory and inhibitory processes that underlie post-stroke 

changes in plasticity. Often, these approaches are used as adjuncts to 

behavioural training. Studies employing NIBS in combination with motor training 

demonstrated positive effects on motor recovery (for review see (Hsu et al., 2012; 

Kang et al., 2016)). For example, applying rTMS to enhance ipsilesional M1 

excitability during training on a finger sequence tapping task with the affected 

hand improved motor learning performance in chronic stroke patients (Kim et al., 

2006). In addition, Zimerman and colleagues showed that cathodal tDCS over 

the contralesional M1 enhanced motor skill learning and overnight retention 

(Zimerman et al., 2012). However, broad use of NIBS in clinical settings is 

currently hindered due to inconsistencies in results, which are likely due to 

methodological differences, and a lack of understanding of the mechanisms of 

action (Berker et al., 2013; Bonaiuto and Bestmann, 2015). 

When it comes to pharmacological manipulations, as of yet, direct clinical 

application of the GABAergic and glutamatergic manipulations performed in 

animal models of stroke have not been conducted in humans. Over recent years, 

there have been increasing reports highlighting the dose-dependent influence of 

the hypnotic imidazopyridine zolpidem on cortical inhibition mediated by α5-

subunit-containing GABA receptors (Prokic et al., 2015). Specifically, low doses 

of zolpidem augment inhibition, whereas high doses reduce it. Zolpidem has been 

shown to improve functional recovery in animal models of stroke (Hiu et al., 

2016), and to improve language, cognitive and motor abilities in single stroke 

patients (Hall et al., 2010b). However, given the uncertainty about how zolpidem 

works, and the limited generalizability from single patient data, further research 

into the mechanism of recovery is needed.  

Building on several smaller studies (for review see (Mead et al., 2013)), the 

fluoxetine for motor recovery after stroke (FLAME) study (Chollet et al., 2011) has 
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generated interest in serotonin-selective reuptake inhibitors (SSRI) for promoting 

motor recovery. In this placebo-controlled trial, patients within 5–10 days post-

stroke were started on a 3-month oral fluoxetine intervention, which lead to 

improved upper limb recovery (Figure 1.11). This study was the first to show that 

physiotherapy with early fluoxetine administration to moderate-to-severely 

impaired stroke patients enhances motor recovery after 3 months, although the 

long-term effects remain unknown. In a mouse model, fluoxetine administration 

24 hours after stroke was able to prolong the critical period of post-stoke 

plasticity, thus maintaining maximal levels of responsiveness to motor training 

(Ng et al., 2015). This beneficial effect was mediated through the reduction of 

inhibitory interneuron expression in the intact cortex.  

Clearly, plasticity-modifying interventions are a promising treatment strategy with 

great potential for improving outcomes after stoke. However, clinical trials will only 

be successful if the biological targets are known and measurable in humans, thus 

allowing for a mechanistic approach. 

 

Figure 1.11 | Fluoxetine improves upper limb recovery. 

Patients were randomly assigned to fluoxetine (20 mg daily) or placebo for 3 

months starting 5–10 days after stroke. All patients had physiotherapy. Upper 

limb function was evaluated using the Fugl-Meyer motor scale (FMMS). Figure 

taken from (Chollet et al., 2011), with permission from Elsevier. 
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1.3.5 Motor learning after stroke 

Post-stroke recovery and rehabilitation depend on mechanisms of learning and 

brain plasticity (Krakauer, 2006). As outlined above, stroke results in major 

neuroplastic changes at the structural and functional level at the primary site of 

insult and connected regions. Therefore, it may be expected that learning in 

individuals with stroke would be altered. Only few studies have examined the 

motor skill learning capability of individuals after stroke and most have focused 

on learning with the upper extremities (i.e. (L. a Boyd and Winstein, 2004; Boyd 

and Winstein, 2006, 2001; Dovern et al., 2016; Hardwick et al., 2017; Orrell et al., 

2007; Platz et al., 1994; Pohl et al., 2006; Vidoni and Boyd, 2009; Winstein et al., 

1999)). Given the heterogeneity of stroke and the greater movement variability in 

patients with stroke, it may be difficult to detect specific learning effects in this 

population. In fact, depending on the lesion location and/or extent, different motor 

learning aspects could be impaired.  

Nonetheless, these few studies have claimed preserved motor skill learning in 

stroke patients. Winstein and colleagues demonstrated that patients with middle 

cerebral artery stroke retain the ability to learn with their contralesional 

(unaffected) arm on an elbow extension-flexion reversal task, however they 

exhibited lower accuracy and greater variability in their movements compared to 

healthy controls (Winstein et al., 1999). Using the unaffected arm has the 

advantage of dissociating an individual’s motor learning ability from his/her motor 

deficits but does not allow the exploration of learning deficits specific for the 

affected arm. 

In addition, Boyd and colleagues revealed implicit motor sequence learning on 

the SRTT and the continuous tracking task in patients with sensorimotor (Boyd 

and Winstein, 2001) and basal ganglia stroke (L. A. Boyd and Winstein, 2004), 

respectively. Interestingly, explicit information interfered with implicit learning 

regardless of the type of task (continuous versus discrete task) (Boyd and 

Winstein, 2006).  

A more recent study further highlighted that stroke patients with a wide range of 

impairment were able to learn on a serial voluntary isometric elbow force task 

using their ipsilesional (affected) arm, however, their overall level of performance 

achieved through training was still affected by their motor impairment (Hardwick 
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et al., 2017). Since these findings were derived from patients in the chronic phase 

of stroke, it is debatable whether well-recovered patients have achieved their 

level of performance through preserved motor learning or if preserved motor 

learning is just an epiphenomenon of a well-recovered patient. In addition, the 

variety of motor tasks employed to assess motor learning deficits in patients, 

relying on different learning processes and associated with various functional and 

anatomical brain structures (Kitago and Krakauer, 2013; Krakauer and Mazzoni, 

2011b), makes it difficult to synthesize findings across studies. Nonetheless, the 

above-discussed results provide strong support for preserved motor learning 

capability of individuals’ post-stroke, despite abnormal patterns of neural 

activation and persistent motor impairments that are commonly observed 

following stroke.  

 

1.4 Bridging the gap: biomarkers of plasticity  

As outlined above, mechanisms of learning-related and post-stroke plasticity 

appear to be modulated by the balance between excitatory glutamatergic and 

inhibitory GABAergic processes in the brain as demonstrated in animal models. 

Consequently, these processes represent exciting and novel therapeutic targets. 

However, animal models have critical limitations and thus, biomarkers of cortical 

excitability in humans are needed to bridge the gap between cellular and 

behavioural accounts of cortical function and plasticity in both healthy and 

diseased states. A biomarker is an indicator of disease state that reflects 

underlying molecular and/or cellular events that are difficult to measure directly 

in humans (Aronson and Ferner, 2017). Without a valid biomarker that links 

observed behaviour to underlying biological processes, demonstrating efficacy of 

therapeutic therapies that aim to promote plasticity is difficult. In the clinical 

context, an appropriate biomarker would thus improve decision-making about 

when and for how long plasticity-modifying interventions such as fluoxetine or 

NIBS should be administered, and which individuals are most likely to respond. 

Although behavioural, clinical and demographic measures contribute to predictive 

models of response to treatment and long-term outcome after stroke, they 

incompletely characterize inter-individual differences and as such, neuroimaging 

measures might provide greater insight into the capacity for reorganization (Burke 
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and Cramer, 2014; Ward, 2017). Several tools have been utilized with the aim of 

identifying suitable biomarkers in humans (e.g. (Lindenberg et al., 2012; Riley et 

al., 2011; Saunders et al., 1995; Ward et al., 2003b; Wu et al., 2015)), however, 

most of these have considerable limitations for studying stroke patients. For 

example, BOLD fMRI is an indirect measure of neural activity and depends on 

neurovascular coupling (coupling between neuronal activity, blood flow, and 

oxygen consumption), which might be altered after stroke (Blicher et al., 2012). 

The non-invasive method of TMS directly assess cortical excitability and has 

been extensively used to investigate motor physiology after stroke. However, its 

reliance on the presence of evoked responses in affected muscles (Motor Evoked 

Potential, MEP), rather than measurements of spontaneous or task-related brain 

activity limits, its utility for studying patients with motor paresis (Currà et al., 2002). 

MRS can measure GABA levels directly, but it is currently unclear how MRS-

GABA concentration relates to the pool of GABA available for measurement (i.e. 

intracellular, extracellular, or synaptic GABA) (Dyke et al., 2017; Stagg, 2014; 

Stagg et al., 2011b).  

Alternative methods are electroencephalography (EEG) (Berger, 1929) and 

magnetoencephalography (MEG) (Cohen, 1972), which directly record the 

electrical or magnetic field generated by neuronal populations on the scalp 

surface with millisecond time resolution. The EEG and MEG are very close 

methodologies, since they both measure the summation of currents of 

postsynaptic fields from cortical pyramidal cells. Although MEG provides a higher 

spatial resolution, EEG is a more cost-effective and accessible tool for exploring 

neuronal mechanisms underlying cognitive and motor processes in clinical 

populations (Lopes da Silva, 2013). Based on this, the EEG was chosen as the 

imaging methodology in this thesis, providing surrogate measures of neuronal 

function. For more details about the principles of EEG acquisition and analysis, 

please refer to Chapter 2. 

 

1.5 Neuronal oscillations as biomarkers 

Neuronal oscillations, which are ubiquitous in the brain, have been accepted to 

be an integral part of neural communication and information processing (Buzsaki, 

2006), and their underlying physiological mechanisms are fairly well understood 
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(Buzsáki et al., 2012). The concept of neuronal oscillations is usually credited to 

Hans Berger, who was the first physiologist to describe the rhythmic fluctuations 

in the excitability of neurons or populations of neurons in the human brain 

(Berger, 1929). Oscillatory activity in groups of neurons, as measured by EEG 

and MEG, generally arises from the feedback interactions between inhibitory 

interneurons and excitatory pyramidal cells. Simplistically, when a population of 

pyramidal cells becomes active, they continue to excite each other, resulting in 

increasing excitation. The inhibitory interneurons within this population also 

become active and increasingly inhibit the excitatory cells. Eventually the activity 

of the inhibitory interneurons decreases, allowing pyramidal cells to increase their 

excitatory activity again. This alternating balance between states of excitation and 

inhibition is the basic underlying mechanism of a neuronal oscillation (Buzsaki, 

2006). Macroscopic EEG and MEG signals reflect a conglomerate of oscillations 

at different frequencies, which are categorized into characteristic frequency 

bands, comprising the delta band (δ, 0.5-3.5 Hz), theta band (θ, 4-7 Hz), alpha 

band (α, 8-12 Hz), beta band (β, 15-30 Hz) and gamma band (γ, >30 Hz), with 

somewhat arbitrary and variable boundaries. Although these classical frequency 

bands are still being used, nowadays, functional frequency bands tend to be 

defined in a data-driven approach (Donner and Siegel, 2011).  

Over the last years, a massive upsurge in the interest in neuronal oscillations has 

demonstrated their task- and state-dependent modulation in a number of 

cognitive, perceptual, and motor processes (see e.g. (Buzsaki, 2006)). Apart from 

their well-documented involvement in physiological processes, abnormalities in 

neuronal oscillations have been reported in various pathophysiological 

conditions, such as schizophrenia (Uhlhaas and Singer, 2006), Parkinson’s 

disease (Brown and Marsden, 1999; Heida et al., 2014; Heinrichs-Graham et al., 

2014; Little and Brown, 2014) and stroke (Rossiter et al., 2014a; Shiner et al., 

2015). Consequently, interest in investigating the mechanisms mediating the 

generation of cortical activity to further our understanding of normal brain 

functioning and pathophysiology is rising. The work presented in this thesis 

focuses on neuronal oscillations in the beta-band frequency primarily originating 

from sensorimotor cortex, as these are fundamental for motor behaviour and 
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control (Engel and Fries, 2010; Pfurtscheller et al., 1996; van Wijk et al., 2012), 

and potentially for motor recovery after stroke (Ward, 2017, 2015).  

 

1.5.1 Beta oscillations in motor control  

Traditionally, early studies have interpreted beta-band activity as a sensorimotor-

related phenomenon (Baker et al., 1999, 1997; Murthy and Fetz, 1996; Stancak 

and Pfurtscheller, 1995), but research has also suggested their role in higher 

cognitive processing (for review see e.g. (Donner and Siegel, 2011; Engel and 

Fries, 2010)). Thus, interest in beta oscillations has recently undergone a major 

renaissance. 

Beta oscillations are prominent at rest and characteristically modulated with 

movement in large parts of the sensorimotor cortex network, with two well-

described patterns of movement-related oscillatory dynamics. In particular, prior 

to and during movement, beta power is suppressed (Movement-Related Beta 

Desynchronization, MRBD) (Pfurtscheller and Berghold, 1989; Salmelin and Hari, 

1994; Stancak and Pfurtscheller, 1995). This suppression of beta activity is 

sustained as long as the effector is moving (Erbil and Ungan, 2007; Stancak and 

Pfurtscheller, 1995; Wheaton et al., 2009) or as changes in muscle contraction 

appear (Omlor et al., 2011). Following movement termination, beta power 

increases above pre-movement levels approximately 0.5 s post-movement (Post-

Movement Beta Rebound, PMBR) (Jurkiewicz et al., 2006; Pfurtscheller et al., 

1998a; Salmelin and R. Hari, 1994; Stancak and Pfurtscheller, 1995).  

These spectral characteristics are classically described as event-related 

desynchronization (ERD) and synchronization (ERS) (Pfurtscheller and Lopes, 

1999), and are somewhat spatially distinct, with MRBD typically observed in both 

contralateral and ipsilateral sensorimotor cortices during unimanual movements, 

while PMBR typically shows a contralateral preponderance (Salmelin and Hari, 

1994; Stancak and Pfurtscheller, 1995). A rather simplistic view on ERD/ERS 

phenomena is that MRBD indexes activation of sensorimotor cortex (Pfurtscheller 

and Lopes, 1999) associated with an increase in corticospinal excitability (Chen 

et al., 1998), while PMBR is thought to reflect a state of active motor cortical 

inhibition (Solis-Escalante et al., 2012).  
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Several movement parameters have been shown to modulate the time course of 

MRBD and PMBR (for review see (Kilavik et al., 2013; Van Wijk et al., 2012)). 

Strikingly, the beta rhythm also exhibits suppression and rebound-like dynamics 

during motor imagery (McFarland et al., 2000; Nakagawa et al., 2011), movement 

observation (Babiloni et al., 2002), passive movement (Alegre et al., 2002), and 

tactile stimulation (Gaetz and Cheyne, 2006).  

Owing to their prominent occurrence at rest, beta oscillations have been 

postulated to correspond to an ‘idling rhythm’ of the motor system (Salmelin and 

Hari, 1994). This theory has been revised with the current view that beta 

oscillations are associated with the maintenance of the current sensorimotor 

state, or the ‘status quo’, at the expense of new movement (Engel and Fries, 

2010; Jenkinson and Brown, 2011). In support, inducing beta synchrony with 20 

Hz transcranial alternating-current stimulation was shown to slow volitional 

movements (Joundi et al., 2012; Pogosyan et al., 2009). This effect was shown 

to be specific for the beta-band, as entrainment with 5 Hz oscillations did not 

suppress movement. Similarly, Gilbertson and colleagues demonstrated a 

slowing of movement when it was initiated during spontaneous burst of beta 

oscillations in the ongoing resting-state activity (Gilbertson et al., 2005a). 

Although these findings establish a causal link between beta oscillatory activity 

and concurrent motor behaviour, their distinct modulation by a variety of 

functional processes explain why their functional role is still debated (Engel and 

Fries, 2010; Jenkinson and Brown, 2011; Pfurtscheller et al., 1996). 

 

1.5.2 Generation and modulation of beta oscillations: GABA linkage 

Studies in animals and humans suggest that beta oscillations are the summed 

output of excitatory glutamatergic pyramidal cells temporally aligned by inhibitory 

GABAergic interneurons (Jensen et al., 2005; Murakami and Okada, 2006; 

Yamawaki et al., 2008). As such, they are dependent on the balance between 

excitatory and inhibitory processes within these neuronal circuits (Buzsaki, 2006; 

Murakami and Okada, 2006; Yamawaki et al., 2008) and may reflect the potential 

for both local and network plasticity (Traub et al., 2004).   

Recent modelling and in vitro work in combination with pharmacology have 

shown that beta oscillations are generated in deep cortical layer V of sensory and 
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motor cortex and were robust to various neurotransmitter blockers. Notably,  

administration of the GABA-A receptor blockers such as bicuculline (Roopun et 

al., 2006) and pictotoxin (Yamawaki et al., 2008) resulted in abolished beta 

oscillations (Figure 1.12). These findings in animal slices suggest that the cortical 

networks supporting beta oscillations in M1 critically depend on GABAergic 

signalling. While this work provides strong evidence for the dependence of beta 

oscillations on GABAergic mechanisms, it did rely on pharmacologically induced 

excitatory drive, a condition that may not be reproduced in vivo. 

 

Figure 1.12 | Pharmacologically induced beta oscillations depend on GABA. 

Oscillations in the beta-band were elicited in animal slices by co-application of 

kainic acid (glutamate receptor agonist) and carbachol (muscarinic receptor 

agonist). Properties of M1 network oscillations were then examined using 

pharmacological manipulations at GABA receptors. Extracellular voltage 

recordings and associated power spectra showing the effects of picrotoxine (A), 

pentobarbital (B), and zolpidem (C). While beta oscillations were abolished by 

the GABA-A receptor antagonist picrotoxine, pentobarbital and zolpidem 

modulated beta oscillations, indicating their dependence on GABAergic signalling 

within M1 networks. Figure taken from (Yamawaki et al., 2008), with permission 

from Elsevier.  
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Pharmacological studies in humans however, have further linked cortical GABA 

levels to properties of beta oscillations. For example, diazepam (Baker and 

Baker, 2003a; Hall et al., 2011, 2010a), a GABA agonist (phasic), and tiagabine 

(Muthukumaraswamy et al., 2013), a GABA reuptake inhibitor (tonic), both 

enhanced resting beta power and levels of MRBD, whereas PMBR was only 

increased by tiagabine. Furthermore, administration of benzodiazepine reduced 

the frequency of beta oscillations concurrent with an increase in beta power 

(Jensen et al., 2005).  

In contrast to the pharmacological results, TMS-EEG studies have linked MRBD 

to increased sensorimotor cortex excitability which is thought to be mediated by 

downregulation of GABAergic activity (Aono et al., 2013; Takemi et al., 2013). 

Specifically, MRBD during motor imagery was associated with increased 

corticospinal excitability, as indexed by TMS-induced MEPs, which appeared to 

be mediated by reduced GABAergic activity, as measured by short-interval 

intracortical inhibition (SICI). These somewhat contradicting results with regard 

to the relationship between the magnitude of MRBD and levels of GABAergic 

inhibition are likely due to the different methodological approaches used in these 

studies.  

Using MRS and MEG, Gaetz and colleagues related M1 GABA concentration 

with PMBR power (Gaetz et al., 2011). Together, there is growing evidence 

linking beta synchrony and GABAergic inhibition and thus, beta oscillations could 

serve as biomarkers of net inhibitory and excitatory mechanisms in human cortex.  

The potential of beta oscillations as biomarkers of cortical excitatory and inhibitory 

mechanisms is further affirmed by findings in stroke patients. For example, 

persistent elevated low-frequency oscillations were associated with poorer 

recovery after stroke (Laaksonen et al., 2013). Further, a weaker beta rebound in 

the ipsilesional (affected) hemisphere in response to tactile finger stimulation, 

reflecting increased motor cortex excitability, was associated with good recovery 

in patients with stroke (Laaksonen et al., 2012). Finally, in a single stroke patient, 

pharmacological reduction (using zolpidem) of elevated perilesional theta and 

beta oscillations led to clinical improvement (Hall et al., 2010b). Since the change 

in neuronal oscillations matched the clinical improvement, this finding is 
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particularly interesting as it further highlights the potential of beta oscillations as 

biomarkers of excitatory and inhibitory processes that can be utilized to 

demonstrate efficacy of therapeutic therapies.  

 

1.5.3 Alterations in beta oscillations 

Cortical beta oscillations are thought to be fundamental for motor behaviour and 

control, and alterations in these oscillations are a candidate mechanism for 

movement pathologies. While changes in beta oscillatory activity have been 

observed in a number of settings, not all of them are representative of a 

pathological state.  

 

1.5.3.1 Alterations in beta oscillations with ageing and motor learning 

Normal development and ageing are characterized by significant alterations in 

beta oscillatory activity. For example, Rossiter and colleagues showed that 

ageing was associated with greater resting beta power and stronger MRBD 

(Rossiter et al., 2014b) and argued, in line with previous animal and pharmaco-

MEG studies, that these changes reflect increased inhibitory activity and 

therefore, potentially reduced potential for plasticity in the elderly. Similarly, 

during typical development from child to adolescent, the magnitude of MRBD and 

PMBR increases (Gaetz et al., 2010), suggesting a maturational process of motor 

cortical inhibition. As such, these measures may be implicated in the processes 

governing motor learning in children and adults, and help predict recovery of 

motor function following stoke. 

Although, associations between beta oscillations and motor performance suggest 

a crucial role in brain function, their role in motor learning is not well established. 

Few studies have reported changes in beta oscillations in the context of motor 

learning. In these studies, greater MRBD (Boonstra et al., 2007; Houweling et al., 

2008; Pollok et al., 2014) and PMBR (Mary et al., 2015) after compared to before 

training was linked to better performance on unimanual and bimanual motor 

learning tasks. The authors argued that these changes in beta power might 

represent neurophysiological markers of plasticity processes taking place during 

motor learning as discussed in section 1.2. Similarly, changes in beta power at 
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rest and during movement were reported in healthy controls after training on a 

reaching task, but such changes were markedly reduced in patients with 

Parkinson’s disease, suggesting abnormal plasticity processes in pathology 

(Moisello et al., 2015).   

Recent studies employing continuous theta burst TMS (cTBS), known to 

modulate plasticity (Huang et al., 2005) and cortical excitability, have 

demonstrated concurrent changes in beta oscillations (McAllister et al., 2013; 

Noh et al., 2012). Interestingly, in the study by McAllister and colleagues, only 

50% of participants displayed an inhibitory after-effect following cTBS and a 

concurrent increase in spontaneous beta power, while non-responders did not 

display either changes in cortical excitability nor beta oscillations (Figure 1.13) 

(McAllister et al., 2013). This finding is of particular interest as the observed 

variability may be related to GABAergic processes underlying the presence of 

beta oscillatory activity and as such, might account for individual differences in 

response to cTBS that could become clinically significant in the context of 

pathology.  

 

Figure 1.13 | Effect of cTBS on cortical excitability and M1 beta power. 

A, Continuous theta burst stimulation was applied over M1 and cortical excitability 

was determined from motor-evoked potentials in first dorsal interossei (FDI) 

muscle. B, Only 50 % of participants demonstrated inhibitory after-effects 

following cTBS as evidenced by a decrease of cortical excitability in these 

responders (red). C, Spontaneous beta oscillatory activity was concurrently 

increased in responders while non-responders lacked changes in beta power 

(calculated as the differences between mean beta power in pre- and post-TBS 

recordings). Figure adapted from (McAllister et al., 2013).   

 

1.5.3.2 Alterations in beta oscillations in pathology 

In contrast to normal beta oscillations, altered beta activity is a signature of 

pathology in movement disorders such as Parkinson’s disease (PD) (Brown, 
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2007; Doyle et al., 2005; Heinrichs-Graham et al., 2014; Little and Brown, 2014), 

cerebral palsy (Kurz et al., 2014), dystonia (Crowell et al., 2012), and stroke 

(Rossiter et al., 2014a; Shiner et al., 2015). In PD patients, abnormal beta 

oscillations have been observed in the basal ganglia (Kühn et al., 2004) and 

motor cortex (Heida et al., 2014; Heinrichs-Graham et al., 2014), and are 

associated with the loss of voluntary movement, including bradykinesia. 

Treatments that alleviate motor symptoms, like dopaminergic medication (L-

DOPA) (Hall et al., 2014) and deep brain stimulation (DBS) (Kühn et al., 2008) 

also reduce the power of beta oscillations. Besides excessive resting beta 

oscillatory activity, it was recently observed that Parkinson’s disease patients also 

exhibit reduced MRBD (Figure 1.14) (Heinrichs-Graham et al., 2014).  

 

Figure 1.14 | Reduced beta desynchronization in Parkinson’s disease. 

Average time-frequency spectrograms show the typical pattern of movement-

related beta desynchronization (MRBD, blue colour), followed by a post-

movement beta rebound (PMBR, red colour) during a hand movement task for 

healthy control (left panel) and PD patients(right panel). However, these 

responses were clearly diminished in PD patients. Spectral power is expressed 

as percent difference from baseline (-2 to -1.2 s relative to movement onset at 

0 s).  Figure taken from (Heinrichs-Graham et al., 2014), with permission from of 

Oxford University Press. 

 

In chronic stroke patients, aberrant sensorimotor cortex beta power during 

movement has recently been shown (Rossiter et al., 2014a). In this study, MRBD, 

but not PMBR, was found to be significantly reduced in patients compared to 

healthy controls. Further, patients with greater impairment had lower MRBD in 

contralateral M1. Whilst stroke patients and PD patients have very different 
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pathologies, they both share the feature of reduced MRBD in M1 in conjunction 

with deficits in motor control. Thus, it may be that both patient groups are unable 

to modulate beta-band power, which results in abnormal inhibition of behavioural 

changes. These findings highlight the functional role of beta oscillations for motor 

behaviour and are in line with the proposed ‘status quo’ hypothesis of beta 

synchrony maintaining the current sensorimotor state while compromising flexible 

motor control (Engel and Fries, 2010).   

 

1.6 Thesis overview 

To summarise, this thesis explores the interplay between spectral characteristics 

of beta oscillations, as candidate biomarkers of cortical inhibitory and excitatory 

mechanisms, and individual differences in short-term motor learning. In a series 

of experiments, I seek to understand the neurophysiological processes 

underlying an individual’s ability to learn and retain new motor skills in the context 

of healthy ageing and after stroke. Specifically, this thesis aimed to address the 

following principal research questions: 

1. How does natural inter-individual variation in cortical beta oscillations 

seen with ageing relate to a person’s ability to learn and retain new motor 

skills? Which spectral characteristics of beta oscillatory activity – resting 

or movement-related (dynamic) – are linked to individual differences in 

motor learning? 

2. How are stroke-related changes in beta oscillations associated with a 

patient’s ability to relearn motor skills? Which spectral characteristics of 

beta oscillatory activity after stroke – resting or movement-related 

(dynamic) – are linked to individual differences in motor learning? 

Understanding the relationship between cortical beta oscillations and individual 

differences in motor learning may offer novel targets for therapeutic interventions 

designed to promote rehabilitative outcomes after brain injury.  
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In Chapter 2, I discuss the neurophysiological correlates underlying the EEG 

signal, some considerations with regard to its acquisition, and provide an 

overview of the principles behind time-frequency analysis.  

In Chapter 3, I introduce the methodological techniques implemented and 

summarise the experimental considerations made in the design of the motor 

tasks used in this thesis. Specifically, I describe the development of a novel 

instantiation of the continuous tracking task so that it was possible to promote 

optimal learning across healthy ageing adults and stroke patients.  

In Chapter 4, I focus on the test-retest reliability of beta oscillatory estimates, 

which are used in the following experimental chapters. I introduce EEG-derived 

measures of resting and movement-related beta activity and demonstrate their 

highly reliable nature across several weeks, a prerequisite for exploring the 

longitudinal relationship between beta oscillatory activity and individual variation 

in the capacity to learn a new motor skill. 

In Chapter 5, I combine neuroimaging and motor learning in 40 healthy ageing 

adults to characterise the influence of natural inter-individual variations in beta-

band activity on motor learning ability during a continuous tracking task. Using 

the standard measures of resting and movement-related beta activity introduced 

in the previous chapter, I explore their respective relation with an individual’s 

ability to learn and retain new motor skills.  

In Chapter 6, I focus on individual differences in motor learning in a clinical 

population of stroke survivors. Specifically, I use the same motor tasks and the 

same analysis pipeline to assess the impact of stroke on the relationship between 

beta activity and motor learning in 18 chronic stroke survivors. 

Finally, in Chapter 7, I draw together the key findings from the different lines of 

research presented in this thesis, discuss the implications of this work for basic 

and clinical research, and outline some limitations and future directions.  

  



Introduction 

62   
 

1.7 Acknowledgement of contributions 

I gratefully acknowledge Joern Diedrichsen’s assistance in developing the motor 

learning task employed in Chapter 5 and Chapter 6. I thank Archy de Berker for 

his guidance during coding and technical testing of the motor tasks used 

throughout Chapter 4, Chapter 5, and Chapter 6. I also thank Holly Rossiter and 

Bernadette van Wijk for providing guidance and supervision in EEG data analysis 

throughout Chapter 4, Chapter 5, and Chapter 6. I am grateful for Nellie 

Redman’s support during testing in Chapter 5. Lastly, I gratefully acknowledge 

Fatima Jichi for her statistical support in sample size calculation.  

  



Acquisition and analysis of EEG signals 
 

63 
 

 Acquisition and analysis of EEG signals 

In the last years, our understanding of brain-behaviour relationships has 

dramatically improved due to advances in non-invasive brain imaging techniques. 

Human brain imaging techniques typically are categorised into metabolic-based 

(i.e. mainly fMRI and PET) and electrophysiological-based (i.e. mainly EEG and 

MEG) approaches, which allow the assessment of brain activity during 

performance of a task with varying spatial and temporal precision. 

Electrophysiological techniques are generally considered to have excellent 

temporal resolution but relatively poor spatial sensitivity, while metabolic 

techniques are assumed to have high spatial resolution, but rather poor temporal 

precision. As such, the use of a brain imaging tool depends on its suitability to 

address the research question, for example if the research question asks ‘where 

in the brain a task-related process occurs’, metabolic techniques are the optimal 

imaging modality. On the other hand, brain imaging techniques with high temporal 

resolution are invaluable and exceptional tools for the study of complex, dynamic 

cognitive and motor processes that occur within tens to hundreds of milliseconds. 

Since EEG was the chosen brain imaging tool to address the research questions 

of this thesis, in this chapter, I will specifically discuss the neurophysiological 

events that underlie the generation of the EEG signal, highlight advantages and 

limitations of employing this imaging technique in healthy and patient populations, 

and provide an overview of the principles behind EEG time-frequency analysis, 

including preprocessing and signal decomposition using the powerful wavelet 

transform employed in the work presented in this thesis. Please refer to Chapter 

3 for specific details regarding the implemented EEG data analysis pipeline used 

in the subsequent chapters. 

 

2.1 Neurophysiological basis of EEG 

EEG uses electrodes placed on the scalp to record the summed excitatory and 

inhibitory postsynaptic potentials of populations of neurons, most likely pyramidal 

cells, which are aligned parallel to each other and perpendicular to the cortical 

surface. The synchronous activity of approximately 10,000–50,000 neurons 

within this spatial organization then generates an electrical field that is powerful 
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enough to be picked up by means of electrodes from the scalp (Lopes da Silva, 

2011; Murakami and Okada, 2006). 

When neurotransmitters activate ion channels on the cell membrane of these 

neurons, either generating an excitatory or inhibitory postsynaptic potential 

(EPSP, IPSP), intra- and extracellular currents flow, creating an electrical field 

surrounding the neurons. For example, influx of positive ions into the cell (mostly 

Na+ and Ca+) creates an excitatory postsynaptic potential and an extracellular 

‘sink’ (lack of positive ions in extracellular medium), with a concurrent 

redistribution of ions within the neuron leading to an outward flow of ions, creating 

an extracellular ‘source’ (excess of positive ions in extracellular medium) at the 

level of the soma. These synaptic actions thus result in dipolar sink-source 

configurations that generate time-varying electrical currents surrounding the 

neurons (Figure 2.1A) (Buzsaki, 2006; Nunez and Srinivasan, 2006).  

In accordance with Maxwell’s equation for electromagnetism, the electrical fields 

simultaneously create magnetic fields. These electric and magnetic fields form 

the building blocks of EEG and MEG signals, respectively (Buzsáki et al., 2012; 

Lopes da Silva, 2013, 2011). The direction of the electrical current flow is 

important as EEG and MEG vary in terms of their sensitivity towards the dipole 

orientation. Whereas EEG can detect both tangentially and radially oriented 

sources, MEG is mainly sensitive to tangentially oriented sources which protrude 

outside the head (Figure 2.1B) (Ahlfors et al., 2010; Cohen and Cuffin, 1991).  

To reach the head surface, the neuronal signals need to travel through electrical 

tissues with different conductive properties (e.g. cerebrospinal fluid, skull and 

scalp). Unlike the EEG signal, which is attenuated and distorted by these various 

electrical tissues, the magnetic field measured by MEG passes through these 

tissues unimpeded (Lopes da Silva, 2013; Nunez and Srinivasan, 2009).  

In summary, EEG measures the super-position of electric postsynaptic activity of 

populations of pyramidal cells that travels to the head surface due to volume 

conduction. 
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Figure 2.1 | Schematic of electrical fields generated by cortical neurons. 

A, An idealized pyramidal cell showing the patterns of intra- and extracellular 

current flow caused by activity at an excitatory synapse. An excitatory 

postsynaptic potential (EPSP) is associated with the generation of an active 

current sink in the extracellular medium next to the synapse. The current that 

flows in at the synaptic side is compensated by currents flowing in the opposite 

direction (passive source) at the level of the soma. This dipolar sink-source 

configuration around the neurons is reflected in local field potentials (LFPs). The 

electrical current flow also generates a magnetic field (red ellipse). B, Different 

dipole orientations with respect to the skull contribute differentially to EEG and 

MEG signals. While EEG is sensitive to both radial (a) and tangential (b) dipoles, 

tangential diploes (b) will contribute the strongest signal to MEG. In addition, 

electrical fields can cancel each other out or only contribute a weak signal to the 

EEG if the dipoles are on opposing sides of the sulcus (c) or are further away 

from the recording electrode (d). Figures taken from (Cohen, 2014; Lopes da 

Silva, 2013), with permission from Elsevier. 

 

2.1.1 Advantages and limitations of EEG 

Among the existing non-invasive brain imaging techniques for the study of human 

brain function, electrophysiological techniques such as EEG and MEG are 

classically considered to possess excellent temporal resolution, but a relatively 

poor spatial sensitivity (Figure 2.2). The high temporal precision in the 

millisecond range allows capturing very fast and complex dynamic changes in 

brain activity that occur with neurocognitive processes. In contrast, techniques 

such as fMRI that rely on indirect measures of hemodynamic response do not 
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provide the necessary fine temporal resolution, being roughly 2-3 orders of 

magnitude slower than electrophysiological responses (Cohen, 2014). Further, 

the voltage fluctuations measured by EEG are direct reflections of well-

understood neurophysiological mechanisms that give rise to population-level 

oscillations (Buzsaki, 2006). By comparison, metabolic techniques such as 

BOLD-fMRI only indirectly measure neural activity and rely on a complex 

relationship between neuronal metabolism and changes in cerebral blood flow at 

a local level (Buxton and Frank, 1997; Logothetis, 2003; Ogawa et al., 1992). For 

example, the neurovascular response measured in fMRI occurs a couple of 

seconds after the preceding neuronal activity, resulting in lower temporal 

precision of techniques relying on these hemodynamic responses. Another 

reason why electrophysiological tools are advantageous for studying 

neurocognitive processes is that they provide multidimensional data, with at least 

four dimensions: time, space, frequency, and power (strength of activity in 

specific frequency band) and phase (timing of activity). This multidimensionality 

provides exceptional possibilities to better understand the complexity of brain 

processes by employing analyses that are motivated by known 

neurophysiological mechanisms.  

While electrophysiological tools possess multiple advantages, their use in 

research studies where precise functional localization is important is limited due 

to the relatively poor spatial sensitivity. As discussed above, the neuronal signal 

recorded by electrodes at the scalp is distorted by the inhomogeneity of various 

resistive layers of the head. Consequently, the recorded signal at each electrode 

is a volume conduction-induced mixture of the underlying brain sources, resulting 

in deteriorated spatial resolution. Volume conduction has a stronger influence on 

electrical fields measured with EEG than magnetic fields recorded with MEG. This 

physiological phenomenon forms the basis of different mathematical approaches 

that vary in their complexity, and physiological and physical assumptions, with 

the aim of modelling the electrical sources based on the potential distribution 

recorded on the scalp (Lopes da Silva, 2011; Nunez and Srinivasan, 2009). 

Another limitation of EEG is that it is difficult, albeit not impossible, to record 

activity from sub-cortical structures such as the thalamus, basal ganglia, or 
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hippocampus. This is due to the exponential decrease of electrical field strength 

with distance between the source and the recording electrode.   

 

Figure 2.2 | Two-dimensional comparison of human brain imaging tools. 

Metabolic and electrophysiological brain imaging techniques differ in their spatial 

and temporal resolution. Figure taken from (Meyer-Lindenberg, 2010), with 

permission from Macmillan Publishers Ltd. 

 

Despite these limitations of electrophysiological techniques, they are powerful 

tools with excellent temporal resolution and offer many advantages over 

metabolic techniques. For example, EEG and MEG do not expose participants to 

high-intensity magnetic fields or radioisotopes as in fMRI or PET, thus allowing 

the inclusion of participants with metal implants in their body. 

  

2.1.1.1 Benefits of EEG over MEG 

Whilst EEG and MEG are very similar and essentially record similar 

neurophysiological properties, EEG has several practical advantages over MEG. 

In contrast to MEG, which requires magnetically shielded rooms and intensive 

and expensive maintenance, EEG is portable and can easily be transported to 

another lab or hospital, making it an accessible imaging tool that can also be used 

for bedside examinations of brain function. In addition, EEG is less sensitive to 

movements due to the direct contact between the electrode and the scalp, and is 

more cost-effective than MEG or other techniques. For these reasons, EEG is an 

ideal tool for exploring brain function in healthy and clinical populations and is a 
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promising tool for the identification of widely available and cost-effective 

biomarkers of cortical function.   

 

2.2 Considerations for high-quality EEG recordings 

“There is no substitute for clean data” (Luck, 2005) and as such, acquiring high-

quality EEG data is the first crucial step for scientific investigations. Like other 

brain imaging techniques, EEG is susceptible to various forms of noise (i.e. 

biological/subject-related or technical), which represent challenges for analysis 

and interpretation of EEG data. In order to deal with and reduce noise, and thus 

ensure optimal data quality, several technical and practical considerations can be 

applied, both at the time of EEG recording and during data pre-processing. For 

example, the quality of the EEG system and set-up, the experimental design, the 

preparation of the subject, and general acquisition settings are some of the 

factors that should be taken into account (Gross et al., 2013) and some are 

outlined next.  

Since EEG measures the difference of electrical potential (typically in microvolts, 

µV) between each scalp electrode and a reference electrode, this reference 

should ideally be unaffected by brain activity, because any activity present in the 

reference electrode, including noise, will be reflected as activity in the scalp 

electrodes. Typically chosen reference electrodes are averaged mastoids, vertex 

or ear lobes (Luck, 2005). In addition, a ground electrode prevents the 

accumulation of static charge (Picton et al., 2000), preventing noisy signals in the 

EEG.  

Standard EEG systems comprise 32 or 64 electrodes whereas technological 

advances have brought about high-resolution EEG caps that can include up to 

256 electrodes. While more electrodes are useful to increase the signal-to-noise 

ratio (SNR) and to perform source reconstruction analysis to localise various EEG 

components, practical considerations such as preparation time and data storage 

need to be taken into account. Specifically, most EEG caps require the 

application of electroconductive gel to form a physical bridge between the skin 

and the recording electrode, reducing the electrical impedance. As such, 

preparation time increases as a function of the number of electrodes and can be 
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problematic for studies of challenging populations such as children and patients. 

Since high impedances distort the EEG signal, it is desirable to obtain 

homogenous impedance values ideally below 5 kΩ across the electrode montage 

(Luck, 2005; Picton et al., 2000). Asking subjects to wash their hair and to avoid 

hair spray or gels, and the use of abrasive skin preparation pastes and conductive 

gels help to record a clean EEG signal. 

The positioning of electrodes on the scalp is important because different lobes of 

cerebral cortex are related to different brain functions. The standard method for 

electrode placement is the international 10–20 system (Jasper et al., 1958), which 

positions electrodes relative to landmarks, the nasion, inion, and pre-auricular 

points. This system ensures that results of an EEG study can be replicated by 

other laboratories and allows consistent electrode placement in the case of long-

term monitoring.  

Another factor is the sampling frequency/rate, which determines the temporal 

resolution of the EEG data and needs to be sufficiently high to capture the 

frequencies of interest in the respective study. Typically, the sampling rate should 

be at least twice the highest frequency of interest (Nyquist theorem, (Srinivasan 

et al., 1998)), however, in practice more data points per oscillation cycle increase 

SNR and thus, allow for better high-frequency activity estimation. Obtaining a 

satisfactory SNR requires the recording of a sufficient number of trials, taking into 

account exclusion of trials due to subject-related (i.e. eye-movements, sweating) 

and technical (i.e. line noise, impedance fluctuation) artefacts. In general, the 

number of trials depends on how big the observed effect is, how reliable the EEG 

dynamics under investigation are (for example see Chapter 4), and the specific 

analyses that will be performed. Again, a practical consideration in this regard is 

that participant’s vigilance may not remain constant with many trial repetitions 

and that long EEG recordings may not be tolerated by every subject population.  

 

2.3 Analysis of EEG signals in the time-frequency domain 

EEG data comprise the volume-conducted summation of neural synchrony within 

and among neural assemblies and thus, provide an opportunity to translate the 

neurophysiological mechanisms that modulate these oscillations to human EEG 

studies, and to gain new insights into the neuronal underpinnings of sensory, 
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perceptual, motor and cognitive processes, as well as their pathologies. The 

recorded EEG signal, expressed as a time series, is suitable for a variety of 

analyses, including event-related potentials (ERPs) analysis and time-frequency 

(TF) analysis. While ERPs are simple and fast to compute, and their peak 

amplitudes and latencies provide insight into the nature and timing of neural 

events underlying discrete sensory and cognitive processes (Luck, 2005; Makeig 

et al., 2004), ERP averaging filters out most of the dynamic and multidimensional 

activity in the EEG signal. For example, oscillations at various frequencies 

represent multiple co-occurring and interacting neural processes in the brain that 

do not have a representation in the ERP.  

Hence, time-frequency analysis approaches can capture many different aspects 

of the EEG signal by decomposing it into time-locked magnitude and phase 

information for each frequency. As such, this approach offers a more refined and 

detailed investigation of the brain’s event-related oscillatory activity, with changes 

in EEG power being interpreted in terms of changes in the underlying neural 

synchrony, as exemplified by the concepts of event-related synchronization  and 

desynchronization (ERD/ERS) (Pfurtscheller and Aranibar, 1977; Pfurtscheller 

and Lopes, 1999).  

Interest in the field of time-frequency dynamics is proliferating due to ample 

opportunities for exploratory data analysis, however, the large number of analysis 

methods used to process EEG data, and their complexity, presents a problem for 

the development of unified analysis environments. For example, time-frequency 

transformation methods include the short-term Fourier transform (STFT) (Gabor, 

1946), continuous or discrete wavelet transform (Daubechies, 1992; Mallat, 

1989), and Hilbert transform (Lyons, 2004), which are all based on linear 

convolution. A comprehensive survey of the various time-frequency 

decomposition methods is beyond the scope of this thesis, but fortunately these 

methods tend to return similar results (Le Van Quyen et al., 2001), so I will focus 

on time-frequency decomposition using the continuous Morlet wavelet transform, 

as implemented in SPM and employed in the work presented here. 
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2.3.1 Pre-processing of EEG signals 

Before subjecting recorded EEG signals to advanced time-series data analysis 

and statistical analysis, a number of critical pre-processing steps are usually 

applied in order to attenuate noise retained in the data, without losing valuable 

information contained in the signal. Although it is crucial to obtain clean high-

quality data by minimizing biological and technical noise during EEG data 

acquisition (as outlined above), the EEG signal inevitably represents a mixture of 

signal and noise. Therefore, in order to make inferences about true task-related 

activity changes, rather than noise, different pre-processing strategies need to be 

applied, however no standardized procedure exists. Since the choice of 

transformations applied to the data generally depend on the type of advanced 

data analysis and their tolerance to noise, here, only the commonly applied pre-

processing steps are briefly outlined (Cohen, 2014). 

Due to the complex interaction between bad electrodes and referencing, the first 

step generally involves the removal or interpolation of bad electrodes prior to re-

referencing and further pre-processing steps. Filtering the EEG data using high-

pass, low-pass and notch filters removes high frequency artefacts (i.e. due to 

muscle contraction or aliasing), low-frequency drifts (i.e. due to sweating or drifts 

in electrode impedance), and electrical line noise typically occurring at 50 Hz or 

60 Hz. Since the EEG signal is usually recorded at a high sampling rate, but most 

research focuses on frequencies typically below 100 Hz, next the signal is 

downsampled in order to save processing time and disk space. It is important to 

point out that it is essential to perform downsampling after filtering with regards 

to the Nyquist theorem (Srinivasan et al., 1998).  

Investigating task-related changes in the EEG requires epoching of continuous 

data around triggers that mark particular experimental events (time = 0). For time-

frequency-based analyses, the length of the epochs should be longer than the 

analysed time period in order to provide “buffer zones”, which can later be 

removed. These buffers avoid edge artefacts in the wavelet analysis that result 

from applying filters to sharp edges, such as the first and last points of the EEG 

epochs (Cohen, 2014).  
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Finally, artefacts in individual trials should be detected and removed by means of 

visual inspection or automatic detection procedures. Rejecting EEG trials with 

artefacts larger than a preset value is the most commonly used automatic method 

in research settings. While automatic procedures are fast and free of user bias, 

they only work efficiently for well-known artefacts. As such, visual inspection of 

the data should be performed independent of whether automatic artefact rejection 

approaches are employed in order to ascertain robust performance of the applied 

automatic method (Gross et al., 2013). It is common for EEG studies to monitor 

behavioural and physiological events during the recording and as such, this 

information can additionally be used to guide the identification and removal of 

artefacts based on i.e. task performance, electromyography (EMG) or oculomotor 

activity. Since trial rejection can lead to large amounts of useful information being 

discarded, it once again stresses the importance of minimizing noise during the 

time of recording to ensure optimal data. Another strategy that can be applied 

uses signal-processing techniques to deal with artefacts, especially those that 

arise from eye movements and blinks, while preserving the EEG signal. These 

artefact correction methods rely on linear transformation or regression techniques 

(Ille et al., 2002; Schlögl et al., 2007; Wallstrom et al., 2004).   

 

2.3.2 Time-frequency analysis using wavelet transform 

Once the EEG signal has been pre-processed, the signal can be spectrally 

decomposed using a variety of transformation methods that extract two 

characteristics of the sine wave at a given frequency: magnitude and phase. This 

is accomplished by convolution, a windowed transformation centered on an EEG 

segment that multiplies the raw data. In general, a sliding time window is 

employed in order to characterize changes in the time-frequency representation 

of power. This can be done either with a time window that has a fixed length, or 

decreases in length with increased frequency. The latter principle underlies the 

class of frequently applied continuous wavelet transforms, which are 

advantageous since they allow flexible optimization for either high frequency 

resolution or time resolution (Cohen, 2014). 

Wavelets are a waveform of limited duration that have an average value of zero 

and which are computed by multiplying an envelope function (e.g. Gaussian 
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function) with a complex oscillation. One common type of biologically plausible 

wavelet is a Morlet wavelet that has the largest magnitude at the centre time point 

and tapers off to zero at both ends. Morlet wavelets are well suited for localizing 

frequency information in time, but have a poorer frequency resolution. This 

illustrates an important property of wavelets and other common decomposition 

methods, which strike a compromise between time and frequency resolution 

(Figure 2.3). It is common practice to use fewer cycles of the wavelet for lower 

frequencies and more cycles for higher frequencies (e.g. (Le Van Quyen et al., 

2001)). Regardless of the decomposition method applied, the resulting 

magnitude and phase characteristics of EEG oscillations for every trial, time point, 

frequency and electrode are extracted and can be used to calculate numerous 

measures that describe different aspects of dynamic brain function. Additionally, 

the application of source localization methods to temporal dynamics of spectral 

power reveals the source of oscillatory activation  

 

Figure 2.3 | Trade-off between time and frequency resolution. 

Spectral decomposition of EEG/MEG signals represents a trade-off between 

precision in the time and frequency domain. In general, the larger the time window 

used for time-frequency estimation, the greater the frequency resolution but at 
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the expense of poorer time resolution. Wavelets (third row) are generated by 

multiplying a Gaussian (top row) with a short (A) or long (B) duration with a 

complex oscillation (second row).Convolving an ERP with the wavelet, then 

results in the time-frequency spectrogram (bottom row) with different time and 

frequency resolutions depending on the length of the Gaussian. Figure taken from 

(Herrmann et al., 2014), with permission of Springer. 

 

2.3.2.1 Time-frequency power 

The power of an oscillation refers to the amplitude or height of the sine wave’s 

peak. Since time-frequency power obeys a 1/f scaling, whereby power at high 

frequencies has a much smaller magnitude than power at lower frequencies 

(Linkenkaer-Hansen et al., 2001), raw event-related power is not the most 

informative. In order to observe event-related changes in the EEG signal, power 

is typically normalized with respect to a pre-event baseline. Several baseline 

normalization methods are commonly used, such as simple baseline subtraction, 

decibel conversion or expressing power in percentage relative to a baseline. 

While different baseline transformations yield similar results, they are not identical 

and express power on different scales (i.e. logarithmic vs linear). The normalized 

power is then averaged across trials. Two types of signal power can be 

distinguished based on their phase-relationship to the stimulus. While evoked 

power refers to changes in oscillatory power that are phase-locked to the stimulus 

onset, induced power is not. To estimate evoked power, the signal is averaged 

across trials prior to time-frequency analysis, whereas the estimation of induced 

power requires that time-frequency decomposition is performed first for each trial 

first and the ensuing power is then averaged (David et al., 2006).  

Besides power, other measures can be derived such as phase-locking factor 

(PLF) (Lachaux et al., 1999), which provides information regarding the phase 

angle consistency of oscillations with respect to an event’s onset, or coherence, 

which refers to the coupling of frequency spectra between EEG channels as a 

proxy of the brain’s regional and interregional connectivity.  
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 Methods 

In this chapter, I introduce the methodological techniques implemented in this 

thesis to investigate the oscillatory correlates of individual differences in learning 

and retention of newly acquired motor skills. I outline the temporal structure of the 

studies, how the applied methods were developed and summarise the 

experimental considerations that were made. 

 

3.1 Experimental design 

In order to interrogate the neurophysiological processes underlying an 

individual’s ability to learn and retain motor skills, it was necessary to establish 

that EEG-derived beta oscillatory measures are stable over time, validating the 

notion that these measures reflect meaningful individual differences. Since the 

reliability of EEG-derived measures might vary as a function of frequency band, 

brain region and type of task (Friedrich et al., 2013; Krause et al., 2001; Neuper 

et al., 2005), I firstly established the intra-individual reliability of beta oscillatory 

measures for the specific motor task applied (Chapter 4). For this purpose, I 

repeatedly tested healthy subjects on a simple motor task (see section 3.2.3 for 

details) over a period of approximately 12 weeks. The time interval between 

sessions varied from one week for the first five sessions to six weeks between 

the fifth and sixth EEG session. By using variable time intervals between EEG 

sessions (Figure 3.1), it was possible to test for a systematic influence of interval 

length (i.e. 1 week, 2 weeks, 5 weeks) on test-retest reliability, which is of 

relevance for studies designed to test longitudinal changes in clinical and non-

clinical populations or therapeutic interventions.  
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Figure 3.1 | Timeline of experiment in Chapter 4. 

Subjects’ EEG was repeatedly recorded over six sessions during the 

performance of the simple motor task. The time interval between sessions varied 

from one week for the first five sessions (S1–S5) to six weeks between the fifth 

and sixth EEG session (S6).   

 

In Chapter 5 and Chapter 6, I then combined neuroimaging and motor learning 

in order to probe the link between beta oscillatory activity and the degree to which 

individuals learn and retain newly acquired motor skills in the context of healthy 

ageing and after stroke. Specifically, subjects underwent short-term training on a 

motor learning task (see section 3.2.2 for details), and were subsequently 

retested for their ability to retain the acquired motor skill following a short or longer 

time delay: 45–60 min (retest1 on day 1) and 24 hours (retest2 on day 2) after 

initial training. Fatigue or boredom associated with practice can temporarily 

depress performance (Adams, 1961; Brawn et al., 2010; Rickard et al., 2008; 

Schmidt and Wrisberg, 2008b), resulting in an underestimation of the actual level 

of learning. Thus, the purpose of the retest1 session was to allow any temporary 

effects that the training session might have created to dissipate, thus only leaving 

the fairly permanent learning effects. The purpose of the retest2 session was to 

additionally allow motor memory consolidation to occur and thus, assess 

retention of the previously acquired motor skill after a night’s sleep.  

Electroencephalography (EEG) recorded during the performance of a separate 

motor task, not used during training, was used to assess beta oscillatory activity 

before (Pre), immediately after (Post1) and 24-hours after (Post2) the initial 

training phase (Figure 3.2). This experimental design enabled investigating 

whether (i) pre-training or (ii) post-training beta oscillatory activity is associated 

with individual differences in short-term motor learning behaviour. By recording 

beta oscillatory activity during the performance of a separate task, not used for 
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training, but which employed comparable motion features, it was possible to 

investigate the generic properties of brain activity and their relation to motor 

learning. 

 

Figure 3.2 | Timeline of experiments in Chapter 5 and Chapter 6. 

EEG was recorded during the performance of a simple motor task before (Pre) 

and at two time points after the training phase (Post1 and Post2). Performance 

on the motor learning task was retested after a time delay on the same day 

(retest1 on day 1, 45–60 min after initial training) and the following day (retest2 

on day 2, 24-hours after initial training). 

 

3.2 Motor tasks 

For the purposes of this thesis, it was necessary to design two motor tasks, one 

that assayed an individual’s motor learning capacity (Chapter 5 and Chapter 6), 

and one that elicited reliable EEG-derived beta oscillatory dynamics (Chapter 4, 

Chapter 5 and Chapter 6). For Chapter 5 and Chapter 6, employing principles 

from previous motor learning studies (e.g. (Al-Sharman and Siengsukon, 2014; 

L. a Boyd and Winstein, 2004; Boyd and Winstein, 2006; Pew, 1974; Shea et al., 

2001b; Siengsukon and Boyd, 2009; Wulf and Schmidt, 1997)), I developed a 

novel instantiation of the continuous tracking task. Specifically, the motor learning 

task required subjects to perform wrist flexion and extension movements in order 

to continuously track a target moving along a smooth trajectory on a fixed arc at 

an individually adjusted velocity. For Chapter 4, 5, and 6, I developed a separate 

simple motor task that required subjects to perform visually cued wrist flexion and 

extension movements to engender strong, reproducible movement-related beta 

dynamics. In order to allow for greater motor improvements with training, both 

motor tasks were performed with the non-dominant (Chapter 4 and Chapter 5) 

or contralesional (affected) hand (Chapter 6). All tasks were presented using my 
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own custom written software routines in Matlab (version R2013b; The 

MathWorks, Inc., Natick, MA, USA). 

 

3.2.1 Apparatus 

As dexterous movements are often impossible for people with upper limb (UL) 

impairment, and might be compromised with healthy ageing (Martin et al., 2015), 

I chose to implement motor tasks that employed wrist movements with reduced 

dexterity demands compared to finger movements (i.e. more gross than fine 

movements). By implementing an instrumented wrist rig with a built-in 

potentiometer, developed by a group in Southampton (Burridge et al., 2009; Turk 

et al., 2008), it was possible to record the angular displacement around the wrist 

joint in the horizontal plane (maximum range 180°, 90° into flexion and extension, 

respectively). Throughout all experiments, subjects were seated in front of a 

computer monitor (41 x 25 cm) with their non-dominant hand or contralesional 

(affected) hand rested in the moulded splint of the wrist rig (Figure 3.3). The wrist 

rig’s cuff was inflated to a comfortable level, and the forearm strapped to a 

cushioned arm support with the shoulder joint in a neutral position and the elbow 

joint angle between 80°–90° of flexion. This set-up prevented hand and arm 

movement during the experiments, thus ensuring that movements were restricted 

to the wrist.  

Wrist angular displacement was sensed by the potentiometer, fixed with its axis 

coaxial to the axis of rotation of the wrist joint. A displacement of 0° indicated a 

neutral position of the wrist, with the hand being in the same plane as the forearm. 

The angular position of the wrist was continuously sampled at 100 Hz via a data 

acquisition box containing A/D and D/A converters (USB-1408FS and USB-

1608FS, respectively, Measurement Computing, Norton, MA, USA) and sent via 

an optical USB link (Rover 200, Amplicon, Brighton, UK) to the computer for 

storage and display. The subject’s angular position of the wrist was continuously 

displayed on the computer monitor (refresh rate 60 Hz) as a cursor in the form of 

a red circle – hereafter referred to as “wrist cursor”. Flexion movement of the left 

wrist moved the wrist cursor to the right, while wrist extension caused the cursor 

to move left and vice versa.  
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On the first day of each experiment presented in this thesis, subjects performed 

at least three maximal active flexion and extension movements to define their 

active range of movement (AROM) around the wrist joint. From this, the maximum 

flexion/extension position and the mid-point of the AROM (in degrees) of each 

subject were used as start and/or target positions in the motor tasks (see section 

3.2.2 and 3.2.3 for more details). This procedure controlled for natural and stroke-

related differences in subjects’ mid-point and movement range (i.e. stroke 

patients are more likely to be more in flexion and show smaller AROM compared 

to healthy adults) and ensured maximal muscle function when the joint was in 

neutral, mid-range position (Saladin, 2004). In addition, it allowed subjects to 

familiarise themselves with the wrist rig. 

 

Figure 3.3 | Experimental set-up used during all motor tasks. 

The non-dominant/affected hand was rested in the moulded splint of the 

instrumented wrist rig, which restricted movements to flexion and extension 

around the wrist joint while subjects sat in front of a computer monitor. The 

forearm was strapped to a cushioned arm support to reduce movements of other 

UL joints. The angular position of the wrist was continuously displayed on the 

computer monitor in form of a red circle. 

 

3.2.2 Continuous tracking task to assay motor learning 

In order to assay an individual’s ability to learn and retain new motor skills in 

healthy subjects across the age span as well as stroke patients, it was necessary 

to develop a laboratory-based motor task that promoted optimal learning. 

Employing principles from previous motor learning tasks (e.g. (Al-Sharman and 

Siengsukon, 2014; L. a Boyd and Winstein, 2004; Boyd and Winstein, 2006; Pew, 
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1974; Shea et al., 2001b; Siengsukon and Boyd, 2009; Wulf and Schmidt, 1997), 

a complex continuous tracking task was utilized, requiring subjects to perform 

smooth wrist movements in the wrist rig. The idea that “motor tasks represent 

different challenges for performers of different abilities” suggests that by adjusting 

task difficulty with regard to an individual’s skill level, motor learning can be 

optimized (challenge point framework, (Guadagnoli and Lee, 2004)). Therefore, 

factors such as task difficulty appropriate for an individual’s level of motor system 

and cognitive function, and the respective implemented task characteristics are 

outlined in the following sections. 

 

3.2.2.1 Task design 

The task involved tracking a circular target (in yellow) that moved back and forth 

along a fixed arc through a predefined sequence of 12 positions (Figure 3.4). The 

target always started and finished at the individual AROM mid-point position. In 

Chapter 5, the maximum range of the target motion was defined as ±45° around 

the AROM mid-point position of each subject (90° in total). In Chapter 6 the 

maximum range of the target motion was reduced slightly, ranging from -30° to 

+30° around the AROM mid-point position (60° in total), to allow the inclusion of 

patients with more severe motor impairment and thus, smaller AROM.  

Each block of the task consisted of two types of sequences, one random and one 

repeated sequence presented in random order, with a 3 s stationary target 

between both. Thus, within each block, subjects were given variable practice on 

the two types of sequences. The repeated sequence was identical throughout 

each block of the training and retest sessions, and randomly selected from a pool 

of 57 predefined, difficulty-matched sequences. Each random sequence was 

encountered only once; however, the same set of difficulty-matched sequences 

was used across subjects to ensure comparable learning processes between 

individuals. This design allowed differentiating between sequence-specific 

(repeated sequence) and general (random sequence) skill learning (Wulf and 

Schmidt, 1997) as discussed in Chapter 1 section 1.1.1, while accounting for 

ordering effects such as fatigue or boredom (Adams, 1961). Please refer to 

section 3.2.2.2 and section 3.2.2.3 for details about the training and the 

sequences. 
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Figure 3.4 | Design of continuous tracking task. 

A, Subjects were trained to track a target (yellow circle) moving back and forth 

along a fixed arc as accurately and smoothly as possible. Online visual feedback 

in terms of a colour change of the wrist cursor (red to green) was provided at 

times when the wrist cursor was located inside the circular target. B, Original 

recordings during the continuous tracking task at the beginning and end of the 

initial training are shown for the repeated sequence of an example subject. The 

solid black line represents the motion of the target, while the dashed red line 

represents the motion of the wrist. C, Between-block display of feedback score (-

100 to 100; positive value in green reflects improvement, while decrements were 

displayed as negative values in red), reflecting the performance in the current 

block relative to the performance in the previous block, and forced-choice 

question about awareness of repeated sequence.  

 

3.2.2.2 Training 

Each healthy subject (Chapter 5) and stroke patient (Chapter 6) was trained on 

the continuous tracking task for 40 blocks (20–40 min), with each block 

presenting both types of sequences (random and repeated). The number of 

blocks, and thus time spent on the task, was chosen to ensure that subjects’ 

tracking performance improved beyond pre-training levels, considering the power 

law of practice (see Chapter 1 section 1.1.1.3, (Newell and Rosenbloom, 1980)), 
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while minimising performance-dampening factors associated with practicing too 

long, thus aiming for optimal training benefits. Subjects’ tracking performance 

was retested at two different time points: 45–60 min (retest1 on day 1; 5 blocks) 

and 24 hours (retest2 on day 2; 10 blocks) after initial training (Figure 3.2). These 

retest sessions allowed (i) temporary effects such as fatigue or boredom that build 

up over the course of training (Brawn et al., 2010; Rickard et al., 2008) to 

dissipate, thus only leaving the fairly permanent learning effects, and (ii) 

consolidation of motor memories to occur, resulting in stabilization, decrement or 

enhancement of acquired motor skills after a night’s sleep (Robertson et al., 

2004a; Walker, 2005). Importantly, subjects were retested on the identical 

repeated sequence that they encountered during the training phase.  

Instructions to move the wrist so as to shift the red wrist cursor to match the 

movement of the target as ‘accurately and smoothly as possible’ were given at 

each session. Tracking performance was defined as the accuracy (in Root Mean 

Square Error; RMSE) with which the subject tracked the target movement. Please 

refer to section 3.7.1.1 for details about kinematic analysis. 

As discussed in Chapter 1 section 1.1.1.3, extrinsic feedback has been shown 

to generally enhance a person’s ability to learn (for review see (Magill, 1994; 

Schmidt, 1991; Sigrist et al., 2013; Swinnen, 1996)). As such, online visual 

feedback in terms of a colour change of the wrist cursor (from red to green) was 

provided at times when the subject positioned the wrist cursor inside the circular 

target (Figure 3.4A). In addition, at the end of each block, subjects were made 

aware of their change in tracking performance by presenting a score on the 

screen, which reflected the performance in the current block relative to the 

performance in the previous block. Therefore, each training block was inter-

leaved with at least 30 s of rest, reducing the accumulation of fatigue or 

attentional factors.  

Prior to the start of training, subjects received explicit verbal information regarding 

the presence of a repeated sequence along with a random sequence in every 

block. However, they were not shown the repeated sequence. To determine the 

time point at which participants gained explicit knowledge of the repeated 

sequence, after each block they had to decide (forced-choice) which of the two 

sequences within each block the repeated sequence was – i.e. tell the 
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experimenter whether it was the first or second sequence they tracked within the 

block (Figure 3.4C). The trajectories of the target and subject’s wrist cursor did 

not leave a residual trace on the screen and hence, subjects could not visualize 

the entire target sequence. 

 

3.2.2.3 Difficulty-matched sequences 

A set of different sequences of approximately equivalent difficulty were selected 

based on a pilot study of N = 4 independent subjects to ensure that changes in 

tracking performance were associated with learning and not with general 

variability due to differences in sequence difficulty or saliency. Each sequence 

was composed of six evenly spaced positions, three in flexion and extension 

range, respectively (i.e. 0: position 1/6: AROM midpoint ±45°, position 2/5: AROM 

midpoint ±30° and position 3/4: AROM midpoint ±15°), repeated twice, and 

started and ended at the individual AROM mid-point (Figure 3.5A). Sequences 

only differed in the order of these positions (i.e. AROM midpoint–4–3–1–4–6–5–

2–4–2–6–2–1–AROM midpoint) and were matched for the number of flexion and 

extension movements (median = 6) as well as absolute path length (median = 

36). In total, 57 pre-designed, difficulty-matched sequences were used 

throughout the experiments in Chapter 5 and Chapter 6 from which the repeated 

sequence was randomly selected for each participant. Even though sequences 

were difficulty-matched, the random assignment of a different repeated sequence 

for each subject additionally guarded against the possibility of selecting a 

repeated sequence that was easier to track or more identifiable. This was a 

methodological issue identified in the tracking task originally used by Wulf and 

Schmidt (Chambaron et al., 2006; Wulf and Schmidt, 1997). 

 

3.2.2.4 Smooth target trajectories 

In order to ensure smooth target motion through the sequence positions, the 

minimum jerk trajectories (Flash and Hogan, 1985; Hogan, 1984) were generated 

– i.e. movement paths that have the smallest possible rate of change in 

acceleration (jerk). In general, if the target moved from its location x = xi to x = xn 
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in t = d seconds, the minimum jerk trajectory was calculated using the following 

function: 

𝑥(𝑡) = 𝑥𝑖 + (𝑥𝑛 − 𝑥𝑖) ∗ 10𝑡/𝑑3 − 15𝑡/𝑑4 +  6𝑡/𝑑5 

Equation 3.1 

This fifth-order polynomial was piece-wise computed between the current 

position xi and the next position xn given a desired time for the point-to-point 

movement. The resulting trajectories have smooth position curves (Figure 3.5B) 

and resemble a bell-shaped velocity profile with the target accelerating and 

decelerating between successive positions. This is important, as previous studies 

have demonstrated that tracking performance improves with the target following 

biologically plausible trajectories compared to non-biological motion (Carlini and 

French, 2014; Pozzo et al., 2006).  
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Figure 3.5 | Difficulty-matched sequences. 

A, The six positions that reflect individual angular positions and which made up 

the exemplary trajectory (sequence: AROM mid-point–4-3-1-4-6-5-2-4-2-6-2-1–

AROM mid-point) along which the target moved. B, Throughout the experiments, 

sequences were selected from the pool of predefined, difficulty-matched 

sequences generated from the six positions. For each subject, a repeated 

sequence was randomly selected from these 57 sequences while the remaining 

sequences served as random sequences. 

 

In order to calculate the minimum jerk trajectories, the time points ti … tn at which 

the target should reach the positions needed to be defined. Discrete point-to-point 

movements are characterised by a linear relationship between movement 

accuracy and movement speed, as quantified by Fitts’ law (Fitts, 1954). Using the 
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logarithmic model proposed by Fitts, movement time (MT) is a function of the 

target width (W) relative to the distance (A) as described by the following function: 

MT = a + b ∗ 𝑙𝑜𝑔2 (
2𝐴

𝑊
) , 

Equation 3.2 

where a and b are empirical constants. Fitts’ law thus demonstrates that there is 

a speed-accuracy trade-off when performing aimed rapid movements. The 

constants a and b were experimentally determined based on regression analysis 

of pilot movement time data acquired from the wrist rig (N = 1; only A was 

randomly changed). Please refer to Figure 3.6 for values of a and b. 

 

Figure 3.6 | Linear regression model of actual wrist movement time data. 

The relationship between movement time (MT) and the index of difficulty, defined 

as log2(2A/W), was fitted as MT=155.8 + 282.3 * log2(2A/W), with R2=0.91. The 

constant a was defined as 155.8 ms, a time specific to the apparatus, while the 

slope coefficient, b, was 282.3 ms.  

 

3.2.2.5 Individualisation of target velocity 

Previous motor learning studies employed tracking tasks that either used a fixed 

target velocity (Al-Sharman and Siengsukon, 2014; Ao et al., 2015; Siengsukon 

and Al-sharman, 2011; Siengsukon and Boyd, 2009; Wadden et al., 2015) or a 

percentage of an individual’s maximum movement speed (Wu et al., 2014). 

However, to avoid any between-subject differences in baseline tracking 

performance at the beginning of the training, and to ensure sufficient room for 
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learning-related improvement in healthy subjects and stroke patients, I chose to 

implement an adaptive up-down staircase procedure that individually determined 

the average velocity with which the target moved along the arc. 

On any given trial of this procedure, the target velocity was adjusted 

(e.g. increased or decreased) dependent on the subject’s preceding tracking 

performance, using five different step sizes. Initially, the target velocity was slow 

and thus, easy to track (initial target velocity = 34.8 deg/s). Then, the target 

velocity was modified until a pre-specified performance criterion range 

(15±0.9 RMSE) was reached, using varying step sizes dependent on the current 

tracking performance relative to the criterion range (95–100 % criterion: 

0.0025 ms; 90–95 criterion: 0.005 ms; 75–90 % criterion: 0.010ms; 50–75 % 

criterion: 0.025 ms; and ≤ 50 % criterion: 0.050 ms). The staircase was 

interrupted when the tracking performance in three consecutive trials achieved 

the criterion, and the final target velocity was defined as the mean velocity of 

these last three trials (Figure 3.7). On average, this procedure took ~2±0.50 min. 

The individually determined target velocity with which subjects were 

subsequently trained on the continuous tracking task was applied to all sessions. 

Additionally, this procedure allowed for habituation to the task on day 1, thus 

reducing large warm-up decrements at the beginning of the training phase 

(Adams, 1961).  

 

Figure 3.7 | Adaptive procedure for individual target velocity adjustment. 

Example performance of three subjects (left: young subject; middle: elderly 

subject; right: stroke patient) on the adaptive up-down staircase procedure. The 

target velocity started off slow and was then adjusted using five different step 

sizes until a pre-specified criterion range was achieved (grey dashed lines) for at 

least three consecutive trials. 
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3.2.3 Simple motor task to engender reliable beta oscillatory dynamics 

By implementing a separate simple motor task with controlled wrist movements, 

it was possible to engender stereotypical movement-related modulations in beta 

oscillations in order to link them to individual differences in motor learning. The 

task required subjects to respond to the trial-wise presentation of one of two 

visual targets by performing wrist movements in the wrist rig while EEG was 

recorded. During each trial, wrist movements were always initiated from the same 

start position located at the centre of the screen, which represented the subject’s 

individual AROM mid-point (see section 3.2.1 for details about AROM 

measurement). The cue to perform wrist flexion or extension movements was the 

random appearance of one of two squared targets (in blue) located on the left or 

right and equidistant from the central start position (Figure 3.8). Each of the 

targets represented the subject’s maximum wrist flexion or extension position. 

This design controlled for the end position of the movement and ensured that the 

movement distance in each condition was the same; however, the actual 

movement distance between subjects was different based on their AROM. 

Subjects were instructed to move the wrist upon presentation of the target so as 

to shift the red wrist cursor from the central start position to match the position of 

the target in a ‘quick and discrete movement’. They were also asked to move as 

soon as possible and to avoid anticipation or guessing of target appearance. The 

target position was displayed for 3 s and subjects had to maintain the wrist cursor 

inside the blue target until being cued to return to the initial start position. Once 

subjects returned to the start position, the next cue to move was delivered 

following a delay of 7±1 s. This time interval between task epochs was chosen to 

account for the longevity of movement-related beta activities (Jurkiewicz et al., 

2006), thus avoiding temporal overlap of neuronal activity. The task comprised 

120 trials (60 trials for flexion and extension, respectively), and subjects were 

instructed to minimize eye movements by focusing on a centrally located fixation 

cross. Movement execution was analysed with regard to reaction time (RT, 

interval between visual cue and movement onset), movement time (MT, interval 

between movement onset and movement termination) and peak velocity (PV). 

Please refer to section 3.7.1.2 for details about kinematic analysis. 
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Figure 3.8 | Design of simple motor task. 

Subjects were instructed to perform wrist movements upon presentation of a blue 

target so as to shift the red wrist cursor from the central start position to match 

the position of the target. Each target was presented for 3 s with an inter-trial 

interval of 7±1 s. 

 

3.3 Controlling for confounding factors 

Since several factors, such as upper limb (UL) function, attention or sleep, could 

influence motor learning behaviour, subjects were assessed on a range of tests, 

details of which are outlined below. In Chapter 5, the Nine Hole Peg Test (NHPT), 

grip strength test, Sustained Attention to Response Test (SART) and St Mary’s 

sleep questionnaire were administered before testing. To characterise the 

severity of a patient’s motor impairment in Chapter 6, and its potential effect on 

the patient’s ability for motor skill learning (Vidoni and Boyd, 2009), the Action 

Research Arm Test (ARAT), Fugl-Meyer (FM) sensation assessment, and self-

reported fatigue measures were additionally administered. The tests were 

selected based on published data regarding reliability and validity. All UL 

functional tests were performed on both sides. 

 

3.3.1.1 Upper limb functional tests 

Nine Hole Peg Test (NHPT) (Kellor et al., 1971; Mathiowetz et al., 1985) is a 

common measure of finger dexterity. Subjects were instructed to place nine pegs 

into the same number of holes as quickly as possible, using only one hand. 
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Subjects performed three timed repetitions, and the average score, expressed as 

the number of pegs/sec, was taken for each individual.   

Grip strength is a dynamometer measurement of the maximum force produced 

during a five-finger grip. With verbal encouragement from the experimenter, 

subjects squeezed the dynamometer with maximum isometric effort. The average 

score of three attempts, in pounds, was taken for each individual.  

Action Research Arm Test (ARAT) (Yozbatiran et al., 2008) is an assessment of 

a patient’s ability to handle objects of varying sizes, weights and shapes with their 

contralesional (affected) and ipsilesional (unaffected) limb. It consists of 19 items 

and each of the four subscales - grasp, grip, pinch, and gross movement - are 

ordered according to ascending difficulty. Patients are scored on a four-level 

ordinal scale (0-3) and the maximum score is 57 for each arm, with a higher score 

indicating better arm motor function. 

 

3.3.1.2 Sensation assessment 

Fugl-Meyer sensation and proprioception is an assessment of upper limb 

sensation in patients. Sensation was assessed as absent, impaired, or normal for 

light touch (with a cotton ball) and proprioception (small alterations in the position) 

of the contralesional (affected) UL without visual input. The maximum score is 12, 

with a lower score indicating loss of sensation in the affected UL. 

 

3.3.1.3 Cognitive test 

Sustained Attention to Response Test (SART) (Robertson et al., 1997) is a 

computerised task that assesses an individual’s ability to sustain their attention 

during a ~4 min long task. Subjects were asked to respond to the appearance of 

a number from 1–9 by pressing a button, except when the number 3 appeared. 

In total 225 trials are presented, of which 25 demand withholding a button press 

in response to the number 3. Subjects were instructed to give equal importance 

to accuracy and speed. The total error score (max score 225) and average 

reaction time [ms] were measured. 
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3.3.1.4 Self-reported measures 

In order to record self-reported measures of fatigue and sleep, computerised 

versions of the following tests were implemented using visual analogue scales 

(VAS) (see Appendix).   

Fatigue Severity Scale (FSS) (Johansson et al., 2014; Krupp et al., 1989) and the 

Neurological Fatigue Index (NFI) (Mills et al., 2012) are validated scales that 

assess the impact of fatigue on stroke patients. The FSS consists of 7 

statements, such as “Fatigue interferes with my physical functioning”. Patients 

respond using a 7-point scale where low values indicate disagreement and high 

values indicate agreement. The NFI consists of 12 statements and patients 

respond using a 4-point scale: “strongly disagree”, “disagree”, “agree”, and 

“strongly disagree”. The average score was taken for each patient, with higher 

scores indicating higher fatigue. 

St Mary’s sleep questionnaire (adapted from (Ellis et al., 1981)) is a self-reported 

assessment of the quality of sleep. Subjects respond to questions such as “At 

what time did you fall asleep last night?” and their sleep quantity [hours] and 

quality (from 1–8) was evaluated for both nights before testing. 

 

3.4 Subject recruitment 

Subjects were independently recruited for each study. Healthy subjects (Chapter 

4 and Chapter 5) were recruited from a volunteer database at the Institute of 

Cognitive Neuroscience and the Sobell Department of Motor Neuroscience and 

Movement Disorders, Institute of Neurology. Patients with chronic stroke 

(Chapter 6) were recruited from a database of stroke patients at the Sobell 

Department of Motor Neuroscience and Movement Disorders, Institute of 

Neurology, which contains details from ~150 stroke patients. All studies were 

approved by the National Hospital for Neurology and Neurosurgery, UCL 

Hospitals NHS Foundation Trust and the local research ethics committee at 

University College London where the study was conducted. All subjects gave 

written informed consent in accordance with the Declaration of Helsinki. Please 

refer to individual chapters for details about subject characteristics and inclusion 

and exclusion criteria. 
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3.4.1 Sample size 

In order to explore and detect a significant relationship between beta oscillatory 

activity and individual differences in motor learning behaviour, I performed a 

sample size calculation based on linear regression testing for association, with 

four key explanatory variables (i) beta oscillatory signals, (ii) age, (iii) level of 

impairment, and (iv) time since stroke (early and late). Estimates for a link 

between beta oscillations and motor learning were taken from a study showing 

an inverse correlation between the amount of beta power suppression and 

improvements in a serial reaction time task (Pollok et al., 2014) (Pearson r=-0.67, 

p<0.01, N = 15). The sample size calculation was based on the formula by Sokal 

and Rohlf (Sokal and Rohlf, 2009) with a ρ2 = 0.25 (practical values suggested 

by (Linnet, 1987) range from 0.1 to 0.3): 

𝑛1 =  
(Z1−𝛼  +  𝑍1−𝛽)2 / C(r)2  +  3

(1 − 𝜌2)
 

Equation 3.3 

Where the Fisher’s transformation is: 

𝐶(𝑟) =
1

2
∗ log (

1 + r

1 − r
) 

Equation 3.4 

In order to allow for comparison between healthy subjects and stroke patients, a 

Bonferroni correction was applied, which set the type I error rate (α) equal to α/ 

number of comparisons. With these assumptions, an α value of 0.025 (α = 0.05 / 

2) and a power (1–β, where β = type II error rate) of 0.8, a total of 36 healthy 

subjects and 36 stroke patients were required. To account for the possibility of 

drop-out and non-compliance, it was planned to recruit 40 healthy subjects in 

Chapter 5 (20 young and 20 elderly adults), and 20 chronic stroke patients in 

Chapter 6. 

 

3.5 Electroencephalography (EEG) 

As discussed in the Chapter 1 section 1.5, neuronal oscillations may be a marker 

of GABAergic inhibitory and glutamatergic excitatory processes (Jensen et al., 

2005; Murakami and Okada, 2006; Yamawaki et al., 2008), which are one major 

mechanism through which the potential for plasticity is regulated (Bavelier et al., 



Methods 
 

93 
 

2010; Benali et al., 2008; Traub et al., 2004). Thus, I used EEG to non-invasively 

measure neuronal oscillations and reveal appropriate biomarkers to assess net 

inhibitory and excitatory mechanisms in human cortex. EEG has several 

advantages, making it a powerful method for scientific and clinical research as 

discussed in more detail in Chapter 2 section 2.1.1. In particular, EEG does not 

rely on intact neurovascular coupling (Blicher et al., 2012) which might be altered 

after stroke, nor the presence of MEPs in affected muscles, both of which hinder 

the use of fMRI and TMS in stroke patients. Furthermore, the high temporal 

resolution of the spectral data allow the examination of state-dependent 

dynamics during task-related movements (Lopes da Silva, 2013), which might 

play an important role in the mechanisms of motor impairment after stroke. 

While subjects performed the simple motor task (Chapter 4, Chapter 5 and 

Chapter 6), scalp EEG (ANT Neuro, Asalab, The Netherlands) was continuously 

recorded at 2084Hz using 64 electrodes mounted on an elastic cap (waveguard 

EEG cap, ANT Neuro). Two EEG caps with different size ranges were used to 

account for varying head sizes of subjects. The 64 electrodes were evenly 

distributed over the scalp according to the international 10-20 EEG system. To 

ensure comparable positioning of the EEG electrodes on separate days, the 

distance between nasion and inion, and left and right preauricular points was 

recorded for each subject. In order to lower the electrical impedance and allow 

for the recording of a clearer electrical signal, an abrasive electrolyte gel (Abralyt 

2000, Easycap GmbH, Germany) was used. In addition, subjects were asked to 

wash their hair and to avoid hair spray or gels on the day of testing. The 

impedance was kept below ≤5 kΩ and the EEG signal was referenced to Cz 

during recordings. In order to align the oscillatory activity time-course with 

experimental events occurring in the simple motor task (e.g. the precise timing of 

the visual cues), separate triggers for each condition (flexion, extension) were 

sent via the testing computer’s parallel port to the EEG system. For all EEG 

recordings, subjects were asked to remain relaxed and minimize eye movements 

by focusing on a centrally located fixation cross presented on the computer 

screen. 
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3.6 Electromyography (EMG) 

Throughout both motor tasks, movements of the non-dominant hand (Chapter 4 

and Chapter 5) or contralesional (affected) hand (Chapter 6) were monitored by 

surface EMG using bipolar electrodes (Kendall ECG neonatal electrodes, 

Henleys Medical Supplies Ltd., UK) in a belly-tendon montage placed on the wrist 

extensor (extensor carpi radialis, ECR) and flexor (flexor carpi radialis, FCR) 

muscles. The ground electrode was positioned on the elbow. The raw EMG signal 

was amplified and band-pass filtered (10 Hz to 500 Hz; D360 amplifier, Digitimer, 

Hertfordshire, UK) and digitized at an A/D rate of 1 kHz per channel (CED Micro 

1401, Cambridge Electronic Design, Cambridgeshire, UK). Please note that EMG 

was purely recorded for monitoring purposes and not analysed in this thesis. 

 

3.7 Data analysis 

In order to link an individual’s cortical activity to his/her ability to learn and retain 

new motor skills, the raw kinematic and EEG data needed to be reduced to 

interpretable concepts or definitions. In the following, I describe the analysis 

pipeline for (I) the measurement of different aspects of motor learning behaviour 

and (II) the measurement of spectral dynamics of beta oscillations at EEG sensor 

level. Analysis pipelines were identical between chapters unless stated 

otherwise. All analyses were conducted using my own custom-written routines in 

Matlab (version R2016a; The MathWorks Inc., Natick, MA, USA) and the SPM12 

toolbox (Wellcome Trust Centre for Neuroimaging, www.fil.ion.ucl.ac.uk/spm). 

For visualization of specific EEG data aspects, the fieldtrip toolbox ((Oostenveld 

et al., 2011), www.ru.nl/fcdonders/fieldtrip/) was additionally employed. 

 

3.7.1 Kinematic data 

3.7.1.1 Continuous tracking task 

The behavioural measure “tracking performance” on the continuous tracking task 

(e.g. how accurately subjects tracked the target movement) in Chapter 5 and 

Chapter 6 was parameterized by Root Mean Square Error (RMSE), a measure 

that has been implemented by other motor learning studies (Al-Sharman and 

Siengsukon, 2014; Boyd and Winstein, 2006; Roig et al., 2014; Siengsukon and 
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Boyd, 2009). RMSE captures the deviation of the wrist position (wi) from the target 

position (ti), and serves as a composite measure of temporal and spatial 

measurements of time lag and distance as calculated using the following 

equation:  

𝑅𝑀𝑆𝐸 = √∑ (𝑡𝑖 − 𝑤𝑖)2/𝑁𝑁
𝑖=1  , 

Equation 3.5 

where N is the total number of time samples of the sequence in each block. RMSE 

was calculated for repeated and random sequences separately and averaged 

across each block for the training and retest sessions. Thereby, smaller RMSE 

values reflect better tracking performance. To quantify not only skill acquisition 

over the course of training but also the ability to retain acquired motor skills after 

training ended, performance during the first and last block of training and retest 

sessions were probed.  

However, performance on individual blocks are poor and noisy measures of 

individual performance, and may be additionally biased by the warm-up 

decrement at the beginning or fatigue at the end (Adams, 1961). As a solution, 

and instead of simple averaging, I adopted a similar approach to a previous 

learning study (Waters-Metenier et al., 2014), fitting a linear regression model 

across 5 blocks at the beginning and end of individual training and retest 

sessions. Using this fit, a corrected performance estimate of the first and last 

blocks was derived and used for further analyses (see Figure 3.9). 

The analysis then concentrated on six time points in order to assess tracking 

performance across time: first block of training (T0), last block of training (T1), 

first block of retest1 (T2), last block of retest1 (T3), first block of retest2 (T4), and 

last block of retest2 (T5). As discussed in Chapter 1 section 1.1.1.1, various 

processes can occur during time periods during which the task is not practised, 

such as dissipitation of temporary effects (e.g. fatigue or boredom) (Brawn et al., 

2010; Rickard et al., 2008) and motor memory consolidation, which may result in 

skill stabilization, enhancement or decrements (Hotermans et al., 2006; 

Robertson et al., 2004a; Walker, 2005). As such, tracking performance at T2 is 

most likely to reflect permanent learning effects unaffected by training-induced 
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temporary effects such as fatigue or boredom due to prolonged training, while 

performance at T4 likely indexes retention of the acquired motor skill overnight, 

due to motor memory consolidation. In the work presented, absolute levels of 

performance rather than normalized changes (i.e. difference between baseline 

and post-training performance) were used to assess the effect of training to avoid 

the conceptual pitfall associated with additive or multiplicative normalization 

approaches (Kitago and Krakauer, 2010). By implementing this analysis 

approach, it was possible to interrogate the effects of age (Chapter 5) and stroke 

(Chapter 6) on motor learning behaviour (referring to the performance on the 

continuous tracking task), and assess changes in tracking performance at various 

time points. 

 

Figure 3.9 | Illustration of linear regression approach. 

Dots represent performance in individual blocks on both types of sequences, 

random and repeated, respectively, for an example subject from Chapter 5 during 

training and retest sessions. Black lines represent linear regression models 

across 5 blocks at the beginning and end of individual sessions. Corrected 

performance estimates were derived from these linear regression models at six 

different time points (T0 = first block of training, T1 = last block of training, T2 = 

first block of retest1, T3 = last block of retest1, T4 = first block of retest2, and T5 
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= last block of retest2) and used for subsequent assessment of changes in 

tracking performance with training. 

 

3.7.1.2 Simple motor task 

Movement execution during the simple motor task was analysed with regard to 

reaction time (RT, interval between visual cue and movement onset), movement 

time (MT, interval between movement onset and movement termination) and 

peak velocity (PV). To this end, the angular position of the wrist, sampled at 

100 Hz, was first filtered with a second-order zero-phase shift, low-pass 

Butterworth filter (cut-off frequency of 10 Hz) and then, differentiated to calculate 

velocity. Movement onset was defined as the time when the velocity of the wrist 

exceeded a threshold of 5 % of the maximum velocity and sustained this speed 

for at least 100 ms. Movement termination was defined as the time when the 

velocity fell below the threshold for that trial for at least 500 ms (see Figure 4.1C 

for exemplary wrist angular displacement and velocity profile). For each subject, 

trials in which the movement was initiated before the cue signal (e.g. anticipatory 

response), reaction time was excessively long (e.g. omitted response; 

>mean ± 2.5 SD), or movement time was excessively long (e.g. response not 

compliant with task demand of ‘quick and discrete’ movement; >mean ± 2.5 SD) 

were discarded. As I will demonstrate in Chapter 4, movement kinematics of the 

simple motor task were stable across sessions, a crucial prerequisite to engender 

reliable EEG-derived beta oscillatory dynamics. 

 

3.7.2 EEG data 

In order to verify whether neuronal oscillations at beta frequency, associated with 

motor system function, relate to an individual’s ability to acquire a new motor skill, 

the raw EEG signal was pre-processed and time-frequency decomposed. The 

following analysis pipeline was applied to EEG signals recorded during the 

performance of the simple motor task in Chapter 4, Chapter 5, and Chapter 6. 

The EEG signal was first offline re-referenced to the average signal across all 

electrodes (Common Average Reference, CAR; (Mcfarland et al., 1997)) 

following removal of flat or very noisy electrodes. This technique removes 

common activity unrelated to specific cortical processes, thereby leading to 
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spatially more localized activity patterns. Then, the signal was bandpass filtered 

between 5–100 Hz, additionally filtered with a 50 Hz notch filter to reduce line 

noise contamination, and downsampled to 300 Hz. Data were epoched from -1 

to 9 s relative to visual cue onset (0 s) in order to probe cortical activity during 

different movement phases (i.e. rest, movement, post-movement) of the simple 

motor task. Although, the use of the wrist rig minimized undesired hand and arm 

movement, poorly performed trials due to e.g. anticipatory or omitted responses 

(see section 3.7.1.2) were excluded and the remaining EEG trials were visually 

scrutinized. Trials containing artefacts, such as muscle activation or large eye 

blinks, were additionally removed. Since the recorded EEG signal reflects a 

mixture of cortical activity of different frequencies, artefact-free EEG time-series 

from each single trial were decomposed into their time-frequency representations 

in the 5–45 Hz range with frequency steps of 0.1 Hz in order to characterise 

changes in the beta frequency band with task performance. A Morlet wavelet with 

7 cycles for each frequency was used for the continuous wavelet transformation. 

Then, power was averaged across all trials and rescaled in order to show 

changes in power (P) relative to the corresponding pre-movement baseline 

period (-1–0 s prior to cue onset), expressed as percentages of this baseline 

power (Pref): 

% power =
𝑃 − 𝑃𝑟𝑒𝑓

𝑃𝑟𝑒𝑓
∗ 100 

Equation 3.6 

Thus, a positive value indicates higher frequency band-specific power compared 

to pre-movement baseline power and vice versa. 

Spectral power time-series were then derived from a pre-selection of electrodes 

overlying the sensorimotor cortices, both contralateral and ipsilateral to the 

moving hand (MRBD: ‘C4’ ‘CP4’ ‘CP2’ and ‘C3’ ‘CP3’ ‘CP1’ for contra- and 

ipsilateral hemispheres, respectively; PMBR: ‘C2’ ‘C4’ ‘CP4’ and ‘C1’ ‘C3’ ‘CP3’ 

for contra- and ipsilateral hemispheres, respectively). These electrodes were 

selected based on the independent dataset presented in Chapter 4, which 

showed that the most prominent task-related changes in beta activity were 

observed in these electrodes when performing the simple motor task. These 

bilateral electrodes were pooled as contralateral and ipsilateral regions of 
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interest, respectively. Please refer to Chapter 4 for details about electrode 

selection from an orthogonal contrast (Kilner, 2013; Kriegeskorte et al., 2009). 

Next, time-frequency windows were chosen based on peak changes in beta 

activity in time-frequency maps of these bilateral sensorimotor regions, which 

revealed clear movement-related beta-band (15–30Hz, (Jurkiewicz et al., 2006; 

Van Wijk et al., 2012; Yamawaki et al., 2008)) activity in two distinct time windows 

of interest in all experiments. This information was used to optimize the alignment 

of constant duration (1 s) and width (15 Hz) time-frequency windows to capture 

maximum Movement-Related Beta Desynchronization (MRBD), occurring 

between cue onset and movement termination, and Post-Movement Beta 

Rebound (PMBR), which emerges after movement cessation. Selected time-

frequency windows and electrodes applied to all subjects and sessions in 

Chapter 4, Chapter 5 and Chapter 6, and were not adjusted individually. Please 

refer to individual chapters for specifics about time-frequency window alignment, 

which, in the case of PMBR, was shown to differ between younger and elder 

adults in Chapter 5. 

For each individual subject in each experiment, percentage decrease (MRBD) 

and increase (PMBR) in beta power were extracted from the respective 1 s time 

windows and averaged separately for each EEG session for the chosen 

electrodes over each hemisphere. The absolute pre-movement (resting) baseline 

beta (BB) power from -1 to 0 s relative to cue onset was also obtained. In Chapter 

4, I additionally determined individual beta peak frequency for corresponding time 

windows (BB, MRBD, and PMBR) and show that these measures are less reliable 

compared to spectral power. Please refer to Chapter 4 for details about peak 

frequency detection.  

 

3.8 Statistical analysis 

Unless stated otherwise, all data were assessed using parametric statistical tests 

following confirmation of normal distribution of data using Kolmogorov-Smirnov 

test. Specifically, a continuum of conventional statistical methods, including 

ANOVAs, t-tests, Pearson’s correlations and stepwise multiple linear 

regressions, were used to analyse the information present in the kinematic and 
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neurophysiological data acquired during the two motor tasks. In Chapter 4, 

Intraclass Correlation Coefficient (ICC) were additionally employed to assess the 

intra-subject reliability of the various estimates of beta activity under investigation 

in this thesis. Significance for all procedures was set at a p-value below 0.05 and 

effect sizes were measured using partial eta squared (ƞ2). Details of the various 

ANOVAs, t-tests, correlational analyses, and ICCs are described in the relevant 

chapters. All statistical procedures were performed using the statistical package 

SPSS (IBM SPSS Statistics for Windows, Version 22.0, Armonk, NY: IBM Corp) 

and custom-written Matlab routines. 

Since the main objective of this work was to explore the oscillatory correlates of 

individual differences in motor learning, and their predictive value (Chapter 5 and 

Chapter 6), while accounting for possible influences of behavioural performance 

on the motor learning task, as well as functional/clinical and demographic 

characteristics, stepwise multiple linear regressions within leave-one-out cross-

validation (LOOCV) were performed. In the next section, I will briefly outline the 

implemented statistical approach in more detail.  

 

3.8.1 Stepwise multiple linear regression 

Stepwise multiple linear regression is a multivariate method, which is used for 

predicting the relationship between a single dependent variable (DV) and various 

independent variables (IV), whilst removing or retaining variables based on their 

statistical contribution. By removing candidate variables that do not significantly 

contribute to the ability of the model to predict the dependent variable, this type 

of regression analysis finds the “linear combination of predictors that correlate 

maximally with the outcome variable” (Field, 2013). 

The stepwise linear regression procedure with forward and backward algorithm 

and inclusion/exclusion probability levels of αEnter<0.05/ αExclude>0.1 was 

implemented using the ‘stepwiselm’ function contained in Matlab’s Statistics and 

Machine Learning Toolbox. The stepwise method creates an initial model where 

the most statistically significant independent variable is added to the model for 

predicting the dependent variable (p<αEnter). Then, at every new iteration, a new 

variable is added until there are no more variables that satisfy the p<αEnter 

condition. Each time a predictor is added to the model, a backward elimination 
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method is applied to remove the least statistically significant variable (p>αExclude), 

thus constantly reassessing the model. Hence, the stepwise procedure selects 

the best predicting variables that maximally account for variance in the dependent 

variable on a purely data-driven basis. However, since this type of linear 

regression might be prone to overfitting, which is associated with models that 

perform well on one data set but do not generalize to new data sets, a 

cross-validation procedure was implemented. 

 

3.8.2 Validation of model consistency 

Cross-validation assesses the accuracy of a model across different samples, thus 

evaluating whether the same set of predictors generalize to a different population 

(Arlot and Celisse, 2010; Field, 2013). The approach consists in randomly 

splitting the acquired data into a training and a test set. By fitting a regression 

model to the training set, its accuracy on the test set can be evaluated, providing 

an indication of the predictive strength of the regression model. In this thesis, 

model performance was assessed employing the leave-one-out cross-validation 

(LOOCV) approach. In this case, on any given fold of this K-fold procedure, only 

one fold is spared as the test set, while the remaining data samples are used to 

build the regression model (Figure 3.10). This cross-validation method is an 

established procedure for assessing generalization of results to an independent 

data set, particularly with smaller sample sizes (Huang et al., 2011; Kang et al., 

2014). 
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Figure 3.10 | Schematic of crossvalidation approach for model assessment. 

A leave-one-out cross-validation (LOOCV) approach was employed in order to 

assess the accuracy of the regression model to predict the dependent variable in 

a different sample. This approach uses N-1 data samples to train the model and 

then the model predicts the remaining test sample. The process is repeated N 

times and the accuracy of the model is quantified by the correlation between 

actual and predicted data. N is the total number of samples.
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 Intra-individual reliability of movement-

related beta oscillations  

This chapter is based on work previously published as: 

Espenhahn, S., de Berker, A. O., van Wijk, B. C. M., Rossiter, H. E., 

Ward, N. S. (2016) Movement-related beta oscillations show high intra-

individual reliability. NeuroImage 147, 175–185 

4.1 Abstract 

Despite increasing use of beta oscillatory activity in basic and clinical research, 

surprisingly little is known about their test-retest reliability. Identification of the 

oscillatory correlates underlying individual differences in the ability to learn and 

retain new motor skills requires establishing that beta measures are stable over 

time in healthy populations. In this chapter, I evaluate the intra-individual reliability 

of beta-band oscillations over six sessions, focusing on changes in beta activity 

during movement (Movement-Related Beta Desynchronization, MRBD) and after 

movement termination (Post-Movement Beta Rebound, PMBR). Subjects’ EEG 

was recorded while they performed the simple motor task introduced in Chapter 

3. I assessed Intraclass Correlation Coefficients (ICC) and between-session 

correlations for spectral power and peak frequency measures of movement-

related and resting beta activity.  

Movement-related and resting beta power from both sensorimotor cortices was 

highly reliable across sessions. Resting beta power yielded highest reliability 

(average ICC=0.903), followed by MRBD (average ICC=0.886) and PMBR 

(average ICC=0.663). Notably, peak frequency measures yielded lower ICC 

values compared to the assessment of spectral power, particularly for movement-

related beta activity (ICC=0.386–0.402). The results highlight that power 

measures of movement-related beta oscillations are highly reliable, while 

corresponding peak frequency measures show greater intra-individual variability 

across sessions. Importantly, the finding that beta power estimates show high 

intra-individual reliability over time serves to validate the notion that these 

measures reflect meaningful individual differences that can be utilized in basic 

research and clinical studies. 
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4.2 Introduction 

Oscillatory activity is ubiquitous in the brain and considered essential for the 

encoding and processing of information (Buzsáki and Draguhn, 2004). Neuronal 

oscillations in the beta frequency band (15–30 Hz), prevalent in sensorimotor 

cortex, are related to motor activity, as supported by a range of 

electroencephalography (EEG) and magnetoencephalography (MEG) studies 

showing a modulation of beta oscillations with active and passive movement 

(Alegre et al., 2002), motor imagery (McFarland et al., 2000; Nakagawa et al., 

2011) and movement observation (Babiloni et al., 2002) (for review see (Kilavik 

et al., 2013)). Beta power decreases just prior to and during movement 

(Movement-Related Beta Desynchronization, MRBD), followed by a transient 

post-movement increase above pre-movement levels (Post-Movement Beta 

Rebound, PMBR) (Pfurtscheller and Lopes Da Silva, 1999; Pfurtscheller et al., 

1998b; Salmelin and Hari, 1994; Stancak and Pfurtscheller, 1995), with each of 

these dynamics differentially modulated by experimental factors (for review see 

(Kilavik et al., 2013; Van Wijk et al., 2012)). MRBD is typically observed in both 

contralateral and ipsilateral sensorimotor cortices during unimanual movements, 

while PMBR typically shows a contralateral preponderance (Salmelin and Hari, 

1994; Stancak and Pfurtscheller, 1995).  

In addition to changes in power within the beta frequency band, individual peak 

frequency has been shown to be a behaviourally meaningful parameter of 

oscillatory activity (Kilavik et al., 2012) that differs across regions within the 

sensorimotor cortex (Salmelin and Hari, 1994), and which is of increasing interest 

considering recent attention on extrinsic neurostimulation approaches for 

modulating motor outputs (Guerra et al., 2016; Joundi et al., 2012; Pogosyan et 

al., 2009). However, despite extensive research, the functional relevance of beta 

oscillatory activity is still debated (Engel and Fries, 2010; Jenkinson and Brown, 

2011; Pfurtscheller et al., 1996).  

Direct manipulation of beta oscillations through the application of transcranial 

alternating current stimulation (tACS) at beta frequency can produce a slowing of 

movements (Joundi et al., 2012; Pogosyan et al., 2009) suggesting a causal role 

of sensorimotor beta oscillatory activity in motor control. As outlined in Chapter 
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1, alterations in beta activity are also observed in disease states such as stroke 

(Rossiter et al. 2014) and Parkinson’s disease (Brown, 2007; Heida et al., 2014; 

Heinrichs-Graham et al., 2013; Little and Brown, 2014). Both patient populations 

show a reduction in the amplitude of MRBD together with deficits in some aspects 

of motor control, suggesting that MRBD may be a general assay of the state of 

the motor system, irrespective of the underlying pathophysiology. In addition, 

changes in beta oscillations have been observed with ageing, with resting beta 

power increasing as a function of age (Rossiter et al. 2014; Heinrichs-Graham & 

Wilson 2016), and the amplitude of MRBD and PMBR increasing during 

development (Gaetz et al., 2010).  

Given its potential role as neurophysiological marker of motor system function 

and dysfunction, rhythmic activity at beta frequencies has received considerable 

interest in both basic and clinical research (Nicolo et al., 2015; Takemi et al., 

2015; Ward, 2015; Wu et al., 2015). Measurements of beta activity may provide 

insight into the dynamics of disease, potentially providing a clinically relevant 

biomarker. However, despite prevalent use of EEG/MEG to explore beta 

oscillatory dynamics in normal brain functioning and pathology, to the best of my 

knowledge, no studies have systematically assessed their test-retest reliability 

across multiple recordings. If measures of beta oscillations in healthy individuals 

are highly variable between separate sessions (high intra-individual variability), 

EEG assays of beta oscillatory activity are unlikely to be useful as biomarkers 

(Mayeux, 2004). Reliable spectral estimates of oscillatory activity are therefore a 

prerequisite for studies designed to test longitudinal changes in clinical and non-

clinical populations or therapeutic interventions. 

Based on these considerations, at the beginning of my PhD, I assessed the test-

retest reliability of spectral power and peak frequency measures of movement-

related beta activity in a group of healthy subjects across several weeks. Since 

MRBD and PMBR estimates quantify movement-related changes in beta power 

relative to a pre-movement (resting) baseline, and recent work by Heinrichs-

Graham and colleagues (Heinrichs-Graham and Wilson, 2016) suggests a direct 

relationship between MRBD and pre-movement baseline beta activity, the 

reliability of beta oscillations during the pre-movement (resting) baseline period 
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of the motor task was additionally evaluated. For measures of beta oscillations to 

be reliable and therefore useful biomarkers in basic and clinical research it is 

essential that these measures (I) display small within-subject variability and (II) 

do not change as a function of between-session time interval. 

 

4.3 Methods 

4.3.1 Subjects 

Six healthy subjects (3 females, mean age ±SD = 27±4.7 years) took part in the 

study to assess the test-retest reliability of movement-related beta oscillations 

over six EEG sessions (S1–S6 in Figure 4.3, Figure 4.4, Figure 4.7). The time 

interval between sessions varied from one week for the first five sessions (range 

= 5–9 days, mean between-session time interval ±SD = 7±1 days) to six weeks 

between the fifth and sixth EEG session (range = 39–50 days, mean between-

session time interval ±SD = 43±4 days; Figure 4.1A). This interval design was 

chosen to test for a systematic influence of interval length on test-retest reliability. 

All subjects were right-handed according to the Edinburgh Handedness Inventory 

(Oldfield, 1971), had normal or corrected-to-normal vision, and fulfilled the 

following inclusion criteria: (a) no history of neurological or psychiatric disease; 

(b) no physical disability of the arms or wrists; and (c) no use of drugs affecting 

the central nervous system or self-reported abuse of any drugs. To minimize 

circadian fluctuations in beta oscillatory levels (Toth et al., 2007; Wilson et al., 

2014), all subjects were tested in the time between 9am and 1pm after giving 

written informed consent. 

 

4.3.2 Experimental design 

Subjects performed visually cued wrist flexion and extension with their non-

dominant (left) hand rested in the instrumented wrist rig (see Chapter 3) during 

EEG recording. For a detailed description of the simple motor task, please refer 

to Chapter 3 section 3.2.3. Briefly, during each trial, wrist movements were 

always initiated from the same start position located at the centre of the screen 

that represented the mid-point of a subject’s individual AROM (see Chapter 3 

section 3.2.1 for details about AROM measurement). The cue to perform wrist 
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flexion or extension movements was the random appearance of one of two 

targets (in blue) located equidistant from the central start position (Figure 4.1B, 

upper panel). Each of the targets represented the subject’s maximum wrist flexion 

or extension position. Subjects were instructed to move the wrist upon 

presentation of the target so as to shift the red wrist cursor from the central start 

position to match the position of the target in a ‘quick and discrete’ movement. 

They were also asked to move as soon as possible and to avoid anticipation or 

guessing of target appearance. The target position was displayed for 3 s and 

subjects had to maintain the wrist cursor inside the blue target until being cued to 

return to the initial start position. Once subjects returned to the start position, the 

next cue to move was delivered following a delay of 7±1 s. The task comprised 

120 trials (60 trials for flexion and extension, respectively), and subjects were 

instructed to minimize eye movements by focusing on a centrally located fixation 

cross. 
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Figure 4.1 | Experimental setup and measurements. 

A, Timeline of experiment. Subjects’ EEG was repeatedly recorded over six 

sessions (S1–S6) during the performance of the simple motor task. B, 

Experimental paradigm. Subjects sat in front of a computer monitor and were 

instructed to perform wrist movements to move the wrist cursor (red circle) from 

the initial start position (grey square) to one of two target positions (blue squares) 

upon target presentation. C, Calculation of reaction time (RT), movement time 

(MT) and peak velocity (PV) where the grey patch represents target presentation. 

Velocity profile (blue line) and wrist angular displacement (red line) are shown for 

one trial of an example participant. D, Topographical distribution (top panel) and 

time-frequency map (bottom panel) of movement-related beta activity. 

Topographical plots of grand-average beta power revealed electrodes of peak 

change (highlighted as black-and-white disks) overlying contra- and ipsilateral 
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sensorimotor cortices. Time-frequency map for pooled electrodes contralateral to 

moving hand showing two distinct time windows of peak changes in beta activity 

(MRBD: 1–2 s; PMBR: 6–7 s). 

 

4.3.3 EEG recording 

Scalp EEG was continuously recorded at 2084 Hz by 64 electrodes mounted on 

an elastic cap according to the international 10-20 EEG system. The impedance 

was kept below ≤5 kΩ and the EEG signal was referenced to Cz during recording. 

The timing of the visual cue (blue target) in the motor task was marked in the 

simultaneous EEG recording, with separate triggers for each condition (flexion, 

extension). Muscle activity was monitored by surface electromyography (EMG) 

on the wrist extensor (extensor carpi radialis, ECR) and flexor (flexor carpi 

radialis, FCR) muscles of the non-dominant arm. 

 

4.3.4 Data analysis 

Analyses were conducted using custom-written routines in Matlab and the 

SPM12 toolbox (Wellcome Trust Centre for Neuroimaging, 

www.fil.ion.ucl.ac.uk/spm). The fieldtrip toolbox ((Oostenveld et al., 2011), 

www.ru.nl/fcdonders/fieldtrip/) was additionally employed for EEG data 

visualization. Statistical analyses were performed using SPSS and custom-

written Matlab routines. 

 

4.3.4.1 Behavioural data 

A detailed description of the kinematic data analysis has been provided in 

Chapter 3 section 3.7.1.2. In brief, the angular position of the wrist was filtered 

and differentiated to calculate velocity. Movement onset was defined as the time 

when the velocity of the wrist exceeded a threshold of 5 % of the maximum 

velocity and sustained this speed for at least 100 ms. Movement termination was 

defined as the time when the velocity fell below the threshold for that trial for at 

least 500 ms. For each subject, trials in which the movement was initiated before 

the cue signal, reaction time was excessively long (>mean ±2.5 SD), or 

movement time was excessively long (>mean ± 2.5 SD) were discarded (average 

~7 % of trials). Reaction time (RT), movement time (MT), and peak velocity (PV) 
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were calculated on the remaining trials (average 111±2) for each individual trial 

(Figure 4.1C) and then averaged within each subject for each experimental 

condition. 

 

4.3.4.2 Spectral power and peak frequency measures 

Pre-processing and time-frequency analysis of EEG data recorded during the 

performance of the simple motor task has been detailed in Chapter 3 section 

3.7.2. In brief, the raw EEG signal was first offline re-referenced to the average 

signal across all electrodes, bandpass filtered between 5–100 Hz, additionally 

filtered with a 50Hz notch filter, and downsampled to 300 Hz. Data were epoched 

from -1 to 9 s relative to visual cue onset (0 s). Poorly performed trials (see 

section 4.3.4.1) were excluded and the remaining EEG trials were visually 

scrutinized. Trials containing artefacts (e.g. muscle activation or large eye blinks) 

were additionally removed. For each session, on average 92±10 artefact-free 

EEG trials remained for further analyses, and number of trials did not differ 

between conditions (p>0.4) or sessions (p>0.1, repeated-measures ANOVA). 

Artefact-free EEG time-series from each single trial were decomposed into their 

time-frequency representations in the 5–45 Hz range with frequency steps of 

0.1 Hz. A 7-cycle Morlet wavelet was used for the continuous wavelet 

transformation. Power was averaged across trials and rescaled in order to show 

changes in power relative to the corresponding pre-movement baseline period (-

1–0 s prior to cue onset) (Equation 3.6). 

To select electrodes and time-frequency windows of interest that were orthogonal 

to potential differences between sessions and conditions, firstly activity in the a 

priori chosen beta frequency band (15–30Hz, (Jurkiewicz et al., 2006; Van Wijk 

et al., 2012; Yamawaki et al., 2008)), grand-averaged over subjects, sessions 

and conditions was examined. Then, electrodes of peak change in beta 

oscillations were selected from topographical distributions of normalized power 

(% power), plotted for several time points after cue onset. The topographical 

maps revealed clear movement-related beta activity (MRBD, PMBR) overlying 

the sensorimotor cortices, both contralateral and ipsilateral to the moving hand 

(Figure 4.1C; MRBD: ‘C4’ ‘CP4’ ‘CP2’ and ‘C3’ ‘CP3’ ‘CP1’ for contra- and 

ipsilateral hemispheres, respectively; PMBR: ‘C2’ ‘C4’ ‘CP4’ and ‘C1’ ‘C3’ ‘CP3’ 
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for contra- and ipsilateral hemispheres, respectively). These bilateral electrodes 

were pooled as contra- and ipsilateral regions of interest, respectively. Note that 

PMBR was located slightly more anterior to the central midline than the MRBD, 

consistent with previous EEG (Pfurtscheller et al., 1996) and MEG (Salmelin and 

Hari, 1994) studies.  

Next, time-frequency windows were chosen based on peak changes in beta 

activity in time-frequency maps of these bilateral sensorimotor regions, which 

revealed clear movement-related beta-band activity in two distinct time windows 

of interest (Figure 4.1D). This information was used to optimize the alignment of 

constant duration (1 s) and width (15 Hz) time-frequency windows to capture 

maximum MRBD (1–2 s relative to cue onset), occurring between cue onset and 

movement termination, and PMBR (6–7 s relative to cue onset), which emerges 

after movement termination. Selected time-frequency windows and electrodes 

applied to all subjects and sessions, and were not adjusted individually. 

Subsequently, for each individual subject, session and condition, mean 

percentage decrease (MRBD) and increase (PMBR) in beta power were 

extracted from the respective 1s time windows and averaged over the pre-

selected electrodes for each hemisphere. The absolute pre-movement (resting) 

baseline beta (BB) power from -1 to 0 s relative to cue onset was also obtained 

and assessed for reliability.  

In addition, individual beta peak frequency was determined semi-automatically 

for each corresponding time window (BB: -1–0 s; MRBD: 1–2 s, PMBR: 6–7 s). 

The peak frequency for the MRBD and PMBR were determined as the 

frequencies having the largest change in spectral power compared to baseline 

beta power. For the absolute power of baseline beta (BB), first the 1/f shape of 

the power spectrum was eliminated by fitting and subsequent subtraction of a 

straight line after log-log transformation (see e.g. (Nikulin and Brismar, 2006), 

Figure 4.2). All peaks were selected from the 15–30 Hz frequency range with 

0.1 Hz resolution. Cases where no clear peak was present (e.g. Subject 5 

Session 1 contra- and ipsilateral hemisphere, and Session 2 contralateral 

hemisphere), were left out of the analyses. 

In total, 12 different beta parameter estimates were used for subsequent analysis: 

pre-movement beta baseline (absolute power and peak frequency), MRBD 
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(relative power and peak frequency) and PMBR (relative power and peak 

frequency) from contra- and ipsilateral sensorimotor cortices, respectively. 

 

 

Figure 4.2 | Beta peak frequency detection. 

Beta peak frequency was detected using least square fit procedure to remove 1/f 

component from spectrum. A, Power spectrum of one example subject (subject 

1) who did not show a clear peak in the beta frequency range (grey dashed 

rectangle). Black dashed line indicates 1/f component obtained from least square 

fit of log-log transformed data. Inset shows enlarged view of the spectrum for the 

beta frequency range. B, Corrected spectrum (after subtraction of 1/f 

component). Note that in the uncorrected spectrum (A) local maxima were found 

at 15 Hz or 18.2 Hz, whereas the peak is at 20.7 Hz in B.  

 

4.3.5 Statistical Analysis 

Separate repeated-measures ANOVAs were used to test for differences between 

sessions, hemispheres and conditions for each of the beta parameter estimates, 

with ‘time’ (6 levels: sessions 1-6), ‘hemisphere’ (2 levels: contralateral vs 

ipsilateral), and ‘condition’ (2 levels: flexion vs extension) as within-subject 

factors. A Greenhouse-Geiger correction was applied whenever Mauchly’s test 

indicated a lack of sphericity. Post hoc Bonferroni-adjusted paired-samples t-

tests were performed whenever a main effect was detected. Prior to ANOVA and 

paired-samples t-tests, Kolmogorov-Smirnov test was used to assess normality. 

All beta parameter estimates and kinematic measures were normally distributed.   

The main focus of the statistical analysis was to determine the reproducibility of 

absolute and relative beta power parameter estimates as well as their 
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corresponding peak frequencies. For this, Pearson correlations were used to 

assess reliability between two EEG sessions, while Intraclass Correlation 

Coefficients (ICC) (McGraw and Wong, 1996; Shrout and Fleiss, 1979), based 

on two-way random effects analysis of variance, were computed to assess the 

degree of consistency between all six sessions. The ICC method has been widely 

used (Muthukumaraswamy et al., 2010; Plichta et al., 2012; Tan et al., 2016a, 

2015) and assesses the reliability of repeated measures of an individual’s beta 

parameters by comparing the proportion of within-subject variability to all sources 

of variance; thus, a high ICC value means that within-subject variability is low and 

that most of the variance is caused by differences between subjects. Following 

Landis and Koch (1977) suggestions, ICC was rated on the following agreement 

level:  0.2–0.4 fair, 0.4–0.6 moderate, 0.6–0.8 substantial and >0.8 almost perfect 

(Landis and Koch, 1977). ICCs were assessed for both movement-related and 

absolute pre-movement baseline beta activity derived from both sensorimotor 

cortices. To account for multiple comparisons in the ICC analysis, the significance 

level was Bonferroni-corrected (corrected p values: 0.05/12 for beta parameter 

estimates and 0.05/6 for kinematic measures). In addition, exploratory Monte-

Carlo simulations (50 iterations) were performed to investigate the minimum 

number of trials (5–50 trials; max trial number was limited by the smallest number 

of remaining trials across subjects and sessions) required to obtain highly reliable 

(ICC>0.8) beta power measures. 

  

4.4 Results 

Behavioural and EEG data during the performance of the simple motor task 

across six separate sessions for six healthy subjects are reported.  

 

4.4.1 Behavioural results 

All subjects were able to perform the motor task. The kinematic measures are 

summarised in Table 4.1 for each of the six EEG sessions. As expected, reaction 

time (RT), movement time (MT) and peak velocity (PV) in the motor task were 

stable across separate sessions, as confirmed by a lack of main effect of ‘time’ 

for all kinematic measures [RT: F(5,20)=2.242, p=0.156; MT: F(5,20)=3.661, 

p=0.087; PV: F(5,20)=0.414, p=0.709, all Greenhouse-Geisser corrected]. 
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Subjects performed flexion and extension with similar kinematics [RT: 

F(1,4)=0.714, p=0.446; MT: F(1,4)=5.243, p=0.084; PV: F(1,4)=0.771, p=0.430] and 

no significant interactions between ‘time’ and ‘condition’ were found [RT: 

F(5,20)=1.29, p=0.328; MT: F(5,20)=2.37, p=0.159; PV: F(5,20)=3.12, p=0.090, all 

Greenhouse-Geisser corrected]. Since there was no significant difference 

between conditions (flexion, extension), the subsequent results are based on 

kinematic data collapsed across conditions. Reliability analysis across sessions 

revealed ICCs of fair to substantial agreement [ICCRT=0.750, p<0.0001, 

ICCMT=0.370, p=0.002], with peak velocity demonstrating highest intra-individual 

reliability [ICCPV=0.774, p<0.0001]. This suggests that movement execution 

remained similar across sessions and that significant neurophysiological 

differences between sessions cannot be explained by changes in movement 

kinematics. 

 

Table 4.1 | Summary of kinematic measures acquired during the 

performance of the simple motor task for each EEG session. 

  Session 

  S1 S2 S3 S4 S5 S6 

RT [ms] 
Flex 

Ext 

529±41 

583±140 

543±48 

583±99 

550±38 

592±134 

536±80 

577±172 

492±53 

518±101 

501±49 

531±124 

MT [ms] 
Flex 

Ext 

905±166 

780±109 

822±162 

664±96 

793±120 

788±158 

767±79 

650±114 

768±92 

660±153 

753±75 

650±139 

PV [deg/s] 
Flex 

Ext 

238±93 

270±107 

238±85 

247±78 

238±57 

226±48 

235±74 

235±87 

257±97 

264±111 

246±76 

268±117 

Kinematic measures are presented for each EEG session (S1–S6) and condition 

(flexion, extension). RT: Reaction Time; MT: Movement Time;  PV: Peak. Values 

given are mean ±SD 

 

4.4.2 Spectral power and peak frequency measures 

Average spectral changes in contralateral and ipsilateral sensorimotor cortices in 

response to cue presentation are shown in Figure 4.3 for each EEG session. 

After cue onset and during movement, a reduction in beta power, MRBD, was 

observed in both sensorimotor cortices with two distinguishable troughs: the first 
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during the movement towards the target and the second during the return to the 

initial start position. During the static contraction/holding phase of the motor task 

the strength of beta power increased. This is in agreement with studies 

demonstrating an increase in beta power as soon as the contraction becomes 

stable (Baker et al., 1999) or the movement is sustained (Cassim et al., 2000) in 

line with the hypothesis that beta oscillations play a role in stabilizing the current 

motor state whilst compromising initiation of new movements (Engel and Fries, 

2010; Gilbertson et al., 2005b; Van Wijk et al., 2009). After return movement 

cessation, a strong but transient increase in beta power, PMBR, was observed 

predominantly in contralateral sensorimotor cortex. The gross morphology of the 

pattern of movement-related beta oscillations in both sensorimotor cortices 

shows good resemblance between shorter and longer between-session time 

intervals.  

 

 

Figure 4.3 | Average movement-related changes in spectral power. 

A, Topographies of relative power change in beta frequency (15–30 Hz) during 

and after movement are averaged over the time window of interest 1–2 s and 6–

7 s for MRBD and PMBR, respectively, as indicated by the black rectangles. 

Time-frequency spectrograms are averaged across subjects separately for 

contralateral (upper panel) and ipsilateral (lower panel) sensorimotor cortex for 

all EEG sessions and highlight good resemblance of gross morphology. B, 

Overlaid averaged beta power traces for the six sessions (S1 = blue, S2 = orange, 

S3 = yellow, S4 = purple, S5 = green, S6 = light blue). The grey patches indicate 

the time windows of interest (MRBD and PMBR) that were tested for significant 

differences between sessions and hemispheres.  



Intra-individual reliability of movement-related beta oscillations 

116   
 

 

Estimates of power change during movement (MRBD) and after movement 

cessation (PMBR) were both unaffected by ‘time’ or ‘condition’ (F-statistics and 

p-values of all ANOVAS are summarized in Table 4.2).  In addition, while no main 

effect of ‘hemisphere’ on the magnitude of MRBD was found, PMBR was 

significantly stronger in contralateral than ipsilateral sensorimotor cortex 

[F(1,5)=7.03, p=0.045, effect size ƞp
2=0.584], indicating contralateral 

predominance of the beta power rebound. Throughout the pre-movement 

baseline period, absolute power estimates were similar across all sessions, 

conditions and both sensorimotor cortices. Likewise, no significant ‘time x 

condition’, ‘time x hemisphere’, ‘hemisphere x condition’ or ‘time x hemisphere x 

condition’ interaction effects were found for any of the spectral power measures.  

Peak frequency of beta activity in the pre-movement baseline period as well as 

in the time window in which MRBD occurred did not differ significantly within 

subjects between sessions, conditions or hemispheres. In contrast, PMBR peak 

frequency varied as a function of ‘time’ (F(5,25)=2.70, p=0.044, effect size 

ƞp
2=0.351), but not ‘condition’ or ‘hemisphere’. Finally, there were no significant 

interactions for any of the peak frequency measures (Table 4.2). 
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Table 4.2 | ANOVA results for spectral power and peak frequency 

estimates. 

 Time Condition Hemisphere Interactions 

Power 

BB F(5,25)=1.45, 

p=0.240 

F(1,5)=0.01, 

p=0.958 

F(1,5)=1.44, 

p=0.284 

n.s. 

MRBD F(5,25)=0.77, 

p=0.583 

F(1,5)=0.46, 

p=0.528 

F(1,5)=2.68, 

p=0.163 

n.s 

PMBR F(5,25)=1.88, 

p=0.134 

F(1,5)=1.02, 

p=0.359 

F(1,5)=7.03, 

p=0.045 

n.s 

Peak Frequency 

BB F(5,25)=1.21, 

p=0.341 

F(1,5)=0.69, 

p=0.454 

F(1,5)=2.45, 

p=0.192 

n.s 

MRBD F(5,25)=0.35, 

p=0.876 

F(1,5)=0.99, 

p=0.375 

F(1,5)=0.63, 

p=0.471 

n.s. 

PMBR F(5,25)=2.70, 

p=0.044 

F(1,5)=0.00, 

p=0.959 

F(1,5)=0.09, 

p=0.777 

n.s. 

Significant effects are indicated in bold. BB: pre-movement baseline beta; 

MRBD: Movement-related Beta Desynchronization; PMBR: Post-movement 

Beta Rebound; n.s.: not significant. 

 

4.4.2.1 Reliability of spectral power and peak frequency measures 

Figure 4.4 shows the pre-movement baseline and movement-related beta 

parameter estimates derived from contralateral and ipsilateral sensorimotor 

cortices. The degree of clustering in these plots provides a visual impression of 

the within- and between-subject variability. Individual baseline beta power ranged 

approximately 13.87–49.76 µV2 in both sensorimotor cortices with an average of 

27.6±9.79 µV2 (mean ±SD), while within-subject variability was small with a range 

of 1.19–4.90 µV2 (Figure 4.4A, left column). The magnitude of MRBD ranged 

between -52.1 to +20.2 % with an average of -30.4 ±14.1 % and -25.8±17.5 % 

for contralateral and ipsilateral sensorimotor cortex, respectively (Figure 4.4A, 

middle column). PMBR in contralateral sensorimotor cortex ranged 

between -10.1 and +70.6 % (25.4±19.7 %) whereas it only ranged between -12.6 

and +28.1 % (10.2±7.4 %) in ipsilateral sensorimotor cortex (Figure 4.4A, right 
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column). By contrast, within-subject variability for MRBD and PMBR power 

measures was small and fell within a range of ~2–7 % per subject. 

Individual peak frequencies during the pre-movement baseline period fell within 

a frequency range of 17.4 to 23.9 Hz (19.8±1.5 Hz) and displayed small within-

subject variability of 0.2–1.6 Hz (Figure 4.4B, left column). In comparison, peak 

frequencies of movement-related beta oscillations spanned frequencies from 

16.2–29.1 Hz with an average of 20.8±2.2 Hz for MRBD (Figure 4.4B, middle 

column) and 22.7±3.7 Hz for PMBR (Figure 4.4B, right column). Notably, within-

subject variability was relatively large and ranged from approximately 0.4–4.8 Hz 

per subject.  
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Figure 4.4 | Test-retest reliability of beta-band activity. 

Test-retest reliability of spectral power (A) and peak frequency (B) measures 

across separate sessions (S1–S6). Individual values were extracted for each 

EEG session from pre-selected electrodes overlying contralateral (grey shading) 

and ipsilateral sensorimotor cortex and distinct time windows (BB: -1–0 s; MRBD: 

1–2 s; PMBR: 6–7 s). The degree of clustering gives a visual impression of the 



Intra-individual reliability of movement-related beta oscillations 

120   
 

within-subject and between-subject variation. Black horizontal bars represent 

grand-mean (across sessions) for each subject.  

 

For a quantitative measure of repeatability of beta oscillations, Intraclass 

Correlation Coefficients (ICC) were calculated for spectral power of the selected 

time windows (pre-movement baseline, MRBD and PMBR) and the 

corresponding peak frequency. Overall, ICC values indicated almost perfect 

reliability for power measures [mean ICC=0.832, ICC range=0.490–0.912, 

p<0.001; refer to Figure 4.5A], but only moderate reliability for peak frequency 

estimates [mean ICC=0.537, ICC range=0.231–0.929, p<0.033; refer to Figure 

4.5B]. ICC values were consistently highest for pre-movement baseline beta 

power [contralateral sensorimotor cortex: ICC=0.894, p<0.0001; ipsilateral 

sensorimotor cortex: ICC=0.907, p<0.0001], followed by MRBD [contralateral 

sensorimotor cortex: ICC=0.859, p<0.0001; ipsilateral sensorimotor cortex: 

ICC=0.907, p<0.0001] and PMBR power measures [contralateral sensorimotor 

cortex: ICC=0.818, p<0.0001; ipsilateral sensorimotor cortex: ICC=0.420, 

p<0.001]. Interestingly, ICC values derived for pre-movement baseline beta and 

MRBD power estimates yielded slightly higher reliability for ipsilateral than 

contralateral sensorimotor cortex, while reliability of PMBR power estimates was 

higher for contralateral sensorimotor cortex. The lower ICC value for PMBR 

power from ipsilateral sensorimotor cortex was likely due to low between-subject 

variability, with most values ranging between 0 % and 20 %, thereby primarily 

reflecting random fluctuations around the baseline level (Figure 4.4A).  

Assessment of peak frequency yielded a similar reliability trend, with pre-

movement baseline beta peak frequency showing highest ICC values 

[contralateral sensorimotor cortex: ICC=0.717, p<0.0001; ipsilateral sensorimotor 

cortex: ICC=0.929, p<0.001], followed by MRBD [contralateral sensorimotor 

cortex: ICC=0.540, p<0.0001; ipsilateral sensorimotor cortex: ICC=0.231, 

p<0.05] and PMBR peak frequency [contralateral sensorimotor cortex: 

ICC=0.483, p<0.01; ipsilateral sensorimotor cortex: ICC=0.321, p<0.01]. Beyond 

the lower reliability of peak frequency measures compared to spectral power 

measures of beta activity, movement-related beta peak frequency estimates 
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showed substantially lower reliability, and this appeared to be driven by greater 

within-subject variability across sessions (Figure 4.4B).  

In summary, the ICC values indicate that spectral power measures of beta activity 

were more consistent across EEG sessions than the corresponding peak 

frequency measures. Additionally, peak frequency during the pre-movement 

(resting) baseline period was more reliable compared to peak frequency 

estimates of MRBD and PMBR. 

 

 

Figure 4.5 | Intraclass correlation coefficient (ICC) analysis. 

Test-retest reliability of spectral power (A) and peak frequency (B) measures of 

beta oscillatory activity derived from contralateral and ipsilateral sensorimotor 

cortices, respectively. Values given are intraclass correlations (ICCs). Grey error 

bars represent lower and upper boundaries of the ICC. ICCs > 0.8 indicate almost 

perfect levels of agreement across sessions. Spectral power measures 

demonstrate high reliability across sessions while frequency measures were 

more variable. 

 

To assess reliability of beta power estimates as a function of the number of trials 

required (i.e. 5, 10, 50), exploratory Monte-Carlo simulations were performed. 

Figure 4.6 shows the minimum number of trials required in order to obtain 

estimates of beta power that show satisfying within-subject reliability across 

sessions. Based on these findings, the minimum number of trials required to 

achieve high ICC values varies for the three different beta power measures, but 

on average at least 40 trials are advisable to reliably detect these beta dynamics.  
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Figure 4.6 | Intraclass correlation coefficients as a function of trial number. 

Monte-Carlo simulations in which ICC was repeatedly calculated (50 iterations), 

using varied numbers of trials (5–50 trials), were used to assess the relationship 

between trial number and reliability of pre-movement (resting) and movement-

related beta power measures derived from both sensorimotor cortices. 

ICCs > 0.8 indicate almost perfect levels of agreement across sessions. Error 

bars represent SEM. On average, 40 trials were sufficient to reliably detect beta-

band dynamics.   

 

4.4.2.2 Reliability as a function of time 

To explore whether test-retest reliability varies as a function of time interval 

between sessions (i.e. one week apart: session 1–2; two weeks apart: session 

1–3; six weeks apart: session 5-6), we calculated Pearson correlation coefficients 

between each session. Figure 4.7 illustrates the correlation coefficients between 

EEG sessions, separately for spectral power (Figure 4.7A) and peak frequency 

(Figure 4.7B) measures in the pre-movement baseline (Figure 4.7, left column), 

MRBD (Figure 4.7, middle column) and PMBR (Figure 4.7, right column) time 

window. The correlations fluctuated across beta parameter estimates and 

hemispheres, but no systematic influence of the length of the time interval was 

observed. Whereas the correlations for pre-movement baseline beta and MRBD 

power estimates were consistently high across the different test-retest intervals 

for both contralateral [BBP: r range=0.880–0.988, p range=0.0002–0.021; 

MRBD: r range=0.880–0.988, p range=0.0002–0.021] and ipsilateral 

sensorimotor cortices [BBP: r range=0.750–0.980, p range=0.0006–0.060; 

MRBD: r range=0.750–0.980, p range=0.0006–0.060], the coefficients for PMBR 

power showed larger variability, specifically in the ipsilateral [r range=0.075–
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0.900, p range=0.014–0.888] compared to the contralateral [r range=0.602–

0.971, p range=0.006–0.207] hemisphere. The notable hemispheric variation in 

test-retest reliability of PMBR potentially resulted from the absence of an 

ipsilateral peak in PMBR. While spectral power measures of beta activity 

demonstrated consistently high between-session correlations, correlation 

coefficients for peak frequency estimates varied widely. Particularly low 

coefficients were obtained for movement-related beta activity from contralateral 

[MRBD: r range=-0.427–0.920, p range=0.009–0.743; PMBR: r range=0.161–

0.957, p range=0.003–0.760] and ipsilateral [MRBD: r range=-0.559–0.954, p 

range=0.003–0.958; PMBR: r range=-0.438–0.796, p range=0.035–0.916] 

sensorimotor cortex, while peak frequency of pre-movement baseline beta 

activity was somewhat more consistent between sessions [contralateral 

sensorimotor cortex: r range=0.285–0.935, p range=0.006–0.642; ipsilateral 

sensorimotor cortex: range=0.439–0.975, p range=0.0009–0.384]. 
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Figure 4.7 | Between-sessions correlation coefficients. 

Between-session (S1–S6) correlation coefficients and corresponding intraclass 

correlation coefficients (ICCs) for spectral power and peak frequency estimates 

for contralateral (grey shading) and ipsilateral sensorimotor cortices. The colour 

bar indicates the correlation coefficients (r) presented in the matrices.  
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4.5 Discussion 

By implementing a longitudinal design, it was possible to characterise the intra-

individual reliability of sensor-derived EEG-based oscillatory measures in the 

power and frequency domain, and assess their reliability as a function of time 

interval between sessions. 

 

4.5.1 Movement-related beta oscillations show high test-retest reliability 

The present study assessed the test-retest reliability of movement-related and 

pre-movement (resting) beta oscillatory activity in a group of healthy subjects 

across several weeks. The aim was to determine whether EEG-derived spectral 

power and peak frequency measures of beta oscillations (I) show small within-

subject variability and (II) are stable as a function of between-session time 

interval, two prerequisites for their use as clinically relevant biomarkers. The 

present results demonstrate that spectral power estimates of resting (BB: 

average ICC=0.901) and movement-related beta activity (MRBD: average 

ICC=0.883; PMBR: average ICC=0.619) are remarkably consistent across 

sessions. In addition, corresponding peak frequency measures yielded lower ICC 

values compared to the assessment of spectral power. While pre-movement 

baseline beta peak frequency was highly reliable across sessions, peak 

frequency measures of movement-related beta activity displayed greater within-

subject variability (MRBD: average ICC=0.386; PMBR: average ICC=0.402). The 

respective between-session correlation coefficients further corroborate these 

findings. This suggests that measures of spectral power as well as resting peak 

frequency reflect stable individual activation patterns that could be used to 

evaluate functional dynamic changes in the brain, such as the impact of disease 

or treatment administration. 

Abundant evidence exists for the reliability of spontaneous resting-state beta 

activity within the same recording session and between sessions with time 

intervals of days, weeks and up to years (e.g. Pollock et al. 1991; Burgess & 

Gruzelier 1993; Kondacs & Szabo 1999; McEvoy et al. 2000; Nikulin & Brismar 

2004; Corsi-Cabrera et al. 2007; Napflin et al. 2007; Martin-Buro et al. 2016)). 

However, there is no such literature on movement-related beta oscillations, even 

though these beta-band dynamics appear to be especially interesting in the study 
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of individual differences related to tracking performance. Studies investigating 

event-related oscillatory activity using cognitive and imagery tasks highlight that 

their reliability varies as a function of frequency band, brain region and type of 

task (Friedrich et al., 2013; Krause et al., 2001; Neuper et al., 2005).  

Whilst beta oscillations have shown acceptable between-session reliability 

(Cronbach’s alpha > 0.7) during motor imagery (Friedrich et al., 2013), little is 

known regarding reliability during active movements. An indirectly related study 

from Wilson and colleagues (Wilson et al. 2014) found a linear increase from 

morning (9:00) to afternoon (16:00) in the amplitude of MRBD and PMBR during 

a finger tapping task, but small variability over three consecutive days, indicating 

the reliability of movement-related beta-band signatures. The current study 

augments the work by Wilson and colleagues by systematically assessing the 

reliability of spectral power and peak frequency estimates of movement-related 

beta activity across several weeks.  

Compared to previous studies, the motor task utilized in this study involved wrist 

flexion and extension, which are known to elicit stronger PMBR compared to 

finger and thumb movement (Pfurtscheller et al., 1998a). As a result, consistent 

with prior findings, bilateral suppression of beta oscillatory activity during 

movement (Gross et al., 2005; Pfurtscheller et al., 1996; Salmelin and Hari, 1994) 

and clear beta rebound after movement termination, which was significantly 

larger for contralateral compared to ipsilateral motor cortex (Salmelin and Hari, 

1994; Stancak and Pfurtscheller, 1995) was found. Rau et al. (2003) 

demonstrated that ipsilateral MRBD corresponds to increased cortical excitability 

of ipsilateral M1, in line with the argument that MRBD indicates activation of the 

sensorimotor cortex (Pfurtscheller and Berghold, 1989; Pfurtscheller and Lopes, 

1999; Rau et al., 2003). However, ipsilateral MRBD has also been proposed to 

reflect neural processes inhibiting mirror movements through interhemispheric 

inhibition (Jurkiewicz et al., 2006; Van Wijk et al., 2012). In contrast, PMBR has 

been associated with inhibition of movement initiation (Gilbertson et al., 2005b) 

in conjunction with decreased corticospinal excitability (Chen et al., 1998). 

Although the functional role of ipsilateral activity in unimanual motor tasks is not 

fully understood, the different contra- and ipsilateral modulation patterns for 
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MRBD and PMBR imply that these beta-band dynamics are, at least to a certain 

degree, independent processes with distinct functional significance. 

The high test-retest reliability of movement-related beta power measures suggest 

that they might be useful in repeated-measures studies, for example, 

investigating longitudinal changes in clinical and non-clinical populations or 

assessing the impact of pharmacological interventions. ICC values for MRBD and 

PMBR estimates were comparably high in both contralateral and ipsilateral 

sensorimotor cortices, except for PMBR from the ipsilateral hemisphere, which 

was markedly lower. A reliable measure (high ICC) requires small within-subject 

variance relative to between-subject variance. Closer inspection suggests that 

the reduced reliability observed for the ipsilateral PMBR was related to the low 

between-subject variability of this power estimate (see Figure 4.4A). In line with 

previous studies demonstrating a contralateral preponderance of PMBR 

(Salmelin and Hari, 1994; Stancak and Pfurtscheller, 1995), the ipsilateral PMBR 

estimates likely reflect random fluctuation around the baseline level, which 

explains the low between-subject variability and therefore, the lower ICC value.  

Individual variability in EEG-derived estimates of beta-band oscillations can be 

accounted for not only by neural signals of the brain but also by the conductivity 

of the electrical tissue between the current source and the recording electrode 

(Buzsáki et al., 2012; Lopes da Silva, 2011). While factors such as pyramidal cell 

density, cortical microarchitecture, skull thickness and skin conductance affect 

sensor-derived measures of neuronal oscillations and thus are likely to account 

for subject-specific differences, they are also expected to be stable over time and 

therefore also contribute to low intra-individual variability. Accordingly, the 

present findings that test-retest reliability of beta oscillatory activity was 

independent of between-session time intervals may be attributed to these stable 

individual differences and a consistent behaviour during the performance of the 

motor task. However, it should be noted that some of the spectral power 

measures were less reliable than others (i.e. ipsilateral PMBR), demonstrating 

that reliability of sensor-derived measures is not solely due to these 

morphological differences but reflects the variable stability of different neural 

signals.  
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Compared to spectral power, peak frequency displayed greater within-subject 

variability (see Figure 4.4B). Although peak frequency during the pre-movement 

baseline period yielded the highest measures of reliability, test-retest reliability 

was lower compared to spectral power measures, in particular for contralateral 

sensorimotor cortex. Peak frequency estimates of MRBD and PMBR displayed 

fair-to-moderate reliability. Importantly, the reduced test-retest reliability of 

movement-related beta peak frequency compared to resting peak frequency 

seems to be related to the active engagement of the motor system. It should be 

noted that peak detection for pre-movement baseline beta in some cases was 

ambiguous when the power spectra showed no clear peak in the beta range even 

after compensation for the 1/f effect. Furthermore, some subjects displayed 

double frequency peaks during movement-related beta modulation in line with 

previous studies suggesting a functional subdivision into low and high 

frequencies within the beta band (Litvak et al., 2011; Oswal et al., 2016; Van Wijk 

et al., 2016). These factors might be reasons why ICC values were lower. 

While measures of beta activity may be affected by a variety of factors, the 

present study provides evidence that these signatures are highly reliable and 

consistent over several weeks in a small sample of healthy subjects. The almost 

perfect intra-individual reliability and high number of sessions provide support to 

the finding of stable beta power measures. This is important as EEG is an 

excellent tool for the identification of widely-available and cost-effective 

biomarkers that might have the potential to bridge the gap between cellular and 

behavioural accounts of cortical function and plasticity in both healthy and 

diseased states (Ward, 2015). Establishing the reproducibility of neuronal 

oscillations is crucial for the identification of EEG-derived biomarkers, with 

substantial clinical utility for patient stratification and prediction of treatment 

response.  

A potential limitation of this study is the sample of healthy young subjects, which 

limits the generalizability of the reliability results. In particular, resting and 

movement-related beta-band estimates have been shown to be modulated by 

healthy ageing (Gaetz et al. 2010; Rossiter et al. 2014; Heinrichs-Graham & 

Wilson 2016) and pathology (Brown 2007; Heinrichs-Graham et al. 2013; Heida 

et al. 2014; Rossiter et al. 2014) possibly resulting in different reliability patterns. 
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Future studies should thus determine the reliability of movement-related beta-

band activity across the lifespan and in the context of movement disorders. 

  

4.5.2 Conclusion 

In conclusion, this study is the first to comprehensively evaluate the reliability of 

spectral power and peak frequency measures of movement-related beta 

oscillations across several weeks. The present study highlights that spectral 

power measures of EEG-derived oscillatory signatures associated with the 

performance of a motor task are highly reproducible. This finding is important as 

it suggests that measurements of beta-band power reflect meaningful and 

reliable individual differences in the motor system that may be utilized as 

biomarkers in clinical and/or longitudinal research. In addition, the assessments 

indicate that beta peak frequencies are more variable across sessions which 

should be taken into account when using extrinsic neurostimulation at beta 

frequency (Guerra et al., 2016; Joundi et al., 2012; Pogosyan et al., 2009). 

Overall, the highly reproducible nature of beta oscillations suggests that they may 

be an appropriate assay for longitudinal studies and/or clinical studies employing 

sensor-derived EEG-based oscillatory read-outs. 
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 Predicting individual differences in motor 

skill learning  

5.1 Abstract 

People vary in their capacity to learn and retain new motor skills, but the 

electrophysiological mechanisms underlying individual differences in motor 

learning are incompletely understood. The findings reported in Chapter 4 served 

to validate the notion that EEG-derived measures of beta-band activity reflect 

meaningful individual differences, a prerequisite for exploring their relationship 

with motor learning behaviour in humans. Employing a multivariate approach, I 

here investigate whether these standard measures of resting and movement-

related beta power from bilateral sensorimotor cortex could explain inter-

individual differences in motor learning behaviour. Twenty young (18–30 years) 

and twenty elderly (62–77 years) healthy adults were trained on the continuous 

tracking task introduced in Chapter 3 and subsequently retested at two different 

time points after initial training (45–60 min and 24 hours later). Scalp EEG was 

recorded during the performance of the simple motor task before each training 

and retest session.  

Although short-term motor learning was comparable between young and elderly 

individuals, elderly subjects exhibited higher resting beta power and movement-

related beta desynchronization (MRBD). Multivariate modelling within leave-one-

out cross-validation (LOOCV) revealed that a combination of subjects’ behaviour 

on the continuous tracking task together with movement-related beta activity 

significantly predicted performance levels 45–60 min, but not 24 hours after initial 

training. Crucially, pre-training levels of movement-related beta activity helped to 

explain individual differences in performance in a way that behaviour alone could 

not. In the context of disease, these findings suggest that measurements of beta-

band activity may offer novel targets for therapeutic interventions designed to 

promote rehabilitative outcomes after brain injury. 
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5.2 Introduction 

The ability to learn and retain new motor skills is pivotal for everyday motor 

activities and sustained independence in senior adults (Seidler et al., 2010). As 

outlined in Chapter 1, the process of learning a motor skill does not only involve 

the improvement in performance during initial training (online) but also 

performance changes after training ended (offline). Following training, motor 

memory consolidation takes place, resulting in retention of the acquired motor 

skill or even further improvements (Brashers-Krug et al., 1996a; Halsband and 

Lange, 2006; Magill, 2011; Robertson et al., 2004a; Walker, 2005). However, 

people show considerable inter-individual heterogeneity in their capacity to learn 

and retain new skills. Understanding the neurophysiological processes 

underlying individual differences, and their predictive value in the context of motor 

learning, is of significant scientific and clinical importance for improving response 

to treatment and long-term outcomes of rehabilitation in the elderly and patients 

with brain injury (Stinear, 2010; Ward, 2017).  

Neuroimaging studies have revealed substantial motor learning-related plasticity 

within the sensorimotor cortex network, involving functional and structural 

reorganization that occurs early during motor skill acquisition (Halsband and 

Lange, 2006; Karni et al., 1995; Muellbacher et al., 2002; Nudo et al., 1996a; 

Robertson et al., 2005; Sanes and Donoghue, 2000). Crucially, this includes the 

modulation of GABAergic inhibitory activity as discussed in detail in Chapter 1 

(Buetefisch et al., 2000; Floyer-Lea et al., 2006; Pleger et al., 2003; Stagg et al., 

2011a). Changes in the balance between GABAergic inhibitory and glutamatergic 

excitatory processes are one major mechanism through which the potential for 

plasticity is regulated (Bavelier et al., 2010; Benali et al., 2008), and are thought 

to be reflected in the amplitude of oscillations as picked up with 

electroencephalography (EEG) (Jensen et al., 2005; Murakami and Okada, 2006; 

Traub et al., 2004; Yamawaki et al., 2008).  

Oscillations in the beta (15–30 Hz) frequency range, prevalent in sensorimotor 

cortex, are fundamental for motor control (Engel and Fries, 2010; van Wijk et al. 

2012). It is well established that beta-band oscillations are dominant at rest and 

show distinctive movement-related power modulations, including the suppression 

of beta oscillations during movement (Movement-Related Beta 
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Desynchronization, MRBD) and a rebound after movement cessation (Post-

Movement Beta Rebound, PMBR) (Pfurtscheller and Lopes Da Silva, 1999; 

Pfurtscheller et al., 1998a; Salmelin and R. Hari, 1994; Stancak and Pfurtscheller, 

1995). While their relationship with motor behaviour is well established, the 

functional role of resting and dynamic movement-related beta activity for the 

capacity to both learn and retain new motor skills remains unclear.  

The main objective of this study was to (I) explore the neurophysiological 

mechanisms associated with individual differences in short-term motor learning 

behaviour in healthy ageing subjects. By including both young and elderly 

subjects, inter-subject variability was maximised, because alterations in beta 

oscillations have been seen with ageing (Gaetz et al., 2010; Heinrichs-Graham 

and Wilson, 2016; Rossiter et al., 2014b), and previous studies have suggested 

an age-related reduction in the potential for plasticity (Chollet, 2013; Fathi et al., 

2010; Tecchio et al., 2008; Todd et al., 2010). Given the link between beta 

oscillations and both inhibitory GABAergic activity (Hall et al., 2011, 2010a; 

Jensen et al., 2005; Muthukumaraswamy et al., 2013) and learning (Boonstra et 

al., 2007; Houweling et al., 2008; Pollok et al., 2014), I hypothesized that beta 

oscillatory activity can account for differences in the capacity to learn and retain 

new motor skills. Importantly, my chosen EEG measures of resting and 

movement-related beta-band power have previously been shown to have high 

intra-subject reliability (Espenhahn et al., 2016), a prerequisite for exploring the 

longitudinal relationship between individual neurophysiological variations and 

differences in the capacity to learn a new motor skill. 

Since ageing is thought to affect both the potential for plasticity (Chollet, 2013; 

Fathi et al., 2010; Tecchio et al., 2008; Todd et al., 2010) and the ability for motor 

learning (for review see (Ren et al., 2013; Seidler, 2006; Voelcker-Rehage, 

2008)), although this seems to be dependent on the nature of the task, secondary 

objectives were to assess (II) whether the ability to learn and retain new motor 

skills deteriorates with age, and (III) whether age-related changes in properties 

of beta oscillations are in line with, and/or augment previous findings (Gaetz et 

al., 2010; Heinrichs-Graham and Wilson, 2016; Rossiter et al., 2014b). 
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5.3 Methods 

5.3.1 Subjects 

Forty subjects took part in the present study over two consecutive days. Two 

subjects had to be excluded because they either did not comply with the task 

requirements (n = 1 young; subject 17) or later disclosed a neurological disease 

(n = 1 elderly; subject 24). Thus, nineteen young (mean age = 25±4 years, range 

18–30 years, 1 left-handed; for more details see Table 5.1) and nineteen elderly 

(mean age = 69±4 years, range 62–77 years, 1 left-handed) subjects were 

included for analyses (N = 38). All subjects had normal or corrected-to-normal 

vision, and fulfilled the following inclusion criteria: (a) no history of neurological or 

psychiatric disease; (b) no physical disability of the arms or wrists; (c) no use of 

drugs affecting the central nervous system or self-reported abuse of any drugs 

(e.g. analgesics, anticonvulsants, muscle relaxants, sedatives, hypnotics); and 

(d) age within specified range (18–30 years or 60–80 years). To minimize 

circadian fluctuations in beta oscillatory levels (Toth et al., 2007; Wilson et al., 

2014), all subjects were tested in the time between 9am and 2pm after giving 

written informed consent. In addition, subjects were instructed to abstain from 

alcohol and caffeine the evening and morning before the testing. 

At the beginning of the experiment, subjects underwent functional assessments 

to quantify upper limb (UL) motor ability, including NHPT (Kellor et al., 1971; 

Mathiowetz et al., 1985b) and grip strength task. Performance on the SART 

(Robertson et al., 1997) was used as a proxy of cognitive functioning (see Table 

5.1). Since sleep has been shown to affect motor memory consolidation (Korman 

et al., 2007; Walker et al., 2002; Wilson et al., 2012), on both days, subjects 

additionally provided information about their sleep (computerised version of St. 

Mary’s Hospital sleep questionnaire (Ellis et al., 1981)) for the nights preceding 

testing. Please refer to Chapter 3 section 3.3 for details about the various tests. 

  



Predicting individual differences in motor skill learning 
 

135 
 

5.3.2 Experimental design 

The experimental design is illustrated in Figure 5.1. Since the primary objective 

of this study was to explore whether cortical beta-band activity is associated with 

individual differences in motor learning capacity, I here combined neuroimaging 

and motor learning on the continuous tracking task introduced in Chapter 3 

section 3.2.2. All subjects trained with their non-dominant hand on the continuous 

tracking task over a single training session (40 blocks; 20–40 min) with the aim 

of improving tracking performance beyond pre-training levels. The tracking task 

involved two types of sequences within each block, a random and a repeated 

sequence. Improvement on the random sequence is a measure of general skill 

learning, whilst any additional improvement on the repeated sequence reflects 

sequence-specific motor learning of the precise sequence pattern (Wulf and 

Schmidt, 1997). Tracking performance was defined as the accuracy (measured 

in RMSE) with which subject’s wrist movement tracked the target movement 

(Figure 5.2A). Participants’ tracking performance was retested at two different 

time points: 45–60 min (retest1 on day 1; 5 blocks) and 24 hours (retest2 on day 

2; 10 blocks) after initial training. These retest sessions allowed (i) temporary 

effects (e.g. fatigue or boredom) that build up over the course of training (Brawn 

et al., 2010; Rickard et al., 2008) to dissipate, thus only leaving the fairly 

permanent learning effects and (ii) consolidation of motor memories to occur, 

which may result in retention, decrement or even enhancement of the previously 

acquired motor skill after a night’s sleep (Robertson et al., 2004a; Walker, 2005). 

EEG recorded during the performance of the simple motor task was used to 

assess pre-movement (resting) and movement-related beta activity before (Pre), 

immediately after (Post1) and 24-hours after (Post2) the initial training phase. On 

day 1, prior to the motor tasks, the mid-point and maxima of an individual’s 

maximum AROM (see Chapter 3 section 3.2.1 for details) around the wrist joint 

was measured and subsequently used as start and/or target positions in the 

continuous tracking task and simple motor task, respectively. 
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Figure 5.1 | Timeline of experiment employing EEG and motor learning. 

EEG was recorded during the performance of a simple motor task before (Pre) 

and at two time points after the training phase (Post1 and Post2). Performance 

on the motor learning task was retested after a time delay on the same day 

(retest1 on day 1, 45–60 min after initial training) and the following day (retest2 

on day 2, 24-hours after initial training). 

 

5.3.2.1 Apparatus and stimuli 

All tasks were performed with the non-dominant hand resting in the instrumented 

wrist rig introduced in Chapter 3 section 3.2.1. The wrist rig restricted movement 

to flexion and extension around the wrist joint in the horizontal plane and ensured 

minimal hand and arm movement during the experiment and EEG recording. 

Wrist angular displacement was sensed by a built-in potentiometer, with a 

displacement of 0° indicating a neutral position of the wrist, with the hand being 

in the same plane as the forearm. The angular position of the wrist was 

continuously displayed on a computer monitor as a cursor in the form of a red 

circle – referred to as “wrist cursor”. The target was displayed either as an open 

yellow circle (continuous tracking task) or as a blue square (simple motor task). 

 

5.3.2.2 Continuous tracking task 

Subjects were required to continuously track a circular target (in yellow) that 

moved back and forth along a fixed arc through a predefined sequence of 12 

positions (Figure 5.2A). For a detailed description of the continuous tracking task, 

please refer to Chapter 3 section 3.2.2. In brief, the minimum jerk approach 

(Flash and Hogan, 1985; Hogan, 1984) was employed to ensure smooth target 

motion through the sequence positions. The maximum range of the target 

trajectory was defined as ±45° of wrist flexion and extension and the target always 



Predicting individual differences in motor skill learning 
 

137 
 

started and finished at the individual mid-point position of each subject’s AROM. 

Each block consisted of two sequences, one random and one repeated sequence 

presented in randomised order, with a 3 s stationary target between both. The 

repeated sequence was identical throughout initial training (40 blocks), and retest 

sessions (retest1 on day 1: 5 blocks; retest2 on day 2: 10 blocks) and randomly 

selected from a pool of 57 difficulty-matched sequences. Please refer to Chapter 

3 section 3.2.2.3 for details about the sequences. Each random sequence was 

encountered only once; however, the same set of difficulty-matched sequences 

was used across subjects. Subjects were instructed to move their wrist so as to 

shift the red wrist cursor to match the movement of the target as ‘accurately and 

smoothly as possible’.  

Prior to the training session, the average velocity with which the target moved 

along the arc was individually determined in order to ensure that the task was of 

equal difficulty for everyone at the beginning of the training and left enough room 

for improvement in performance. For this purpose, an adaptive up-down staircase 

procedure, which on any given trial, adjusted (increased/decreased) the target 

velocity dependent on the subject’s preceding tracking performance until a pre-

specified criterion range was reached was implemented. On average, subjects 

reached the criterion in 14.4±4.5 trials and there was no difference in the number 

of trials required between groups (t(1,36)=0.94, p=0.072). The individually 

determined target velocity with which subjects were subsequently trained on the 

continuous tracking task was applied to all sessions and did not significantly differ 

between young (mean velocity ±SD = 55.38±6.92 deg/s) and elderly (mean 

velocity ±SD = 50.78±9.41 deg/s) subjects [t(1,36)=1.71, p=0.095]. Please refer to 

Chapter 3 section 3.2.2.5 for details about the adaptive staircase procedure used 

for individual determination of target velocity.  

During initial training and retest sessions, online visual feedback in terms of a 

colour change of the wrist cursor (from red to green) was provided at times when 

the subject positioned the wrist cursor inside the circular target. In addition, at the 

end of each block, subjects were made aware of their change in tracking 

performance by presenting a score on the screen. Prior to the start of training, 

subjects received explicit verbal information regarding the presence of a repeated 
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sequence along with a random sequence in every block. However, they were not 

shown the repeated sequence. To determine the time point at which participants 

gained explicit knowledge of the repeated sequence, after each block they had 

to decide (forced-choice) which of the two sequences within each block the 

repeated sequence was – i.e. tell the experimenter whether it was the first or 

second sequence they tracked within the block (Figure 3.4C). The trajectories of 

the target and subject’s wrist cursor did not leave a residual trail on the screen 

and hence, subjects could not visualize the entire target sequence. 

 

Figure 5.2 | Experimental setup and paradigms. 

A, Subjects were trained to track a target (yellow circle) moving back and forth 

along a fixed arc as accurately and smoothly as possible. Online visual feedback 

in terms of a colour change of the wrist cursor (red to green) was provided at 

times when the wrist cursor was located inside the circular target. Original 

recordings during the continuous tracking task at the beginning and end of the 

initial training are shown for the repeated sequence of an example participant (A, 

lower panel). The solid black line represents the motion of the target, while the 

dashed red line represents the motion of the wrist. B, For the simple motor task, 
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subjects were instructed to perform wrist flexion and extension to move the wrist 

cursor (red circle) from the initial start position (grey square) to one of two target 

positions (blue square) upon target presentation. C, During both tasks, subjects 

sat in front of a computer monitor with their non-dominant hand rested in the wrist 

rig that restricted movement to flexion and extension around the wrist joint. 

 

5.3.2.3 Simple motor task 

The simple motor task served to link individual differences in motor learning of 

the continuous tracking task with inter-subject differences in standard measures 

of EEG-derived beta power. For a detailed description of the simple motor task, 

please refer to Chapter 3 section 3.2.3. Briefly, subjects performed visually cued 

wrist flexion and extension with their non-dominant hand during EEG recording. 

During each trial, wrist movements were always initiated from the same start 

position displayed at the centre of the screen that represented the mid-point of a 

subject’s individual AROM (see Chapter 3 section 3.2.1 for details about AROM 

measurement). The cue to perform wrist flexion or extension movements was the 

random appearance of one of two targets (in blue), on the left or right, equidistant 

from the central start position (Figure 5.2B). Each of the targets represented the 

subject’s maximum wrist flexion or extension position. Subjects were instructed 

to move their wrist upon presentation of the target so as to shift the red wrist 

cursor from the central start position to match the position of the target in a ‘quick 

and discrete’ movement. They were also asked to move as soon as possible and 

to avoid anticipation or guessing of target appearance. The target position was 

displayed for 3 s and subjects had to maintain the wrist cursor inside the blue 

target until being cued to return to the initial start position. Once subjects returned 

to the start position, the next cue to move was delivered following a delay of 7±1 s. 

The task comprised 120 trials, and subjects were instructed to minimize eye 

movements by focusing on a centrally located fixation cross. As described in 

detail in Chapter 3 section 3.7.1.2, kinematic data of individual wrist movements 

were analysed with regard to reaction time (RT), movement time (MT), and peak 

velocity (PV) and averaged per experimental condition on an average of 110±4 

remaining trials. Since movement time and peak velocity were highly correlated 

(r>0.8), only reaction time and movement time were reported. 
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5.3.3 EEG recording 

Scalp EEG was continuously recorded at 2084 Hz using 64 electrodes mounted 

on an elastic cap according to the international 10-20 EEG system. The 

impedance was kept below ≤5 kΩ and the EEG signal was referenced to Cz 

during recording. The timing of the visual cue (blue target) in the motor task was 

marked in the simultaneous EEG recording, with separate markers for each 

condition (flexion, extension). Surface EMG using bipolar electrodes in a belly-

tendon montage placed on the wrist extensor (extensor carpi radialis, ECR) and 

flexor (flexor carpi radialis, FCR) muscles monitored movements of the non-

dominant hand. 

  

5.3.4 Data analysis 

Analyses were conducted using custom-written routines in Matlab and the 

SPM12 toolbox (Wellcome Trust Centre for Neuroimaging). The fieldtrip toolbox 

(Oostenveld et al., 2011) was additionally employed for EEG data visualization. 

Statistical analyses were performed using SPSS and custom-written Matlab 

routines. 

 

5.3.4.1 Motor learning data 

For a detailed description of the kinematic data analysis, please refer to Chapter 

3 section 3.7.1.1. In brief, the behavioural measure “tracking performance” on the 

continuous tracking task was parametrized by RMSE (see Equation 3.5), an 

established composite measure of temporal and spatial measurements of time 

lag and distance (Al-Sharman and Siengsukon, 2014; Boyd and Winstein, 2006; 

Roig et al., 2014; Siengsukon and Boyd, 2009). Thereby, smaller RMSE values 

reflect better tracking performance. RMSE was calculated for repeated and 

random sequences separately and averaged across each block of the training 

and retest sessions. 

As the beginning and end of individual training and retest sessions might not be 

representative of actual tracking performance (e.g. due to warm-up decrement at 

the beginning or fatigue at the end), a linear regression model was fitted across 

the first and last 5 blocks of individual training and retest sessions (approach 

adopted from (Waters-Metenier et al., 2014)). This fit provided a corrected 
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performance estimate of the first and last blocks of each session (Figure 5.3). 

Please note that performance refers to this corrected performance estimate 

unless stated otherwise. 

The analysis then concentrated on six time points in order to assess changes in 

tracking performance across time: first block of training (T0), last block of training 

(T1), first block of retest1 (T2), last block of retest1 (T3), first block of retest2 (T4), 

and last block of retest2 (T5). As outlined above, various processes can occur 

during time periods during which the task is not practised (i.e. between T1 and 

T2 or T3 and T4), such as dissipitation of temporary effects (e.g. fatigue or 

boredom) (Brawn et al., 2010; Rickard et al., 2008) and motor memory 

consolidation, resulting in skill retention, enhancement or decrements 

(Hotermans et al., 2006; Robertson et al., 2004a; Walker, 2005). As such, 

tracking performance at T2 is most likely to reflect fairly permanent learning 

effects unaffected by training-induced temporary effects such as fatigue or 

boredom, while performance at T4 likely indexes retention of the acquired motor 

skill overnight, due to motor memory consolidation. 

 

Figure 5.3 | Linear regression approach for exemplary healthy subject.  

Dots represent individual blocks of an example subject during training and retest 

sessions of repeated sequence only. Black lines represent linear regression 

models across 5 blocks at beginning and end of individual sessions. Corrected 

performance estimates were derived from these linear regression models at six 

different time points (T0 = first block of training, T1 = last block of training, T2 = 

first block of retest1, T3 = last block of retest1, T4 = first block of retest2, and T5 



Predicting individual differences in motor skill learning 

142   
 

= last block of retest2) and used to subsequently assess changes in performance 

with training. 

 

5.3.4.2 Spectral power measures 

Pre-processing and time-frequency analysis of EEG data recorded during the 

performance of the simple motor task has been detailed in Chapter 3 section 

3.7.2. Briefly, the raw EEG signal was first offline re-referenced to the average 

signal across all electrodes, bandpass filtered between 5–100 Hz, additionally 

filtered with a 50 Hz notch filter, and downsampled to 300 Hz. Data were epoched 

from -1 to 9 s relative to visual cue onset (0 s). Poorly performed trials (see 

section 5.3.2.3) were excluded and the remaining EEG trials were visually 

scrutinized. Trials containing artefacts (e.g. muscle activation or large eye blinks) 

were additionally removed. For each session, on average 91±12 and 87±15 

artefact-free EEG trials remained for younger and older subjects, respectively, 

and the number of trials did not significantly differ between conditions (p>0.1) or 

groups (p>0.3, repeated-measures ANOVA). Artefact-free EEG time-series from 

each single trial were decomposed into their time-frequency representations in 

the 5–45 Hz range with frequency steps of 0.1 Hz. A 7-cycle Morlet wavelet was 

used for the continuous wavelet transformation. Power was averaged across 

trials and rescaled in order to show changes relative to the corresponding pre-

movement baseline period (-1–0 s prior to cue onset) (Equation 3.6). 

Spectral power time-series were then derived from a pre-selection of electrodes 

overlying the sensorimotor cortices, both contralateral and ipsilateral to the 

moving hand. These electrodes were selected based on the independent dataset 

presented in Chapter 4 which showed that the most prominent task-related 

changes in beta activity were observed in these electrodes when performing the 

simple motor task (MRBD: ‘C4’ ‘CP4’ ‘CP2’ and ‘C3’ ‘CP3’ ‘CP1’ for contra- and 

ipsilateral hemispheres, respectively; PMBR: ‘C2’ ‘C4’ ‘CP4’ and ‘C1’ ‘C3’ ‘CP3’ 

for contra- and ipsilateral hemispheres, respectively). These bilateral electrodes 

were pooled as contralateral and ipsilateral regions of interest, respectively. 

To select time-frequency windows of interest that were orthogonal to potential 

differences between conditions (flexion and extension) when the simple motor 
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task was performed (Pre, Post1, and Post2), I averaged over conditions, 

sessions, and subjects for each group separately. Then, specific time-frequency 

windows were chosen based on peak changes in beta activity in time-frequency 

maps of the bilateral sensorimotor regions, which, consistent with Chapter 4, 

revealed clear movement-related beta-band activity in two distinct time windows 

of interest. This information was used to optimize the alignment of constant 

duration and width time-frequency windows to capture maximum MRBD (1–2 s 

relative to cue onset; mean peak latency: young group: 1.31±0.23 s, elderly 

group: 1.64±0.03 s), occurring between cue onset and movement termination, 

and PMBR (young group: 5.5–6.5 s relative to cue onset; elderly group: 6–7 s 

relative to cue onset; mean peak latency: young group: 5.85±0.16s, elderly group: 

6.63±0.39 s), which emerges after movement cessation. This was done for young 

and elderly subjects separately because of known age-related reduction of beta 

peak frequency (Rossiter et al., 2014b). Indeed, in elderly subjects peak changes 

in beta activity after movement cessation (PMBR) appeared at lower beta 

frequencies (10–25 Hz) and ~500 ms later compared to younger subjects, 

however this could not be explained by age-related differences in return 

movement kinematics (Figure 5.4A). Selected time-frequency windows and 

electrodes applied to all subjects and sessions, and were not adjusted 

individually. 

Subsequently, for each individual subject, percentage decrease (MRBD) and 

increase (PMBR) in beta power were extracted from the respective 1 s time 

windows and averaged separately for each EEG session (Pre, Post1 and Post2) 

for the pre-selected electrodes over each hemisphere. The absolute pre-

movement (resting) baseline beta (BB) power from -1 to 0 s relative to cue onset 

was also obtained and assessed for age-related differences and training-related 

changes.  

In total, 6 different beta power estimates were used for subsequent analyses: pre-

movement baseline beta (absolute power), MRBD (relative power) and PMBR 

(relative power) from contra- and ipsilateral sensorimotor cortices, respectively. 

As demonstrated in Chapter 4, these spectral power measures have high intra-

subject reliability (Espenhahn et al., 2016), a prerequisite for exploring the 
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relationship between these beta oscillatory estimates and individual differences 

in motor learning. 

 

Figure 5.4 | Angular displacement and respective changes in beta activity. 

A, Group-averaged angular position trajectory (grey curve) and beta power time 

courses for contra- and ipsilateral sensorimotor cortex for young (left panel) and 

elderly (right panel) subjects, respectively. Movement kinematics were similar 

between both groups and illustrate the movement towards the target, the static 

contraction/holding phase, and the return movement to the initial start position. 

B, Time-frequency maps from contralateral and ipsilateral sensorimotor cortex 

show two distinct time windows of peak changes in beta activity (MRBD and 

PMBR) indicated by black rectangles. Please note that the PMBR in elderly 

subjects occurred at lower beta frequencies (10–25 Hz) and ~500 ms later 
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compared to younger subjects. These time-frequency windows were tested for 

significant differences between groups and EEG sessions.  

 

5.3.5 Statistical analysis 

Before (I) investigating the relationship between beta-band activity and individual 

differences in motor learning, a series of conventional analyses were first 

conducted to assess (II) whether young and elderly subjects learned to a similar 

extent on the continuous tracking task (their behaviour), and (III) whether beta-

band activity was altered with training or ageing (neurophysiology). 

To assess whether tracking performance improved across training and was 

maintained, enhanced or decreased at retest sessions, a repeated-measures 

ANOVA on tracking performance score (RMSE) was performed, with ‘group’ (2 

levels: young vs elderly) as between-subject factor and ‘sequence type’ (2 levels: 

repeated vs random) and ‘time’ (5 levels: T0 vs T1 vs T2 vs T3 vs T4) as within-

subject factors. Additionally, to ensure comparable baseline performance and 

thus, allow for direct comparison between age groups, a repeated-measures 

ANOVA of tracking performance at T0 (baseline) was used.  

Since beta oscillations have been shown to be altered with ageing (Gaetz et al., 

2010; Rossiter et al., 2014b) and motor learning (Boonstra et al., 2007; Houweling 

et al., 2008; Mary et al., 2015; Pollok et al., 2014), measures of resting and 

movement-related beta activity were evaluated applying separate repeated-

measures ANOVAs with ‘group’ (2 levels: young vs elderly) as between-subject 

factor and ‘hemisphere’ (2 levels: contralateral vs ipsilateral) and EEG ‘session’ 

(3 levels: Pre vs Post1 vs Post2) as within-subject factors.  

A Greenhouse-Geiger correction was applied whenever Mauchly’s test indicated 

a lack of sphericity. Post hoc Bonferroni-adjusted t-tests were performed 

whenever main effects and interaction effects were detected in the ANOVAs. 

Prior to ANOVAs and post hoc t-tests, Kolmogorov-Smirnov test was used to 

affirm normal distribution of the data. Results were considered significant if 

p-values were below 0.05. All data presented in the text and tables are 

represented as mean ±SD unless stated otherwise. 
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5.3.5.1 Regression analysis combining neurophysiological and 

behavioural measures 

Finally, a multiple linear regression approach was employed in order to 

investigate whether spectral power measures of beta-band activity relate to 

individual differences in the capacity for motor learning, accounting for 

multicollinearity between neurophysiological (Heinrichs-Graham and Wilson, 

2016) and behavioural performance measures. Specifically, separate stepwise 

multiple linear regression models (with forward and backward algorithm; 

inclusion/exclusion probability levels: αEnter<0.05/ αExclude>0.1) were used to select 

those variables that provided a unique contribution to explaining tracking 

performance at T2 and T4 for the repeated and random sequence, respectively. 

Tracking performance at T2 reflects fairly permanent learning effects unaffected 

by training-induced temporary effects such as fatigue or boredom, while 

performance at T4 indexes retention of the acquired motor skill overnight, 

reflecting motor memory consolidation. Specifically, a combination of 

neurophysiological measures, including (a) baseline beta power, (b) MRBD, and 

(c) PMBR from both sensorimotor cortices, as well as behavioural performance 

measures during the training session, i.e. (d) tracking performance at T0 and (e) 

at T1, were used to explain performance at T2, while behavioural performance 

measures during retest1, i.e. (f) at T2 and (g) T3, were further included to explain 

performance at T4. In addition, functional and demographic information such as 

age, motor function, cognitive function and sleep characteristics were equally 

included. All predictors were z-scored before analysis to produce regression 

coefficients (β) of comparable magnitude.  

To avoid overfitting and evaluate the predictive strength of each regression 

model, a leave-one-out cross-validation (LOOCV) approach was employed (Arlot 

and Celisse, 2010; Picard and Cook, 1984). For this purpose, at each iteration 

the regression model was fitted on data from N-1 subjects (training set), with the 

removed subject being used as a test set for assessing model performance. This 

cross-validation method is an established procedure for assessing generalization 

of results to an independent data set, particularly with smaller sample sizes 

(Huang et al., 2011; Kang et al., 2014). The strength of the prediction model was 

quantified in terms of the correlation coefficient between actual and predicted 
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tracking performance. A permutation-test (100 iterations) was used to assess 

whether the difference between the actual and predicted performance was 

greater than would be expected by chance. For this, the entire LOOCV approach 

was repeated 100 times and in each iteration, the ordering of the performance 

values to the subjects was randomly permuted beforehand. This has the desired 

effect of the test set being selected randomly in each iteration and also 

guarantees the independence of the training and test sets in every fold. 

Inferences about the relevance of predictor variables (i.e. whether a predictor 

variable affects tracking performance in a consistent way) were based upon the 

distribution of regression coefficients (β) across subjects, using single-sample t-

tests to test for differences from zero. To compare models fitted with 

neurophysiological or behavioural performance measures only, or a combination 

of both (i.e. whether a model’s prediction more accurately resembles the data 

than another model), independent t-tests were used to test for differences in 

RMSE across subjects between models. 

 

5.4 Results 

Behavioural and EEG data recorded during the performance of the continuous 

tracking task and the simple motor task for 38 healthy ageing subjects are 

reported.  

As expected, young and elderly subjects differed in aspects of UL motor ability 

and cognitive function (Table 5.1). In line with studies demonstrating a decrease 

in total sleep time with age (for review see (Ohayon et al., 2004)), elderly subjects 

reported sleeping fewer hours compared to their younger counterparts. 
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Table 5.1 | Characteristics of young and elderly subject groups. 

 Young Elderly Between-group 
difference 

N 19 19 - 

Age 25±4 69±4 t(36)=-34.8, p<0.001 

Male:Female ratio 8:11 7:12 Χ2=0.11, p=0.740 

Handedness (Edinburgh) 94±8 84±21 t(23.01)=1.86, p=0.076 

Grip Strength [lb] 75±25.11 60±18.51 t(36)=2.05, p=0.048 

NHPT [pegs/s] 0.67±0.08 0.60±0.08 t(36)=2.73, p=0.010 

SART (Error score, 0-225) 8±3.79 13±10.70 t(22.44)=-2.14, p=0.043 

SART (RT in ms) 363±70.11 446±144.64 t(26.02)=-2.25, p=0.033 

Sleep Quantity [hours]# 7±0.70 6±0.96 U=70.0, p=0.001 

Sleep Quality (1-8)# 5.6±1.12 5.2±0.87 U=130.5, p=0.138 

Between-group comparisons revealed a significant difference in NHPT, grip 

strength, SART, and sleep quantity the previous night. For continuous data, 

independent-samples t-tests were used to test for between-group differences. For 

discrete data (#), Mann-Whitney U-tests were applied. Handedness was assessed 

using the Edinburgh Handedness Inventory (Oldfield, 1971). Upper limb functional 

measures are non-dominant hand only and sleep measures are averaged across 

both days (both sleep measures were not significantly different between day 1 

and day 2, p>0.05). Significant effects are indicated in bold. Values given are 

mean ±SD. NHPT: Nine Hole Peg Test; SART: Sustained Attention to Response 

Test. 

 

5.4.1 Presence of motor skill learning with healthy ageing 

Tracking performance for both young and elderly subjects at training and retest 

sessions is shown in Figure 5.5A. Firstly, no systematic differences in baseline 

(block 1) tracking performance between young and elderly groups [F(1,36)=0.047, 

p=0.830] or repeated and random sequences [F(1,36)=0.12, p=0.730] nor an 

interaction effect [F(1,36)=0.482, p=0.492] were found (Figure 5.5B), thus allowing 

for direct comparison of tracking performance between age groups.  

A repeated-measures ANOVA on tracking performance revealed a significant 

main effect of ‘time’ [F(4,144)=63.14, p<0.001, ƞ2=0.637] and ‘sequence type’ 

[F(1,36)=92.56, p<0.001, ƞ2=0.720], but no effect of age [F(4,36)=0.31, p=0.584] on 

tracking performance. In addition, a significant ‘time x sequence type’ interaction 
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was found [F(4,144)=19.74, p<0.001, ƞ2=0.354]. Post hoc analyses were thus 

performed to separately assess changes in tracking performance with initial 

training (online) and following a shorter (retest1) or longer (retest2) time delay 

during which subjects did not practice the task (offline). 

 

Figure 5.5 | Motor skill learning of young and elderly subjects. 

A, Average tracking performance (RMSE) for repeated and random sequences 

(solid and dashed lines respectively) across training (day 1), retest1 (day 1) and 

retest2 (day 2) sessions suggest comparable performance improvements of 

young (blue) and elderly (red) subjects. Vertical dashed lines represent time away 

from the motor learning task. B, Corrected performance estimates at the 

beginning and end of training (T0, T1) and retest (retest1: T2, T3; retest2: T4, T5) 

sessions. C, Performance differences (Δ) between time points, focusing on online 

learning (T0-T1) and offline learning across a shorter (retest1, T1-T2) or longer 

(retest2, T3-T4) time delay as well as overall performance changes from baseline 

(T0-T2; T0-T4). Solid bars represent Δ performance on the repeated sequence 

and striped bars on the random sequence. Positive and negative values, 

respectively, signify performance improvement and decrement. Shaded area (A) 

and error bars (B, C) indicate between-subject SEM. *p<0.05, **p<0.01, 

***p<0.001, grey * p<0.1 (trend). 

 

5.4.1.1 Performance changes over the course of training 

During the training phase, tracking performance improved over time (T0 vs T1) 

irrespective of age, but these improvements were different between repeated and 

random sequences [F-statistics and p-values of ANOVAs are summarized in 
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Table 5.2]. Post hoc analyses revealed a significant improvement in tracking 

performance of ~19 % for the repeated sequence [t(37)=5.43, p<0.001, ƞ2=0.443] 

(Figure 5.5C). This was not seen for the random sequence [t(37)=0.69, p=0.489], 

indicating that improvements primarily occurred via a sequence-specific learning 

effect which appeared to be unaffected by ageing.  

 

5.4.1.2 Performance changes after training on the same day – retest1 

After establishing that young and elderly subjects showed a comparable ability to 

learn the sequence-specific motor skill, next tracking performance at retest1 was 

examined. During the short time delay between the end of the initial training and 

the retest1 session (T1 vs T2), tracking performance significantly improved 

without further training for both the repeated and random sequence. Across 

groups, tracking performance on the repeated sequence improved by 7 % 

[t(37)=3.17, p=0.003, ƞ2=0.215], while a 9 % improvement was observed for the 

random sequence [t(37)=4.71, p<0.001, ƞ2=0.382], indicating a boost in 

performance early after initial training (45-60 min) (Figure 5.5C). Please note that 

the performance improvement on the repeated sequence did not reach 

significance in the elderly subject group [t(18)=1.93, p=0.070]. Overall, 

performance significantly improved from T0 to T2 not only for the repeated 

sequence (25 % improvement) [t(37)=10.91, p<0.001], but also the random 

sequence (10 % improvement) [t(37)=5.31, p<0.001], despite the non-significant 

general learning across training.  

 

5.4.1.3 Performance changes after training 24 hours later – retest2 

Finally, changes in tracking performance, without practice, at 24 hours (retest2) 

after initial training were assessed. Performance significantly deteriorated from 

T3 to T4 irrespective of age, but dependent on the type of sequence. Post hoc 

analyses revealed that while tracking performance on the random sequence was 

retained overnight [t(37)=-1.21, p=0.236], significant performance decrements (i.e. 

overnight forgetting) of ~13 % were observed for the repeated sequence 

[t(37)=-5.79, p<0.001, ƞ2=0.478] (Figure 5.5C). Thus, while training-related 

improvements in general tracking performance were retained for at least 

24 hours, overnight forgetting that was specific to the repeated sequence 
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occurred for both young and elderly subjects. Despite these sequence-specific 

offline decrements, overall performance at T4 was significantly better compared 

to T0 for the repeated sequence (24 % improvement) [t(37)=10.87, p<0.001]. 

Similarly, overall performance on the random sequence was significantly better 

at T4 compared to T0 (12 % improvement) [t(37)=7.87, p<0.001].  

 

Table 5.2 | ANOVA results of subjects’ tracking performance at different 

time points during the motor learning process. 

 Group Time Sequence Type Interactions 

Performance changes across initial training 

T0 vs T1  

F(1,36)=0.01, 

p=0.933 

 

F(1,36)=17.57, 

p<0.001, ƞ2=0.328 

 

F(1,36)=30.93, 

p<0.001, ƞ2=0462 

time x sequence: 

F(1,36)=28.33,  

p<0.001, ƞ2=0.440 

Performance changes after time delay (retest1, retest2) 

T1 vs T2   

F(1,36)=0.02, 

p=0.895 

 

F(1,36)=25.97, 

p<0.001, ƞ2=0.419 

 

F(1,36)=65.49, 

p<0.001, ƞ2=0.645 

n.s. 

T3 vs T4   

F(1,36)=0.86, 

p=0.361 

 

F(1,36)=20.81, 

p<0.001, ƞ2=0.366 

 

F(1,36)=106.43, 

p<0.001, ƞ2=0.747 

time x sequence:  

F(1,36)=13.12,  

p=0.001, ƞ2=0.268 

Overall performance changes from baseline 

T0 vs T2   

F(1,36)=0.32, 

p=0.575 

 

F(1,36)=93.08, 

p<0.001, ƞ2=0.721 

 

F(1,36)=19.99, 

p<0.001, ƞ2=0.357 

time x sequence:  

F(1,36)=40.99,  

p<0.001, ƞ2=0.532 

T0 vs T4   

F(1,36)=1.11, 

p=0.299 

 

F(1,36)=129.77, 

p<0.001, ƞ2=0.783 

 

F(1,36)=18.70, 

p<0.001, ƞ2=0.645 

time x sequence:  

F(1,36)=34.87,  

p<0.001, ƞ2=0.492 

Significant effects are indicated in bold. T0: beginning of training session; T1: end 

of training session; T2: beginning of retest1; T3: end of retest1; T4: beginning of 

retest2. n.s.: not significant. 
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5.4.1.4 Factors potentially influencing tracking performance 

Many factors can influence motor learning behaviour in healthy subjects. For 

example, lower levels of attention or sleep might be detrimental to performance 

on the here employed continuous tracking task. Thus, next some factors that 

potentially impacted on the observed tracking performance were explored.  

The initial ability to perform the motor skill might influence subsequent 

performance levels, whereby e.g. subjects who perform worse at the beginning 

of the training might have more room for improvement with training. To determine 

the relationship between motor skill performance at different time points, Pearson 

correlation coefficients were performed. In general, tracking performance was 

positively correlated across various time points (Figure 5.6). Notably, the initial 

ability to perform the motor learning task (T0) had the least influence on 

subsequent performances, in particular for the repeated sequence (repeated 

sequence: average r=0.24, p=0.319; random sequence: average r=0.55, 

p=0.002).  

 

Figure 5.6 | Correlations of subjects’ performance between time points. 

Between-time points (T0–T4) correlation coefficients for performance on the 

repeated (left panel) and random (right panel) sequence. The colour bar indicates 

the correlation coefficients (r) presented in the matrices. Specifically, 

performance on the repeated sequence at the beginning of training did not relate 

to performance at the end of training (T1) or retest1 session on the same day 

(T3). n.s.: not significant.   

 

In addition, functional characteristics such as grip strength, hand dexterity, 

attention or sleep were significantly different between age groups (see Table 5.1), 

with elderly subjects being weaker, less dexterous, less attentive, and sleeping 
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fewer hours compared to their younger counterparts. However, these functional 

characteristics were not associated with subjects’ performance at any time point 

(all p>0.05).  

Lastly, the acquisition of knowledge regarding the repeated sequence might 

interact with how well subjects learn and maintain the sequence-specific 

performance level. Young subjects were better in gaining awareness of the 

repeated sequence during the initial training (95±8.8 % correct) compared to 

elderly subjects (84±16.5 % correct) [Mann-Whitney U=100.5, p=0.018]. The 

younger group also performed better at correctly recognizing the repeated 

sequence at retest2, 24 hours after the initial training (young: 96±10.0 % correct; 

elderly: 83±22.2 % correct) [U=98, p=0.015], indicating less forgetting in younger 

subjects. However, these age-related differences in the level of awareness of the 

repeated sequence did not relate to subjects’ tracking performance at any time 

point (all p>0.4). 

 

5.4.2 Changes in spectral power measures with age and training 

All subjects were able to perform the simple motor task used during EEG 

recording and there were no significant differences in movement kinematics 

between age groups neither for the movement towards the target [RT: 

F(1,36)=0.02, p=0.896; MT: F(1,36)=1.14, p=0.293] nor the return movement towards 

the initial start position [RT: F(1,36)=0.61, p=0.441; MT: F(1,36)=0.58, p=0.450] 

(Table 5.3). Average spectral changes in contralateral and ipsilateral 

sensorimotor cortices in response to wrist movement are shown in Figure 5.4B 

before (Pre) and at two time points (Post1 and Post2) after the initial training. 

General features of the spectral changes in beta activity induced by the simple 

motor task have been detailed in Chapter 4 (Espenhahn et al., 2016). Briefly, a 

reduction in beta power, MRBD, was observed in both sensorimotor cortices 

during movement towards the target and during return movement to the initial 

start position. Following return movement cessation, a strong but transient 

increase in beta power, PMBR, with a contralateral preponderance was 

observed. 
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Table 5.3 | Summary of kinematic measures acquired during the 

performance of the simple motor task for each age group. 

 Young Elderly 

RT [ms] 989±55 975±44 

MT [ms] 1166±250 1056±332 

PV [deg/s] 124±55 185±93 

Kinematic measures are presented for each EEG session (S1–S6) 

and condition (flexion, extension). RT: Reaction Time; MT: 

Movement Time;  PV: Peak. Values given are mean ±SD 

 

 

5.4.2.1 Resting beta power 

Analysis of absolute beta power during the pre-movement (resting) baseline 

period demonstrated a significant effect of age, with elderly subjects exhibiting 

higher absolute beta power in both contralateral and ipsilateral sensorimotor 

cortices (Figure 5.7A, F-statistics and p-values of all ANOVAs are summarized 

in Table 5.4), consistent with previous observations (Heinrichs-Graham and 

Wilson, 2016; Rossiter et al., 2014b). While there was no hemispheric difference, 

absolute beta power was significantly different between EEG sessions. Post-hoc 

analyses revealed a significant but transient increase in beta power immediately 

after training (Post1) in both contralateral [Pre vs Post1: t(37)=-2.98, p=0.011; 

Post1 vs Post2: t(37)=2.59, p=0.032] and ipsilateral [Pre vs Post1: t(37)=-4.60, 

p<0.001; Post1 vs Post2: t(37)=2.48, p=0.05] sensorimotor cortex which returned 

back to pre-training levels on day 2 [Pre vs Post2: t(37)=0.28, p=1.00]. In addition, 

there was a trend for a ‘group x session’ interaction effect [F(2,72)=2.66, p=0.077, 

ƞp
2=0.075] indicating that the increase immediately after the training phase 

predominantly occurred in elderly subjects. 
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Table 5.4 | ANOVA results for spectral power measures of healthy ageing 

subjects. 

 Group Hemisphere Session Interactions 

BB  

F(1,36)=7.01, 

p=0.012, 

np
2=0.163 

 

F(1,36)=1.80, 

p=0.188 

 

F(2,72)=7.06, 

p=0.002, 

np
2=0.164 

n.s. 

MRBD 
 

F(1,36)=10.78, 

p=0.002, 

ƞp
2=0.230 

 

F(1,36)=31.81, 

p<0.001, 

ƞp
2=0.469 

 

F(2,72)=3.29, 

p=0.043, 

ƞp
2=0.084 

3-way: 

 F(2,72)=4.10, 

p=0.021, 

ƞp
2=0.102 

PMBR 
 

F(1,36)=0.01, 

p=0.939 

 

F(1,36)=21.99, 

p<0.001, 

ƞp
2=0.379 

 

F(2,72)=4.17, 

p=0.019, 

ƞp
2=0.104 

n.s. 

Significant effects are indicated in bold. BB: Pre-movement baseline beta; 

MRBD: Movement-Related Beta Desynchronization; PMBR: Post-Movement 

Beta Rebound; n.s.: not significant. 

 

5.4.2.2 Movement-related beta power changes 

Averaged beta power changes during movement (MRBD) and after movement 

cessation (PMBR) in both sensorimotor cortices and topographic maps are 

shown in Figure 5.7C-D. Interestingly, the magnitude of MRBD and PMBR were 

differentially affected by age. Elderly subjects showed a greater beta power 

decrease in both sensorimotor cortices during the movement towards the target 

than their younger counterparts (Figure 5.7C) consistent with previous findings 

(Heinrichs-Graham and Wilson, 2016; Rossiter et al., 2014b). In contrast, the 

magnitude of the power increase after movement termination was not 

significantly different between young and elderly subjects (Figure 5.7D). As 

expected, a significant hemispheric difference in the magnitude of MRBD and 

PMBR indicated that both beta-band dynamics were overall more pronounced in 

the hemisphere contralateral to the moving hand. Also, a marginally significant 

effect of ‘session’ and a significant ‘group x hemisphere x session’ interaction was 
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found for MRBD. Post hoc analyses indicated that the age-related difference in 

the magnitude of MRBD was significant in both sensorimotor cortices 

[contralateral sensorimotor cortex F(1,36)=12.93, p=0.001, ƞp
2=0.264; ipsilateral 

sensorimotor cortex: F(1,36)=8.12, p=0.007, ƞp
2=0.184], but a significant linear 

reduction in the magnitude of MRBD across sessions was only found in the 

ipsilateral hemisphere [F(2,72)=4.26, p=0.018, ƞp
2=0.106].  

In addition, a decrease in the magnitude of PMBR across sessions was found, 

but no interactions. Post hoc analyses showed that this decrease in PMBR across 

sessions was restricted to the ipsilateral sensorimotor cortex and elderly subjects 

only [F(2,36)=7.47, p=0.002, ƞp
2=0.293]. Inspection of the topographical distribution 

of PMBR (Figure 5.7D, right panel) confirmed a training-related change in PMBR, 

with elderly subjects exhibiting a more bilateral distribution of PMBR prior to 

training which shifted towards a contralateral preponderance following training. 

Lastly, neither pre-movement beta power nor movement-related beta dynamics 

from either contralateral or ipsilateral sensorimotor cortex were related to any 

functional characteristics (i.e. grip strength, NHPT, SART), after controlling for 

age (all p>0.05). 
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Figure 5.7 | Alterations in beta power and corresponding topographic maps. 

A, Average pre-movement (resting; -1–0 s) beta power was significantly higher 

in the elderly group (red and light red) compared to the younger subjects (dark 

and light blue) for both sensorimotor cortices before (Pre), immediately after 

(Post1), and 24-hours after (Post2) training. B, Topographical plots of grand-

averaged beta power showing the pre-selected electrodes (black diamonds) 
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which were pooled as contralateral and ipsilateral regions of interest. C-D, Power 

in the movement (1–2s; MRBD) and post-movement time window (5.5–6.5 s/ 

6-7 s; PMBR) before (Pre), immediately after (Post1), and 24-hours after (Post2) 

training derived from contralateral and ipsilateral sensorimotor cortices of young 

(dark and light blue) and elderly (red and light red) subjects indicated a differential 

effect of age upon these beta dynamics. Error bars indicate between-subject 

SEM. Significant between-group differences are indicated with a ‘+’. 

Topographical distributions (right panels) of movement-related beta activity show 

differential contralateral and ipsilateral modulation patterns for MRBD and PMBR. 

Note, that PMBR in elderly subjects showed a bilateral distribution before training 

compared to the contralateral preponderance in younger subjects (D, right panel), 

but this topographical distribution shifted towards a more contralateral PMBR 

after the initial training. 

 

5.4.3 Prediction of post-training tracking performance from a 

combination of neurophysiological and behavioural measures 

In order to gain insight into the role of beta activity in explaining motor learning 

behaviour, a stepwise multiple linear regression approach within a leave-one-out 

cross-validation (LOOCV) was utilized. As a first step, I assessed whether a 

combination of neurophysiological (beta power measures), behavioural 

(performance on the motor learning task) and functional characteristics, 

accounting for multicollinearity between measures, explains individual tracking 

performance at two different time points, shortly after the training (T2) and 24 

hours after (T4), respectively. Performance at T2 was used as an index of fairly 

permanent learning effects, while T4 provides a reflection of the maintenance of 

the acquired motor skill overnight. Consequently, I next evaluated the contribution 

of neurophysiological and behavioural measures alone in predicting tracking 

performance.  

 

5.4.3.1 Prediction of tracking performance at T2 

Pre- and post-training beta activity (Pre, Post1), and behavioural performance at 

T0 and T1, as well as functional characteristics (age, attention, motor ability, 

sleep) were explored as potential predictors of tracking performance at T2 (total 

number of predictors = 22) using stepwise linear regression.  
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This analysis approach revealed that 74 % of the variance in performance on the 

repeated sequence was predicted by a combination of these variables [r=0.86, 

p<0.001] (Figure 5.8A). By assessing which predictor variables consistently 

affected tracking performance, neurophysiological and behavioural performance 

measures, but none of the functional characteristics, were shown to consistently 

affect performance. Specifically, initial and final performance during the training 

phase (T0, T1) exerted a large effect upon performance at T2, as captured by 

large positive regression coefficients [T0: t(37)=156.85, p<0.001; T1: t(37)=284.36, 

p<0.001]. Despite controlling for tracking performance during the initial learning, 

pre-training MRBD in ipsilateral sensorimotor cortex significantly influenced 

performance at T2 [t(37)=-24.72, p<0.001] (Figure 5.8B). Since the beta power 

decrease is expressed as a negative percentage value (relative to baseline), the 

negative coefficient value implies that smaller magnitude of MRBD in ipsilateral 

sensorimotor cortex prior to training predicts better tracking performance. 

Similarly, a partial correlation analysis including performance during training as 

confounding covariates, showed a significant negative correlation between 

MRBD and performance at T2 [r=-0.38, p=0.021]. 

Further, performance on the random sequence was significantly predicted by a 

combination of neurophysiological and behavioural performance measures, 

however only 36 % of the variance in tracking performance could be explained 

[r=0.60, p<0.001] (Figure 5.8C). Beyond behavioural performance during the 

training phase [T0: t(37)=2.06, p=0.046; T1: t(37)=76.01, p<0.001], pre-training 

MRBD [t(37)=-4.64, p<0.001] and post-training PMBR [t(37)=-46.94, p<0.001] from 

contralateral sensorimotor cortex, respectively, consistently affected tracking 

performance (Figure 5.8D). The negative coefficient values for the 

neurophysiological measures imply better tracking performance with smaller 

magnitude of MRBD prior to training and greater magnitude of PMBR after 

training. However, partial correlation analysis with performance during training as 

confounding covariates remained significant only for post-training PMBR 

[r=-0.38, p=0.023]. 
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Figure 5.8 | Prediction of tracking performance at T2. 

Stepwise multiple linear regression with a combination of neurophysiological and 

behavioural performance measures provided statistically significant performance 

prediction (A, C) as quantified by the correlation coefficient between the actual 

and predicted tracking performance across healthy subjects. Together, these 

measures accounted for 74 % and 36 % of variance in performance on the 

repeated and random sequence, respectively. Significance of these correlations 

was determined by permutation-testing. B, Subjects’ behavioural performance 

during training exerted the strongest effect on performance of the repeated 

sequence. An additional model parameter relating to movement-related beta 

activity prior to training was negative, indicating that smaller magnitude of MRBD 

is associated with better performance. D, Performance on the random sequence 

was affected by model parameters relating to behavioural performance and once 

again movement-related beta activity. The negative coefficients for the beta 

power parameters indicate that smaller magnitude of MRBD prior to training and 

greater magnitude of post-training PMBR is associated with better performance 

at T2. Averaged z-scored regression coefficients (β) quantify the influence of 

each significant predictor upon performance level at T2. Error bars represent 
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SEM. Single-sample t-tests to test for differences from zero were employed. 

*p<0.05, **p<0.01, ***p<0.001.  

 

To examine more precisely this relationship between neurophysiological and 

behavioural performance measures for predicting tracking performance at T2, 

regression analyses with neurophysiological or behavioural performance 

measures alone, or a combination of both were performed and compared with 

regard to their predictive strength (summary of comparison is provided in Table 

5.5).  

Neurophysiological measures alone did not explain performance on the repeated 

sequence whereas behavioural performance measures alone did significantly 

explain individual variation in tracking performance, echoing a strong effect of 

behaviour. However, when neurophysiological measures were combined with 

behavioural performance measures, the prediction accuracy significantly 

improved, exceeding the information provided by behavioural performance 

parameters alone [t(1,37)=37.84, p<0.001]. Similarly, while behavioural 

performance measures alone also significantly explained performance on the 

random sequence, neurophysiological measures alone were not of significant 

predictive value. However, when combined with behavioural performance 

measures, they again significantly improved the prediction accuracy compared to 

a model containing behavioural performance parameters alone [t(1,37)=12.10, 

p<0.001]. These results suggest that beta oscillatory measures explain some of 

the individual differences in performance and improve predictions, but only when 

accounting for the strong effect of behaviour. 
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Table 5.5 | Comparison of prediction accuracy for performance at T2. 

Predictor variables R R2 
Mean  

RMSE 

Sum 

RMSE 

Performance on repeated sequence  

Neurophysiology -0.59 -0.35 0.98 37 

Behaviour 0.85*** 0.72 0.52 20 

Neurophysiology + Behaviour 0.86*** 0.74 0.48 18 

Performance on random sequence  

Neurophysiology 0.22 0.05 0.93 35 

Behaviour 0.60*** 0.36 0.73 28 

Neurophysiology + Behaviour 0.60*** 0.36 0.69 26 

Regression models were fitted with neurophysiological (pre- and post-training 

(Pre, Post1) BB, MRBD, and PMBR from both sensorimotor cortices) and 

behavioural performance measures (tracking performance at T0 and T1) alone, 

and a combination of both. The predictive strength is quantified by the correlation 

(R) between the actual and predicted performance, based on LOOCV. Beta 

oscillatory measures in combination with behavioural performance estimates best 

predicted performance at T2 (blue ink).  RMSE are averaged and summed across 

the 38 subjects. RMSE: Root Mean Square Error. *p<0.05, **p<0.01, ***p<0.001.    

 

5.4.3.2 Prediction of tracking performance at T4 

Pre- and post-training beta activity (Pre, Post1, Post2), and behavioural 

performance at training (T0, T1) and retest1 (T2, T3) sessions as well as 

functional characteristics (age, attention, motor ability, sleep) were explored as 

potential predictors of tracking performance at T4 (total number of 

predictors = 29).  

Separate regression models, using these potential predictor variables, 

significantly predicted performance 24 hours after the initial training for both the 

repeated and random sequence, with models accounting for 36 % and 64 % of 

variance, respectively [repeated sequence: r=60, p<0.001, Figure 5.9A; random 

sequence: r=0.80, p<0.001, Figure 5.9C]. Assessing the relevance of individual 

variables for tracking performance revealed that behavioural performance, but 

not neurophysiological measures exerted an effect upon performance at T4. 

Specifically, tracking performance during the retest1 session related to 
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performance on both repeated [T2: t(37)=2.24, p=0.031; T3: t(37)=22.60, p<0.001] 

and random [T2: t(37)=78.17, p<0.001] sequence, while initial performance was a 

significant parameter only for the performance of the random sequence [T0: 

t(37)=81.09, p<0.001] (Figure 5.9B, D). Interestingly, sleep quantity the night prior 

to the retest2 session was of relevance in explaining tracking performance 

24 hours after training, with more sleep relating to better performance [repeated 

sequence: t(37)=-3.36, p=0.002; random sequence: t(37)=-34.46, p<0.001]. 

 

Figure 5.9 | Prediction of tracking performance at T4. 

Stepwise multiple linear regression with a combination of behavioural 

performance and functional characteristics provided statistically significant 

performance prediction (A, C) as quantified by the correlation coefficient between 

the actual and predicted tracking performance across healthy subjects. Together 

these measures accounted for 36 % and 64 % of variance in performance on the 

repeated and random sequence, respectively. Significance of these correlations 

was determined by permutation-testing. B, Subjects’ behavioural performance 
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during retest1 exerted the strongest effect on performance of the repeated 

sequence. An additional model parameter relating to sleep quantity the night 

before was negative, indicating that longer sleep duration is associated with 

better performance. D, Performance on the random sequence was affected by 

model parameters relating to behavioural performance at the beginning of 

training and retest1 session, respectively. Again, sleep duration was a predictive 

variable. Averaged z-scored regression coefficients (β) quantify the influence of 

each significant predictor upon performance level at T4. Error bars represent 

SEM. Single-sample t-tests to test for differences from zero were employed. 

*p<0.05, **p<0.01, ***p<0.001. 

 

 

In line, comparison of the contribution of neurophysiological and behavioural 

performance measures echoed the result that beta oscillatory measures did not 

have any independent explanatory value (summary of comparison is provided in 

Table 5.6). However, while sleep quantity alone did not significantly explain 

tracking performance, it significantly improved the predictive strength compared 

to models with behavioural performance measures only [repeated sequence: 

t(1,37)=3.18, p=0.003; random sequence: t(1,37)=25.78, p<0.001].  

 

Table 5.6 | Comparison of prediction accuracy for performance at T4. 

Predictor variables R R2 Mean 

RMSE 

Sum 

RMSE 

Performance on repeated sequence 

Neurophysiology -0.30 -0.09 0.97 37 

Behaviour 0.62*** 0.38 0.69 26 

Neurophysiology + Behaviour 0.62*** 0.36 0.69 26 

Behaviour + Functional characteristics 

(Sleep) 

0.60*** 0.36 0.68 25 

Performance on random sequence 

Neurophysiology -0.07 -0.01 1.0 108 

Behaviour 0.76*** 0.58 0.58 73 

Neurophysiology+Behaviour 0.71*** 0.50 0.58 73 

Behaviour + Functional characteristics 

(Sleep) 

0.80*** 0.66 0.51 67 
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Regression models were fitted with neurophysiological (pre- and post-training 

(Pre, Post1, Post2) BB, MRBD, and PMBR from both sensorimotor cortices) 

and behavioural performance measures (tracking performance at T0, T1, T2 

and T3) alone, and a combination of both. The predictive strength is quantified 

by the correlation (R) between the actual and predicted performance, based on 

LOOCV. A combination of behavioural performance measures and sleep 

quantity best predicted performance at T4 (blue ink). RMSE values are 

averaged and summed across the 38 subjects. RMSE: Root Mean Square 

Error. *p<0.05, **p<0.01, ***p<0.001. 

 

5.5 Discussion 

By employing a continuous tracking task assaying individuals’ motor learning 

capacity and acquiring standard measures of EEG-derived beta power, the 

present work reported several key findings: 

1. Firstly, young and elderly subjects showed comparable ability to learn and 

retain a motor skill with short-term training.  

2. Secondly, resting beta power and MRBD were altered with ageing, but no 

age-related modulations in the magnitude of PMBR were observed.  

3. Finally, by implementing a multivariate approach that accounted for 

multicollinearity of the various measures, it was possible to explore the 

complex relationship between cortical beta activity and the degree to which 

healthy ageing individuals learn and retain new motor skills. Specifically, prior 

behaviour played a strong role in predicting future tracking performance, but 

here I have been able to show a significant contribution of beta oscillatory 

activity to the prediction of motor learning. 

 

5.5.1 Training induces performance improvements independent of age 

Preserved ability to develop new motor skills with practice over time is crucial for 

functional independence and quality of life with advancing age. Ageing is 

associated with changes in the central and peripheral nervous system that can 

limit its sensorimotor functioning (for review see (Ketcham and Stelmach, 2001; 

Lustig et al., 2009; Seidler et al., 2010)), potentially causing motor learning 

deficits. Although advanced age has been argued to reduce the ability to acquire 

a new motor skill (Boyd et al., 2008; Ehsani et al., 2015; Harrington and Haaland, 

1992; Howard and Howard, 1997; McNay and Willingham, 1998; Shea et al., 
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2006) dependent on the nature of the task (Seidler, 2006; Voelcker-Rehage, 

2008), or alternatively exert a detrimental effect on motor memory consolidation 

(Brown et al., 2009; Howard and Howard, 1989; Spencer et al., 2007; Wilson et 

al., 2012) , there is no consensus over the capability of the ageing brain for motor 

learning. 

The present study employed a laboratory-based motor task to conduct a finely 

controlled assessment of the ability to learn in healthy ageing adults. By matching 

baseline performance, it was possible to directly compare the amount learned by 

young versus elderly subjects. Although young and elderly individuals in the 

current study demonstrated differences in motor function, cognition and sleep, 

short-term motor learning for both sequence-specific (repeated sequence) and 

general (random sequence) motor skills as well as their changes after training 

ended (offline) were comparable between both age groups. This lack of age-

related deficits in motor learning may be attributed to the task requirements of 

wrist movements as opposed to fine finger movements (Voelcker-Rehage, 2008). 

Alternatively, older adults might exhibit compensatory strategies in order to 

support comparable task performance (e.g. (Boudrias et al., 2012; Mattay et al., 

2002; Reuter-Lorenz et al., 2000, 1999; Stern, 2009; Ward et al., 2008; Wu and 

Hallett, 2005)). As such, recruitment of additional brain regions, beyond those 

used in younger adults might explain similar performance levels between age 

groups found in this study. Although, brain activity was not measured during the 

performance of the motor learning task, more widespread activation as well as 

bilateral activation of sensorimotor areas in elderly adults was noticeable during 

the performance of the simple motor task, echoing compensatory mechanisms in 

the ageing brain. 

After training ended, tracking performance improved without further training 

(offline) on the same day for both the sequence-specific and general motor skill. 

This “early boost” in performance (Albouy et al., 2006; Hotermans et al., 2008, 

2006) may simply be attributable to the dissipation of temporary effects such as 

boredom and fatigue that build up over the course of initial training (Brawn et al., 

2010; Rickard et al., 2008) and which were the reasons for focusing on T2 as a 

measure of fairly permanent early learning (as opposed to T1). Although, the 

experimental design attempted to minimize the accumulation of fatigue during 
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training by providing subjects with ample rest between blocks, closer inspection 

of tracking performance in Figure 5.5A still suggests a small decline in 

performance towards the end of the training phase. Alternatively, previous 

studies suggested that the “early boost” of performance represents an 

active/labile state of motor memory with functional relevance for long-term motor 

memory consolidation (Albouy et al., 2006; Hotermans et al., 2008, 2006; 

Muellbacher et al., 2002; Nettersheim et al., 2015; Schmitz et al., 2009). 

Differential changes in tracking performance on the two types of sequences were 

observed 24 hours after initial training. Specifically, while training-related 

improvements in general motor skill were retained, overnight forgetting occured 

for the sequence-specific motor skill, related to the explicit memory of the 

sequence structure. As discussed in detail in Chapter 1 section 1.1.1.3, sleep 

plays a fundamental role in learning and memory consolidation. Although, the 

process of sleep-dependent consolidation appears to be reduced with ageing 

(Brown et al., 2009; Spencer et al., 2007; Wilson et al., 2012), most likely due to 

age-related changes in sleep patterns (Ohayon et al., 2004), no significant 

difference in performance levels following a night’s sleep was evident  between 

young and elderly subjects in the current study, despite older adults reporting 

reduced sleep quantity. In addition, changes in performance overnight did not 

correlate with sleep measures alone. Nevertheless, a potential influence of sleep 

cannot entirely be ruled out as perhaps sleep parameters others than the here 

used self-reported measures might drive sleep-dependent processes mediating 

motor sequence consolidation (e.g. EEG-measured sleep spindles, (Barakat et 

al., 2013; Fogel et al., 2017). 

 

5.5.2 Beta oscillations are altered with ageing and motor learning 

Although short-term motor learning was comparable between young and elderly 

individuals on the continuous tracking task, pre-movement (resting) beta power 

and levels of MRBD were significantly increased in the elderly, consistent with 

prior literature (Gaetz et al., 2010; Heinrichs-Graham and Wilson, 2016; Rossiter 

et al., 2014b). At a mechanistic level, a wealth of animal and human literature 

suggests that oscillatory activity in the beta-band reflects underlying inhibitory 

GABAergic activity (Hall et al., 2011, 2010a; Jensen et al., 2005; 
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Muthukumaraswamy et al., 2013; Roopun et al., 2006; Yamawaki et al., 2008). 

For example, increased baseline beta power (Hall et al., 2010a; Jensen et al., 

2005; Muthukumaraswamy et al., 2013), enhanced MRBD (Hall et al., 2011; 

Muthukumaraswamy et al., 2013), enhanced PMBR (Gaetz et al., 2011), and 

reduced beta frequency (Jensen et al., 2005) have been demonstrated with 

pharmacologically increased levels of GABAergic inhibition. In this respect, the 

age-related changes in beta power at rest and during movement observed in the 

current study might reflect increased GABAergic inhibition in both contralateral 

and ipsilateral sensorimotor cortex in older subjects.  

Age-related changes in cortical excitation and inhibition have been evidenced in 

a number of TMS studies, however no consensus with regard to the direction of 

alterations in GABAergic inhibition exists (Heise et al., 2013; Kossev et al., 2002; 

Marneweck et al., 2011; McGinley et al., 2010; Peinemann et al., 2001; Smith et 

al., 2009), most likely due to methodological differences with regard to stimulus 

parameters, target muscle and age group selection. Notwithstanding, altered 

inhibitory activity might underlie the age-dependent reduction in cortical plasticity 

observed in studies assessing TMS-induced (Fathi et al., 2010; Muller-Dahlhaus 

et al., 2008; Tecchio et al., 2008; Todd et al., 2010) and practice-dependent 

plasticity (Rogasch et al., 2009; Sawaki et al., 2003). These findings together with 

the age-related increase in beta power suggest that both performance on the 

simple motor task and the continuous tracking task should be disrupted, but this 

does not seem to be the case. It might be that decreased plasticity does not 

necessarily equate to poor tracking performance or learning (i.e. floor and ceiling 

effects) and that beta oscillations, as candidate biomarkers of the potential for 

plasticity, are not necessarily linearly related to learning. 

Another possible explanation for the observed increase in beta power with age 

might be neuroanatomical changes associated with typical ageing. While factors 

such as skull thickness, conductivity of the electrical tissues, grey matter volume 

and pyramidal cell density can be altered with ageing and affect sensor-derived 

measures of neuronal oscillations (Fjell et al., 2014; Hamalainen et al., 1993; 

McGinnis et al., 2011; Terribilli et al., 2011; Wendel et al., 2010), they are also 

expected to influence EEG estimates in equal measures and therefore, do not 

explain the differential effect of age on movement-related beta dynamics 
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observed in the current study (i.e. age-related modulation was observed only for 

MRBD, but not PMBR). As such, changes in spectral power measures most likely 

reflect underlying changes in the functional properties of neuronal circuits 

generating beta oscillations. 

Despite previous findings pointing to an increase in the magnitude of PMBR as a 

function of age in healthy developing individuals (Gaetz et al., 2010) and an 

absence in elderly subjects in a go/no-go tasks (Schmiedt-Fehr et al., 2016), no 

significant differences in the magnitude of PMBR between young and elderly 

adults were found in the present work. In line with findings of lower beta peak 

frequency with ageing (Rossiter et al., 2014b), peak changes in PMBR were 

observed at lower frequencies and ~500 ms later compared to the younger 

subjects, a finding independent of behavioural differences between age groups 

(i.e. movement time or peak velocity). It is therefore unlikely that the lack of age-

related changes in the magnitude of PMBR and the later occurrence of PMBR in 

older individuals are artefacts of movement variability or temporal overlap of 

neuronal activity (see Chapter 3 section 3.2.3 for details about inter-trial interval 

selection) or suboptimal time-frequency window selection (see section 5.3.4.2), 

but rather might reflect maturational differences in the cortical networks 

generating these distinct beta dynamics and their link to different types of 

GABAergic inhibition (phasic vs tonic) (Hall et al., 2011; Muthukumaraswamy et 

al., 2013). The differential effect of age on MRBD and PMBR together with their 

well described differential modulation in contra- and ipsilateral hemispheres (Van 

Wijk et al., 2012) support the notion that these beta-band dynamics are, at least 

to a certain degree, independent processes with distinct functional significance.  

Interestingly, elderly subjects demonstrated a more bilateral topographic 

distribution of PMBR, echoing the idea of greater involvement of the ipsilateral 

hemisphere in motor control with advanced age (e.g. (Boudrias et al., 2012; 

Mattay et al., 2002; Reuter-Lorenz et al., 2000, 1999; Stern, 2009; Ward et al., 

2008)). However, this observation was not statistically significant and additional 

analysis of PMBR ratio (contralateral PMBR divided by ipsilateral PMBR) did also 

not reveal a significant temporal evolution of PMBR with training in elderly 

subjects [F(2,36)=2.18, p=0.128]. 
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Few studies have reported changes in beta oscillations in the context of motor 

learning. These studies demonstrated changes in movement-related beta 

dynamics such as increased MRBD and PMBR with training and argued that 

these changes in movement-related beta dynamics reflect early plastic changes 

in sensorimotor cortex associated with motor learning (Boonstra et al., 2007; 

Houweling et al., 2008; Mary et al., 2015; Moisello et al., 2015; Nelson et al., 

2017; Pollok et al., 2014) as discussed in Chapter 1 section 1.2. Unexpectedly, 

and possibly due to methodological differences such as type of motor learning 

task, task complexity and study design, movement-related beta activity in the 

current study was not enhanced following motor training. Corroborating previous 

findings of training-related changes in beta power at rest (Moisello et al., 2015; 

Nelson et al., 2017), pre-movement (resting) beta power was significantly 

enhanced after training. This training-related modulation of beta power might be 

related to a reduction in cortical excitability due to the saturation of LTP-like 

plasticity (temporary occlusion) with motor learning (Cantarero et al., 2013; 

Rioult-Pedotti et al., 2007, 2000, 1998; Rosenkranz et al., 2007; Stefan et al., 

2006; Ziemann et al., 2004). Consistent with the concept of temporary 

suppression of cortical plasticity by neuronal mechanisms involved in motor 

learning, the observed increase in beta power was transient as it returned to 

original pre-training levels after a night’s sleep. Further supporting evidence for 

this interpretation comes from studies demonstrating an association between 

increased beta power and GABAergic inhibitory processes (Hall et al., 2011, 

2010a; Jensen et al., 2005; Muthukumaraswamy et al., 2013; Roopun et al., 

2006; Yamawaki et al., 2008) as well as decreased cortical excitability (McAllister 

et al., 2013; Noh et al., 2012) 

Alternatively, since alterations in beta power have also been observed with motor 

fatigue (Fry et al., 2017; Shigihara et al., 2013; Tecchio et al., 2006), the transient 

increase in beta power might be related to training-induced fatigue effects. A 

potential influence of fatigue cannot be ruled out and it would be interesting in the 

future to explore the relationship between beta oscillations and fatigue, and their 

respective influences on motor learning. 
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5.5.3 Beta oscillations are predictive of motor learning effects 

As discussed above, changes in the properties of beta oscillations, predominantly 

in contralateral sensorimotor areas, have been observed with motor learning. For 

instance, the change in the magnitude of MRBD has been linked to superior 

motor learning and is thought to reflect reorganization of neural activity during 

motor skill acquisition (Boonstra et al., 2007; Houweling et al., 2008; Pollok et al., 

2014). This is further supported by studies reporting altered training-related 

changes with ageing (Mary et al., 2015) and in pathology (Moisello et al., 2015; 

Nelson et al., 2017), suggesting abnormal plasticity processes. However, the 

functional role of these training-related changes in beta activity has yet to be 

elucidated. Given that, in my data, motor learning appears to occur without 

training-related changes in beta activity, cortical beta activity may be only one of 

several mechanisms important for motor learning.  

In the current study, a multivariate approach combining neurophysiological and 

behavioural measures was employed in order to explore the complex relationship 

between beta oscillatory activity and motor skill learning, providing greater insight 

into the predictive role of beta oscillations. Implementing a regression approach 

with leave-one-out cross-validation (LOOCV) accounted for co-varying 

neurophysiological (Heinrichs-Graham and Wilson, 2016) and performance 

measures (see section 5.4.1.4), while reducing model overfitting and assessing 

the generalizability of results to predict new data. My findings highlight that 

estimates of movement-related beta activity provide a significant contribution to 

predicting individual differences in tracking performance, but only after 

accounting for the predictive effect of prior behaviour. Specifically, while 

measures of beta dynamics alone did not explain tracking performance, the linear 

combination of these measures together with measures of behavioural 

performance accounted for 74 % and 36 % of the total variance in early post-

training sequence-specific and general tracking performance, respectively, and 

significantly exceeded the information provided by performance measures alone. 

This emphasizes that even though behavioural measures were the strongest 

predictors of motor learning, including EEG-derived beta oscillations, which 

provide greater insight into cortical processes underlying the potential for 
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plasticity, helps to explain individual differences in a way that behaviour alone 

cannot. 

Within models, pre-training level of movement-related beta activity was a 

significant predictor, such that subjects who exhibited smaller MRBD prior to 

training performed better on the task. Consistent with insight gleaned from animal 

and pharmacological studies linking properties of beta oscillations to GABAergic 

inhibition (Hall et al., 2011, 2010a; Jensen et al., 2005; Muthukumaraswamy et 

al., 2013; Roopun et al., 2006; Yamawaki et al., 2008), smaller pre-training 

MRBD, reflecting lower GABAergic inhibition, may facilitate motor learning 

induced LTP-like plasticity and result in better post-training tracking performance. 

However, rather unexpectedly, in the model predicting sequence-specific tracking 

performance, MRBD in the ipsilateral rather than contralateral sensorimotor 

cortex was related to early motor learning. Ipsilateral suppression of beta 

oscillatory activity during unimanual movement is a well established phenomenon 

(Gross et al., 2005; Pfurtscheller et al., 1996; Salmelin and Hari, 1994), but its 

functional role is not fully understood. It has been proposed that ipsilateral MRBD 

does not merely reflect interhemispheric ‘cross-talk’ between motor cortices that 

facilitates movements, but may be a consequence of neural processes inhibiting 

mirror movements through interhemispheric inhibition (Jurkiewicz et al., 2006; 

Van Wijk et al., 2012). Since EMG was not recorded from both hands, it cannot 

be verified whether reduced ipsilateral MRBD is associated with mirror 

movements, even though subjects were instructed to relax their non-moving UL 

and were monitored by the experimenter throughout EEG recordings.  

Interestingly, post-training level of PMBR was identified as a significant predictor 

of general motor learning only, implying that the two types of learning might, at 

least to a certain degree, relate to independent neural networks with distinct 

functional significance for motor learning. In line with previous motor learning 

studies (Boonstra et al., 2007; Houweling et al., 2008; Mary et al., 2015; Pollok 

et al., 2014), greater post-training PMBR might reflect neural processes that 

facilitate practice-dependent sensorimotor reorganization after training. While 

beta activity, and by inference PMBR, has been suggested to promote the status 

quo of motor states (Engel and Fries, 2010; Gilbertson et al., 2005b) and has 

been associated with the processing of sensory afference (Alegre et al., 2002; 
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Cassim et al., 2001), Tan and colleagues have recently proposed a unifying 

theory in which PMBR is modulated by the history of task-relevant errors and is 

related to the uncertainty associated with feedforward predictions (Tan et al., 

2016b, 2014). An alternative explanation might thus be that greater post-training 

PMBR, reflecting better accuracy (or less error) during the previous training, 

might then preserve motor commands or forward models that require little 

updating. However, the current work was not designed to study the role of beta-

band dynamics for error monitoring, and thus, this interpretation is purely 

speculative. 

Despite beta activity being linked to post-training tracking performance on the 

same day, tracking performance 24 hours after training was not predicted by beta 

oscillatory measures, but rather behavioural performance. Interestingly, longer 

sleep duration appeared beneficial for retention of tracking performance on both 

the repeated and random sequence, most likely due sleep-dependent motor 

memory consolidation (Al-Sharman and Siengsukon, 2014; Diekelmann and 

Born, 2010; Fischer et al., 2002; Nettersheim et al., 2015; Walker, 2005; Walker 

et al., 2002). The unique contribution of sleep for tracking performance retention 

should be taken into account in order to maximise motor learning in healthy adults 

and, in the context of stroke-related brain damage, may have consequences for 

movement rehabilitation, which depends on motor learning and consolidation.   

Together, these findings highlight the importance of multivariate approaches for 

identifying key factors that contribute to the prediction of motor learning. 

Specifically, the link between movement-related beta dynamics and early phase 

motor learning suggests that these neurophysiological measures might, at least 

partly, explain individual performance differences in a way that behaviour alone 

cannot. It is important to note that the effect of beta oscillations was only revealed 

after accounting for behavioural effects, and that measures of beta-band activity 

were not predictive by themselves. However, given a complex and dynamic 

system, it might not be surprising that cortical oscillations may be only one of 

several factors important for motor learning. Clearly, multivariate approaches 

provide the best opportunity to detect these influences and interactions, in the 

same model. While motor sequence learning has been shown to elicit widespread 

activity changes in the cortical-striatal network (Dayan and Cohen, 2011; Doyon 
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et al., 2003), the current study focused on beta oscillatory activity as candidate 

biomarkers of the potential for plasticity in sensorimotor cortex. This was not 

meant to imply that practice-dependent plasticity was confined to sensorimotor 

cortex, but rather was based on previous work demonstrating the crucial role of 

sensorimotor cortex for motor learning and early consolidation (Muellbacher et 

al., 2002; Nudo et al., 1996a; Plautz et al., 2000; Robertson et al., 2005). Clearly, 

further work is required to understand the complex relationship between neuronal 

activity and motor learning, but my results demonstrate a unique contribution of 

the pre-training state of cortical beta oscillations for post-training tracking 

performance, and an important role of sleep for long-term retention of acquired 

motor skills. Both findings have important implications for therapeutic 

interventions in patient populations. 

 

5.5.4 Conclusion 

In conclusion, the current results show that the state of the brain’s sensorimotor 

cortex as captured by beta oscillatory activity prior to training provides a unique 

contribution to the prediction of individual differences in early post-training 

tracking performance. It demonstrates the potential of neurophysiological 

measures to enhance prediction accuracy and implies that accessible 

measurements of beta activity, as markers of net inhibitory and excitatory 

mechanisms in humans, reflect meaningful individual differences in the motor 

system that can be utilized in basic research and clinical studies.  
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 Predicting individual differences in motor 

learning after stroke 

6.1 Abstract 

Stroke is the leading neurological cause of physical disability in the world today. 

Recovery of skilled movement after stroke is reliant on physical training to 

‘relearn’ lost motor skills, but stroke patients show considerable heterogeneity in 

recovery potential. The factors that lead to inter-individual differences in the 

recovery process itself are not clear, but their identification would allow accurate 

prediction of motor recovery and provide novel and important targets for 

promoting post-stroke rehabilitative outcomes. Since the experiment in Chapter 

4 revealed that estimates of movement-related beta activity explain some of the 

individual differences observed in the ability to learn in healthy adults, I here 

extend this line of research to investigate the relationship between cortical beta 

oscillations and motor learning after stroke. 

Eighteen stroke survivors (50–74 years; 90±50 months post-stroke) were trained 

on the continuous tracking task introduced in Chapter 3 and subsequently 

retested after initial training (45–60 min and 24 hours later). Scalp EEG was 

recorded during the performance of the simple motor task before each training 

and retention session. To compare patients’ capacity for motor learning and 

assess stroke-related changes in beta activity, age-matched healthy controls 

were selected from the study in Chapter 5. 

Despite preserved motor learning capacity, the level of performance change 

achieved by stroke patients was significantly smaller compared to healthy 

controls. However, patients did not show altered resting nor movement-related 

beta activity. Multivariate modelling within leave-one-out cross-validation 

(LOOCV) revealed that stroke patients’ behaviour combined with movement-

related beta dynamics on the day of training best predicted their performance 

levels 24 hours after training, independent of motor impairment, age and lesion 

side. Thus, while cortical beta oscillations may offer novel targets for therapeutic 

interventions, combining behavioural measures with neuroimaging has the 

potential to increase prediction accuracy and might provide the basis for 

stratification in restorative trials.  
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6.2 Introduction 

Globally, the impact of stroke-related impairment remains high, with persistent 

upper limb deficits being a common post-stroke outcome reducing quality of life 

(Feigin et al., 2014; Raghavan, 2015). Post-stroke rehabilitation is fundamentally 

a process of learning new or relearning lost motor skills through repetitive training. 

However, stroke survivors show considerable inter-individual differences in 

recovery potential, making predictions about treatment response challenging (Di 

Pino et al., 2014; Stinear, 2010). The reasons for this clinical phenomenon are 

unclear, but understanding the underlying neurophysiological processes would 

provide novel and important targets for improving post-stroke upper limb 

recovery.  

As discussed in Chapter 1 section 1.3.3, evidence from animal models and 

humans suggest that training during the time-limited window of spontaneous 

biological recovery that occurs early after stroke may have a synergistic effect 

(Biernaskie et al., 2004; Krakauer et al., 2012; Zeiler and Krakauer, 2013), with 

heightened effects of training on recovery compared to training in the chronic 

phase (Hardwick et al., 2017). Crucially, these time-dependent modulations in the 

potential for plasticity are, at least partly, due to alterations in cortical inhibitory 

and excitatory mechanisms (Carmichael, 2012; Cramer, 2008; Murphy and 

Corbett, 2009; Zeiler et al., 2013). Early stroke-induced hyperexcitability triggered 

by reduced GABAergic inhibition and increased glutamatergic excitation (Que et 

al., 1999) facilitates long-term potentiation (LTP) (Hagemann et al., 1998), 

downstream changes in neuronal structure (Chen et al., 2011), and remapping of 

sensorimotor functions to intact cortical areas (Takatsuru et al., 2009). Further, 

the idea that GABAergic inhibitory mechanisms are involved in stroke recovery is 

supported by studies in humans using pharmacological manipulation (Chollet et 

al., 2011; Hall et al., 2010b) or neuroimaging techniques such as transcranial 

magnetic stimulation (Swayne et al., 2008), magnetic resonance spectroscopy 

(Blicher et al., 2015) and positron emission tomography (Kim et al., 2014). 

Consequently, understanding how to take advantage of post-stroke alterations in 

cortical inhibition and excitation to promote recovery is an important clinical and 

scientific goal.  
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Bridging the gap between cellular and behavioural accounts of post-stroke 

recovery, requires an appropriate biomarker reflecting underlying biological 

processes that predict recovery and treatment response in a way that behaviour 

alone cannot (Aronson and Ferner, 2017; Ward, 2017). Since neuronal 

oscillations at beta frequency, measured non-invasively with EEG and MEG, are 

fundamental for motor control control (Engel and Fries, 2010; van Wijk et al. 

2012) and have recently been linked to GABAergic activity (Hall et al., 2011, 

2010a; Jensen et al., 2005; Muthukumaraswamy et al., 2013), properties of beta 

activity may provide insight into the dynamics of disease, potentially providing a 

clinically relevant biomarker of net inhibitory and excitatory mechanisms in human 

cortex. Recent evidence suggests that sensorimotor cortex beta power is altered 

after stroke, with beta activity closely tied to the degree of motor impairment (Hall 

et al., 2010b; Laaksonen et al., 2012; Rossiter et al., 2014a; Shiner et al., 2015; 

Thibaut et al., 2017). Although relevant for motor control and sensorimotor 

pathology, and allegedly instrumental to motor learning (Boonstra et al., 2007; 

Houweling et al., 2008; Pollok et al., 2014), little is known about the relationship 

between beta oscillations and motor learning after stroke.  

Thus, the current study aimed to (I) explore the neurophysiological mechanisms 

associated with individual differences in motor learning after stroke. In order to 

ensure that patients could perform the continuous tracking task and that the 

performance of the wrist movement was not prevented by their motor 

impairments, here well-recovered patients who were at least 6 months post-

stroke, commonly referred to as the chronic phase, were tested. Since 

behavioural and functional/clinical measures only incompletely characterize inter-

individual differences in response to treatment and motor recovery (see Chapter 

1 section 1.3.2), and following on from the findings in Chapter 5, I hypothesized 

that post-stroke measurements of beta oscillatory activity, reflecting alterations in 

cortical excitatory and inhibitory signalling, might provide additional insight into 

individual differences in the response to motor learning after stroke. 

Despite abnormal patterns of brain activity that occur after stroke (Chollet et al., 

1991; Johansen-Berg, 2002; Marshall et al., 2000; Ward et al., 2003a; Weiller et 

al., 1993), the few studies that examined stroke patients’ capacity for motor 

learning suggest that they retain the ability to learn ((Krakauer, 2006), also see 
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Chapter 1 section 1.3.5 for more details), even at the chronic stage. Given 

evidence that the contralesional hemisphere is not “unaffected” after stroke, and 

its functional role for motor recovery is yet to be fully elucidated (Graziadio et al., 

2012; Johansen-Berg et al., 2002; Murase et al., 2004; Riecker et al., 2010; Ward 

and Cohen, 2004; Werhahn et al., 2003), measures of beta oscillatory activity 

from both contralesional (unaffected) and ipsilesional (affected) sensorimotor 

cortex were explored. Since only few studies have explored motor learning after 

stroke, secondary objectives were to investigate (II) whether stroke patients 

demonstrate comparable learning as age-matched healthy adults, and (III) 

explore whether abnormal movement-related beta oscillations as reported in 

previous studies (Rossiter et al., 2014a; Shiner et al., 2015) persist in patients 

with low level of impairment (well-recovered).  

 

6.3 Methods 

6.3.1 Subjects 

Eighteen stroke patients with a first-time ischaemic lesion took part in the present 

study over two consecutive days. Two patients had to be excluded because of 

technical problems during data acquisition (patient 13, patient 18). Thus, sixteen 

stroke patients (mean age = 64±8 years, range 50–74 years, 1 ambidextrous, for 

more details see Table 6.1) were included for analyses (N=16).  

All patients were in the chronic stage, having suffered a stroke more than 6 

months ago (time since stroke 90±50 months, range 42–220 months). 

Specifically, the time since stroke was distributed as follows: one patient greater 

than 180 months (15 years), four patients between 120–180 months (10–15 

years), five patients between 60–120 months (5–10 years), and six patients 

between 36–60 months (3–5 years).  

All patients had normal or corrected-to-normal vision, and fulfilled the following 

inclusion criteria: (a) no reported history of other neurological or psychiatric 

disease; (b) no language or cognitive deficits sufficient to impair cooperation in 

the experiment; (c) no use of drugs affecting the central nervous system or self-

reported abuse of any drugs (e.g. analgesics, anticonvulsants, muscle relaxants, 

sedatives, hypnotics); and (d) active range of motion around the affected wrist 
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greater than 60° in total. To minimize circadian fluctuations in beta oscillatory 

levels (Toth et al., 2007; Wilson et al., 2014), all patients were tested in the time 

between 9am and 2pm after giving written informed consent. In addition, patients 

were instructed to abstain from alcohol and caffeine the evening and morning 

before the testing.  

At the beginning of the experiment, stroke patients underwent a battery of 

functional assessments to quantify upper limb (UL) motor ability, including ARAT 

(Yozbatiran et al., 2008), NHPT (Kellor et al., 1971; Mathiowetz et al., 1985b), 

and grip strength test. Since sensory loss is common after stroke (Tyson et al., 

2008), patients’ sensation was tested using the FM sensation and proprioception 

assessment. Performance on the SART (Sustained Attention To Response Test) 

(Robertson et al., 1997) was used as a proxy of cognitive functioning. In addition, 

patients provided information about their level of fatigue (computerised version of 

FSS-7 and NFI (Johansson et al., 2014; Krupp et al., 1989; Mills et al., 2012)) 

and their sleep (computerised version of St. Mary’s Hospital sleep questionnaire 

(Ellis et al., 1981)) on the nights preceding testing. Please refer to Chapter 3 

section 3.3 for details about various tests. 

In order to evaluate how motor learning, beta oscillatory activity and their 

relationship are altered after stroke, twenty age-matched healthy controls (mean 

age = 68±5 years, range 53–77 years) were selected from the elderly subject 

group in the study presented in Chapter 5. Please note that in order to select an 

age-matched healthy control group, one subject that previously did not match the 

inclusion and exclusion criteria due to the age specification of that study (age 

range 60–80 years), was now included. 
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Table 6.1 | Characteristics of chronic stroke patients. 

SN Sex Age  Time since 
stroke 

Affected hand Lesion location/ type 

1 F 74 136 Nondominant (L) Right | LACI 

2 M 71 41 Nondominant (L)  Right | LACI 

3 M 57 80 Nondominant (L) Right | anterior thalamus 

4 M 50 43 Dominant (R) Left | posterior MCA 

5 M 63 122 Dominant (R) Left | striatocapsular 

6 M 63 70 Dominant (R) Left | LACI 

7 F 63 44 Nondominant (L) Right | frontal lobe 

8 M 71 220 Nondominant (L) Right | LACI 

9 M 56 49 Nondominant (L) Right | thalamus 

10 F 63 71 Ambidexterous (L) Right | LACI 

11 M 60 42 Dominant (R) Left | anterior MCA 

12 M 73 128 Dominant (R) Left | LACI 

14 F 71 57 Nondominant (L) Right | LACI 

15 F 75 136 Dominant (R) Left | PCA 

16 M 56 83 Nondominant L) Right | hypothalamus 

17 F 58 105 Dominant (R) Left | anterior MCA 

 64±7 89±49 R=7; L=9  

Age (years); Time since stroke (months); M: Male; F: Female; L: Left; R: Right; 
D: Dominant; ND: Non-dominant; MCA: Middle cerebral artery; PCA: Posterior 
cerebral artery; LACI: Lacunar infarct 
 

 

6.3.2 Experimental design 

The experimental design was identical to the study presented in Chapter 5 and 

is illustrated in Figure 6.1. The primary objective of this study was to explore 

whether cortical beta-band activity from stroke patients is predictive of individual 

differences in motor learning capacity. Chronic stroke patients trained with their 

affected (contralesional) hand on the continuous tracking task, introduced in 

Chapter 3 section 3.2.2, over a single training session (40 blocks; 20–40 min) 

with the aim of improving tracking performance beyond pre-training levels. The 

tracking task involved two types of sequences within each block, a random and 

a repeated sequence. Improvement on the random sequence was again taken 

as a measure of general skill learning, whilst any additional improvement on the 

repeated sequence index sequence-specific motor learning of the precise 

sequence pattern (Wulf and Schmidt, 1997). Tracking performance was defined 

as the accuracy (measured in RMSE) with which subject’s wrist movement 
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tracked the target movement (Figure 6.2). Patient’s tracking performance was 

retested at two different time points: 45–60 min (retest1 on day 1; 5 blocks) and 

24 hours (retest2 on day 2; 10 blocks) after the initial training session. These 

retest sessions allowed (i) temporary effects (e.g. fatigue or boredom) that build 

up over the course of training (Brawn et al., 2010; Rickard et al., 2008) to 

dissipate, thus only leaving the fairly permanent learning effects and (ii) 

consolidation of motor memories to occur, which either results in stabilization or 

even enhancement of acquired motor skill performance after a night’s sleep 

(Robertson et al., 2004a; Walker, 2005). 

EEG recorded during the performance of the simple motor task was used to 

assess pre-movement (resting) and movement-related beta activity before (Pre), 

immediately after (Post1) and 24-hours after (Post2) the initial training phase. On 

day 1, prior to the motor tasks, the mid-point and maxima of a patient’s maximum 

AROM (see Chapter 3 section 3.2.1 for details) around the wrist joint was 

measured (mean AROM = 113.3±20.5 deg) and subsequently used as start 

and/or target positions in the continuous tracking task and simple motor task, 

respectively. 

 

Figure 6.1 | Timeline of experiment employing EEG and motor learning. 

EEG was recorded during the performance of a simple motor task before (Pre) 

and at two time points after the training phase (Post1 and Post2). Retention of 

motor skill acquisition was assessed on the same day (45–60 min, retest1 on 

day 1) and the following day (24-hours, retest2 on day 2).  
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6.3.2.1 Apparatus and stimuli 

In accordance with the previous studies presented in this thesis, patients were 

comfortably seated with their contralesional (affected) hand resting in the 

instrumented wrist rig (see Chapter 3 section 3.2.1). The wrist rig restricted 

movement to flexion and extension around the wrist joint and ensured minimal 

hand and arm movement during the experiment. The angular position of the wrist, 

sensed by the build-in potentiometer of the wrist rig, was continuously displayed 

on a computer monitor as a cursor in the form of a red circle – referred to as “wrist 

cursor”. The target in both motor tasks was displayed as either an open yellow 

circle (continuous tracking task) or as a blue square (simple motor task). 

 

6.3.2.2 Continuous tracking task 

Stroke patients were required to continuously track a circular target (in yellow) 

that moved back and forth along a fixed arc through a predefined sequence of 12 

positions (Figure 6.2A). For a detailed description of the continuous tracking task 

please refer to Chapter 3 section 3.2.2. In brief, the minimum jerk approach 

(Flash and Hogan, 1985; Hogan, 1984) was employed to ensure smooth target 

motion through the sequence positions. The maximum range of the target 

trajectory was defined as ±30° of wrist flexion and extension and the target always 

started and finished at the individual mid-point position of each patient’s AROM. 

Each block consisted of two sequences, one random and one repeated sequence 

presented in randomised order, with a 3 s stationary target between both. The 

repeated sequence was identical throughout initial training (40 blocks), and retest 

sessions (retest1 on day 1: 5 blocks; retest2 on day 2: 10 blocks) and randomly 

selected from the same pool of 57 difficulty-matched sequences used Chapter 

5. Please refer to Chapter 3 section 3.2.2.3 for details about the sequences. Each 

random sequence was encountered only once; however, the same set of 

difficulty-matched sequences was used across subjects. Patients were instructed 

to move their wrist so as to shift the red wrist cursor to match the movement of 

the target as ‘accurately and smoothly as possible’. 

Prior to the training, the average velocity with which the target moved along the 

arc was determined on an individual basis in order to ensure that the task was of 
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equal difficulty for all patients at the beginning of the training and left enough room 

for improvement in performance. For this purpose, the adaptive up-down 

staircase procedure introduced in Chapter 3 section 3.2.2.5 was used for 

individual determination of target velocity. On average, patients reached the 

criterion in 15.5±5.1 trials and the number of trials required was not significantly 

different from the healthy adults in Chapter 5 (one-way ANOVA with ‘group’ 

(3 levels: young adults vs elderly adults vs stroke patients) as between-subject 

factor F(2,53)=0.33, p=0.721). The individually determined target velocity with 

which patients were subsequently trained on the continuous tracking task was 

applied to all sessions and was significantly slower for patients (mean 

velocity ±SD = 45.39±5.22 deg/s) compared to the healthy controls (mean 

velocity ±SD = 51.29±9.43 deg/s) [t(34)=-2.38, p=0.032].  

During initial training and retest sessions, online visual feedback in terms of a 

colour change of the wrist cursor (from red to green) was provided at times when 

the patient positioned the wrist cursor inside the circular target. In addition, at the 

end of each block, patients were made aware of their change in tracking 

performance by presenting a score on the screen. Prior to the start of training, 

patients received explicit verbal information regarding the presence of a repeated 

sequence along with a random sequence in every block. However, they were not 

shown the repeated sequence. To determine the time point at which patients 

gained explicit knowledge of the repeated sequence, after each block they had 

to decide (forced-choice) which of the two sequences within each block the 

repeated sequence was – i.e. tell the experimenter whether it was the first or 

second sequence they tracked within the block (Figure 3.4C). The trajectories of 

the target and patient’s wrist cursor did not leave a residual trace on the screen 

and hence, patients could not visualize the entire target sequence. 
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Figure 6.2 | Experimental setup and paradigms. 

A, Patients were trained to track a target (yellow circle) moving back and forth 

along a fixed arc as accurately and smoothly as possible. Online visual feedback 

in terms of a colour change of the wrist cursor (red to green) was provided at 

times when the wrist cursor was located inside the circular target. Original 

recordings during the continuous tracking task at the beginning and end of the 

initial training are shown for the repeated sequence of an example patient (A, 

lower panel). The solid black line represents the motion of the target, while the 

dashed red line represents the motion of the wrist. B, For the simple motor task, 

subjects were instructed to perform wrist flexion and extension to move the wrist 

cursor (red circle) from the initial start position (grey square) to one of two target 

positions (blue square) upon target presentation. C, During both tasks, patients 

sat in front of a computer monitor with their affected hand rested in the wrist rig 

that restricted movement to flexion and extension around the wrist joint. 

 

6.3.2.3 Simple motor task 

For a detailed description of the simple motor task, please refer to Chapter 3 

section 3.2.3. Briefly, patients performed visually cued wrist flexion and extension 
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movements with their contralesional (affected) hand during EEG recording. 

During each trial, wrist movements were always initiated from the same start 

position displayed at the centre of the screen that represented the mid-point of a 

patient’s individual AROM. The cue to perform wrist flexion or extension 

movements was the random appearance of one of two targets (in blue), on the 

left or right, equidistant from the central start position (Figure 6.2B). Each of the 

targets represented the patient’s maximum wrist flexion or extension position. 

Stroke patients were instructed to move their wrist upon presentation of the target 

so as to shift the red wrist cursor from the central start position to match the 

position of the target in a ‘quick and discrete’ movement. They were also asked 

to move as soon as possible and to avoid anticipation or guessing of target 

appearance. The target position was displayed for 3 s and patients had to 

maintain the wrist cursor inside the blue target until being cued to return to the 

initial start position. Once patients returned to the start position, the next cue to 

move was delivered following a delay of 7±1 s. The task comprised 120 trials, 

and patients were instructed to minimize eye movements by focusing on a 

centrally located fixation cross. As described in detail in Chapter 3 section 

3.7.1.2, kinematic data of individual wrist movements were analysed with regard 

to reaction time (RT), movement time (MT), and peak velocity (PV) and averaged 

per experimental condition on an average of 109±4 remaining trials. Since 

movement time and peak velocity were highly correlated (r>0.7), only reaction 

time and movement time were reported. 

 

6.3.3 EEG recording 

Scalp EEG was continuously recorded at 2084 Hz using 64 electrodes mounted 

on an elastic cap according to the international 10-20 EEG system. The 

impedance was kept below ≤5 kΩ and the EEG signal was referenced to Cz 

during recording. The timing of the visual cue (blue target) in the motor task was 

marked in the simultaneous EEG recording, with separate markers for each 

condition (flexion, extension). Surface EMG using bipolar electrodes in a belly-

tendon montage placed on the wrist extensor (extensor carpi radialis longus) and 

flexor (flexor carpi radialis) muscles monitored movements of the affected hand. 
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6.3.4 Data analysis 

Analyses were conducted using custom-written routines in Matlab and the 

SPM12 toolbox (Wellcome Trust Centre for Neuroimaging, 

www.fil.ion.ucl.ac.uk/spm). The fieldtrip toolbox ((Oostenveld et al., 2011), 

www.ru.nl/fcdonders/fieldtrip/) was additionally employed for EEG data 

visualization. Statistical analyses were performed using SPSS and custom-

written Matlab routines. 

 

6.3.4.1 Functional assessment measures 

ARAT, grip strength, and NHPT test scores were normalized by expressing the 

affected UL score relative to the unaffected UL. Adopting a similar approach as 

previous studies (Rossiter et al., 2014a; Ward et al., 2003a), a principle 

component analysis (PCA) was performed on ARAT, NHPT, grip strength and 

sensation assessment in order to create a single sensorimotor impairment score 

unaffected by floor and ceiling effects in individual scores. The first principle 

component was extracted to generate a PCA sensorimotor impairment score, 

whereby a lower PCA score corresponds to greater impairment. The same 

procedure was used to generate an overall score of the level of fatigue 

experienced by patients, based on FSS and NFI ratings, with lower PCA scores 

reflecting lower levels of fatigue.  

 

6.3.4.2 Motor learning measures 

Analysis of kinematic data was identical to Chapter 5 and a detailed description 

can be found in Chapter 3 section 3.7.1.1. In brief, the behavioural measure 

“tracking performance” on the continuous tracking task was parametrized by 

RMSE (see Equation 3.5), an established composite measure of temporal and 

spatial measurements of time lag and distance (Al-Sharman and Siengsukon, 

2014; Boyd and Winstein, 2006; Roig et al., 2014; Siengsukon and Boyd, 2009), 

with smaller RMSE values reflecting better tracking performance. RMSE was 

calculated for repeated and random sequences separately and averaged across 

each block of the training and retest sessions. 
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As the beginning and end of individual training and retest sessions might not be 

representative of actual tracking performance (e.g. due to warm-up decrement at 

the beginning or fatigue at the end), a linear regression model was fitted across 

the first and last 5 blocks of individual training and retest sessions (approach 

adopted from (Waters-Metenier et al., 2014)). This fit provided a corrected 

performance estimate of the first and last blocks of each session (please refer to 

Chapter 3 section 3.7.1.1 for illustration of this approach). Please note that 

performance refers to this corrected performance estimate unless stated 

otherwise. 

The analysis then concentrated on six time points in order to assess changes in 

tracking performance across time: first block of training (T0), last block of training 

(T1), first block of retest1 (T2), last block of retest1 (T3), first block of retest2 (T4), 

and last block of retest2 (T5). As outlined in Chapter 1 section 1.1.1.1, various 

processes can occur during time periods during which the task is not practised 

(i.e. between T1 and T2 or T3 and T4), such as dissipitation of temporary effects 

(e.g. fatigue or boredom) (Brawn et al., 2010; Rickard et al., 2008) and motor 

memory consolidation, resulting in skill retention, enhancement or decrements 

(Hotermans et al., 2006; Robertson et al., 2004a; Walker, 2005). As such, 

tracking performance at T2 is most likely to reflect fairly permanent learning 

effects unaffected by training-induced temporary effects such as fatigue or 

boredom, while performance at T4 likely indexes retention of the acquired motor 

skill overnight, due to motor memory consolidation. 

 

6.3.4.3 Neurophysiological measures 

Pre-processing and time-frequency analysis of EEG data recorded during the 

performance of the simple motor task has been detailed in Chapter 3 section 

3.7.2 and followed the same procedure as in Chapter 5. Briefly, the raw EEG 

signal was first offline re-referenced to the average signal across all electrodes, 

bandpass filtered between 5–100 Hz, additionally filtered with a 50 Hz notch filter, 

and downsampled to 300 Hz. Data were epoched from -1 to 9 s relative to visual 

cue onset (0 s) and poorly performed trials (see 6.3.2.3 Simple motor task) were 

excluded. The remaining EEG trials were visually scrutinized and trials containing 
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artefacts (e.g. muscle activation or large eye blinks) were additionally removed. 

For each session, on average 82±17 artefact-free EEG trials remained, and the 

number of trials did not differ between conditions (p>0.9, repeated-measures 

ANOVA). Artefact-free EEG time-series from each single trial were then 

decomposed into their time-frequency representations in the 5–45 Hz range with 

frequency steps of 0.1 Hz. A 7-cycle Morlet wavelet was used for the continuous 

wavelet transformation. Power was averaged across trials and rescaled in order 

to show changes relative to the corresponding pre-movement baseline period 

(-1–0 s prior to cue onset) (Equation 3.6).  

Spectral power time-series were then derived from electrodes pre-selected from 

the independent data presented in Chapter 4 overlying both sensorimotor 

cortices (MRBD: ‘C4’ ‘CP4’ ‘CP2’ and ‘C3’ ‘CP3’ ‘CP1’ for contra- and ipsilateral 

hemispheres, respectively; PMBR: ‘C2’ ‘C4’ ‘CP4’ and ‘C1’ ‘C3’ ‘CP3’ for contra- 

and ipsilateral hemispheres, respectively). These bilateral electrodes were 

pooled as contralateral and ipsilateral regions of interest, respectively. 

To select time-frequency windows of interest that were orthogonal to potential 

differences between conditions (flexion and extension) when the simple motor 

task was performed (Pre, Post1, and Post2), I averaged over conditions, 

sessions, and all patients. Then, specific time-frequency windows were chosen 

based on peak changes in beta activity in time-frequency maps of the bilateral 

sensorimotor regions, which revealed clear movement-related beta-band activity 

in two distinct time windows of interest. This information was used to optimize the 

alignment of constant duration and width time-frequency windows to capture 

maximum MRBD (1–2 s relative to cue onset; mean peak latency: 1.66±0.08 s), 

occurring between cue onset and movement termination, and PMBR (6–7 s 

relative to cue onset; mean peak latency: 6.47±0.14 s), which emerges after 

movement cessation (Figure 6.3). In line with the elderly subject group in 

Chapter 5 and known age-related reduction of beta peak frequency (Rossiter et 

al., 2014b), patients’ peak changes in beta activity after movement cessation 

appeared at lower beta frequencies compared to young healthy subjects (10–

25 Hz). Selected time-frequency windows and electrodes applied to all stroke 

patients and sessions, and were not adjusted individually. 
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Subsequently, for each individual patient, percentage decrease (MRBD) and 

increase (PMBR) in beta power were extracted from the respective 1 s time 

windows and averaged separately for each EEG session (Pre, Post1 and Post2) 

for the pre-selected electrodes over each hemisphere. The absolute pre-

movement (resting) baseline beta (BB) power from -1 to 0 s relative to cue onset 

was also obtained.  

In total, the same 6 highly reliable beta parameter estimates as in Chapter 5 were 

used for subsequent analyses: pre-movement baseline beta (absolute power), 

MRBD (relative power) and PMBR (relative power) from contra- and ipsilateral 

sensorimotor cortices, respectively.   

 

Figure 6.3 | Movement-related changes in spectral power after stroke. 

Time-frequency spectrograms are averaged across patients separately for 

contralateral (upper panel) and ipsilateral (lower panel) sensorimotor cortex for 

each EEG session (Pre, Post1, and Post2). The right hand panel displays 

overlaid beta power traces for the three sessions. The black rectangles indicate 

the time windows of interest of peak changes in beta activity (MRBD and PMBR). 

Please note that PMBR occurred at lower beta frequencies (10–25 Hz) compared 

to MRBD. These time-frequency windows were tested for significant differences 

between groups and EEG sessions.  

 

6.3.5 Statistical analysis 

Before (I) investigating the relationship between beta-band activity and individual 

differences in motor learning, a series of conventional analyses were first 
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conducted to assess (II) whether stroke patients ability to learn on the continuous 

tracking task (their behaviour) was comparable to the age-matched healthy 

control subjects, and (III) whether stroke-related alterations in beta-band activity 

(neurophysiology) were present in the here examined well-recovered patient 

group. 

To assess whether tracking performance improved across training and was 

maintained, enhanced or decreased at retest sessions, a repeated-measures 

ANOVA on tracking performance score (RMSE) was performed, with ‘group’ (2 

levels: patients vs controls) as between-subject factor and ‘sequence type’ (2 

levels: repeated vs random) and ‘time’ (5 levels: T0 vs T1 vs T2 vs T3 vs T4) as 

within-subject factors. Additionally, to ensure comparable baseline performance 

and thus, allow for direct comparison between stroke patients and healthy 

controls, a repeated-measures ANOVA of tracking performance at the beginning 

of training (T0) was used.  

Standard measures of resting and movement-related beta activity were evaluated 

applying separate repeated-measures ANOVAs with ‘group’ (2 levels: patients vs 

controls) as between-subject factor and ‘hemisphere’ (2 levels: contralateral vs 

ipsilateral) and EEG ‘session’ (3 levels: Pre vs Post1 vs Post2) as within-subject 

factors.  

A Greenhouse-Geiger correction was applied whenever Mauchly’s test indicated 

a lack of sphericity. Post hoc Bonferroni-adjusted t-tests were performed 

whenever main effects and interaction effects were detected in the ANOVAs. 

Prior to ANOVAs and post hoc t-tests, Kolmogorov-Smirnov test was used to 

affirm normal distribution of the data. Results were considered significant if 

p-values were below 0.05. All data presented in the text and tables are 

represented as mean ±SD unless stated otherwise. 

 

6.3.5.1 Regression analysis combining neurophysiological, behavioural 

and clinical measures 

Finally, a multiple linear regression approach was employed in order to 

investigate whether post-stroke spectral power measures of beta-band activity 

relate to individual differences in the capacity for motor learning, accounting for 
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multicollinearity between neurophysiological (Heinrichs-Graham and Wilson, 

2016) and behavioural performance measures. Specifically, separate stepwise 

multiple linear regression models (with forward and backward algorithm; 

inclusion/exclusion probability levels: αEnter<0.05/ αExclude>0.1) were used to select 

variables that provided a significant contribution to explaining tracking 

performance at T2 and T4 for the repeated and random sequence, respectively. 

Tracking performance at T2 reflects fairly permanent learning effects unaffected 

by training-induced temporary effects such as fatigue or boredom, while 

performance at T4 indexes retention of the acquired motor skill overnight, 

reflecting motor memory consolidation. Specifically, a combination of 

neurophysiological measures, including (a) baseline beta power, (b) MRBD, and 

(c) PMBR from both sensorimotor cortices, as well as behavioural performance 

measures during the training session, i.e. (d) at T0 and (e) at T1, were used to 

explain performance at T2, while behavioural performance measures during 

retest1, i.e. (f) at T2 and (g) T3, were further included to explain performance at 

T4. In addition, the following functional/clinical variables were equally included: 

age, time since stroke, affected side, level of sensorimotor impairment, fatigue 

severity, cognitive function, and sleep characteristics. All predictors were z-

scored before analysis to produce regression coefficients (β) of comparable 

magnitude.  

To avoid overfitting and evaluate the predictive strength of each regression 

model, a leave-one-out cross-validation (LOOCV) approach, as previously 

implemented in Chapter 5, was employed (Arlot and Celisse, 2010; Picard and 

Cook, 1984). For this purpose, at each iteration the regression model was fitted 

on data from N-1 subjects (training set), with the removed subject being used as 

a test set for assessing model performance. This cross-validation method is an 

established procedure for assessing generalization of results to an independent 

data set, particularly with smaller sample sizes (Huang et al., 2011; Kang et al., 

2014). The strength of the prediction model was quantified in terms of the 

correlation coefficient between actual and predicted tracking performance. A 

permutation-test (100 iterations) was used to assess whether the difference 

between the actual and predicted performance was greater than would be 

expected by chance. For this, the entire LOOCV approach was repeated 100 



Predicting individual differences in motor learning after stroke 

192   
 

times and in each iteration, the ordering of the performance values to the subjects 

was randomly permuted beforehand. This has the desired effect of the test set 

being selected randomly in each iteration and also guarantees the independence 

of the training and test sets in every fold. Inferences about the relevance of 

predictor variables (i.e. whether a predictor variable affects tracking performance 

in a consistent manner) were based upon the distribution of regression 

coefficients (β) across subjects, using single-sample t-tests to test for differences 

from zero. To compare models fitted with neurophysiological or behavioural 

performance measures only, or a combination of both, independent t-tests were 

used to test for differences in distributions of RMSE across subjects between 

models. 

  

6.4 Results 

Behavioural and EEG data recorded during the performance of the continuous 

tracking task and the simple motor task for 16 chronic stroke patients and 20 age-

matched healthy control subjects are reported. Please note that the healthy 

control data was identical to the elderly data presented in Chapter 5 apart from 

the inclusion of one additional subject. 

 

6.4.1 Functional assessment 

Functional assessment of stroke patients based on a variety of tests is 

summarized in Figure 6.4. The patient group studied here had an overall low 

level of sensorimotor impairment as reflected by similar values for the affected 

and unaffected side. Only performance on the NHPT was impaired on the 

affected compared to the unaffected side [t(15)=1.22, p=0.028], suggesting 

reduced dexterity in the contralesional (affected) hand. Comparison of stroke 

patients and age-matched healthy controls, as summarized in Table 6.2, 

demonstrated that patients performed similar to controls on the various tests, 

further implying that the here studied patients were well-recovered.  
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Figure 6.4 | Patients’ functional/clinical test scores. 

A, Upper limb motor function of the contralsional (affected) UL assessed by 

ARAT, NHPT and grip strength test was expressed as a percentage of the 

unaffected side in 16 stroke patients. (B) Self-reported fatigue was quantified 

using two computerised questionnaires, FSS-7 and NFI. Fatigue severity 

reported by the stroke patients ranged across a broad spectrum of fatigue levels. 

(C) UL sensation as measured by the FM sensation and proprioception 

assessment showed normal sense of touch or sensation, except for four patients 

who showed reduced sense of touch (hypoesthesia). (D) Patients showed good 

cognitive abilities as shown by relatively low error scores (max 225) and fast 

reaction times. The boxplots show the distribution of the data points, with the 

horizontal line representing the median and the black dots representing outliers.    
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Table 6.2 | Group characteristics of stroke patients and healthy controls. 

 Patients Controls Between-group 
difference 

N 16 20 - 

Age 64±8 68±5 t(25.2)=-1.84, p=0.078 

Male:Female ratio 11:5 8:12 Χ2=2.94, p=0.086 

Handedness (Edinburgh) 87±24 85±21 t(34)=-0.21, p=0.833 

Grip Strength [lb] 66±26.04 63±21.03 t(34)=0.41, p=0.682 

NHPT [pegs/s] 0.57±0.13 0.60±0.07 t(34)=-0.93, p=0.362 

SART (Error score, 0-225) 13±8.97 13±10.73 t(34)=0.13, p=0.897 

SART (RT in ms) 456±114.3 451±142.9 t(34)=0.108, p=0.915 

Sleep Quantity [hours]# 7±1.02 6±0.94 U=93.5, p=0.033 

Sleep Quality (1-8)# 4.7±1.57 5.2±0.87 U=141.0, p=0.560 

Between-group comparisons only revealed a significant difference in sleep 

quantity the previous night. For continuous data, independent-samples t-tests 

were used to test for between-group differences. For discrete data (#), Mann-

Whitney U-tests were applied. Handedness was assessed using the Edinburgh 

Handedness Inventory (Oldfield, 1971). Upper limb functional measures are 

affected hand/non-dominant hand only and sleep measures are averaged across 

both days (both sleep measures were not significantly different between day 1 

and day 2, p>0.1). Significant effects are indicated in bold. Values given are 

mean ±SD. NHPT: Nine Hole Peg Test; SART: Sustained Attention to Response 

Test. 

 

6.4.2 Reduction of motor skill learning after stroke 

Tracking performance of chronic stroke patients and healthy age-matched 

controls at training and retest sessions is shown in Figure 6.5A. Testing for 

systematic differences in tracking performance at baseline (block 1) did not reveal 

a significant difference between patients and healthy controls [F(1,34)=0.42, 

p=0.523] or repeated and random sequences [F(1,34)=0.002, p=0.969] nor an 

interaction effect [F(1,34)=0.051, p=0.823], thus allowing direct comparison of t 

performance between both groups.  

A repeated-measures ANOVA on tracking performance revealed a significant 

main effect of ‘time’ [F(4,136)=32.33, p<0.001, ƞ2=0.487], ‘sequence type’ 

[F(1,34)=55.216, p<0.001, ƞ2=0.619] and ‘group’ [F(1,34)=4.80, p=0.035, ƞ2=0.124]. 
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In addition, significant interactions between ‘time x group’ [F(4,136)=4.25, p=0.006, 

ƞ2=0.111], ‘time x sequence type’ [F(4,136)=10.98, p<0.001, ƞ2=0.244], and 

‘sequence type x group’ [F(1,34)=5.58, p=0.024, ƞ2=0.141] were found. Post hoc 

analyses were thus performed to separately assess changes in motor 

performance with initial training (online) and following a shorter (retest1) or longer 

(retest2) time delay during which subjects did not practice the task (offline), 

focusing on how stroke patients’ motor learning differs from healthy controls. 

 

Figure 6.5 | Motor learning performance of patients and healthy controls.  

A, Average tracking performance (RMSE) for repeated and random sequences 

(solid and dashed lines respectively) across training (day 1), retest1 (day 1) and 

retest2 (day 2) sessions for chronic stroke patients (green) and healthy controls 

(orange). Vertical dashed lines represent time away from the motor learning task. 

B, Corrected performance estimates at the beginning and end of training (T0, T1) 

and retest (retest1: T2, T3; retest2: T4, T5) sessions. C, Performance differences 

(Δ) between time points, focusing on online learning (T0-T1) and offline learning 

over a shorter (retest1, T1-T2) or longer (retest2, T3-T4) time delay delay as well 

as overall performance changes from baseline (T0-T2; T0-T4). Solid bars 

represent Δ performance on the repeated sequence and striped bars on the 

random sequence. Positive and negative values, respectively, signify 

performance improvement and decrement. Shaded area (A) and error bars (B, 

C) indicate between-subject SEM. *p<0.05, **p<0.01, ***p<0.001, grey *p<0.1 

(trend). 
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6.4.2.1 Performance over the course of training 

During the training phase, stroke patients did not significantly improve their 

tracking performance [T0 vs T1; F-statistics and p-values of ANOVAs are 

summarized in Table 6.3] for neither the repeated [t(15)=1.62, p=0.127] nor 

random sequence [t(15)=-0.73, p=0.476], but a significant difference between 

sequences at T1 was observed [t(15)=-3.37, p=0.004, ƞ2=0.431]. In comparison, 

the healthy control group demonstrated significant sequence-specific learning 

[t(19)=4.72, p<0.0001, ƞ2=0.539] (Figure 6.5C). Closer inspection of the tracking 

performance in Figure 6.5A shows a decline in performance towards the end of 

the training phase, suggesting that temporary effects such as fatigue or boredom 

might have depressed performance towards the end of training.  

 

6.4.2.2 Performance at retest1 

Because stroke patients did not significantly improve their performance over the 

course of training, their performance levels on the repeated sequence at T1 and 

T2 were significantly different from the healthy control group [T1: t(30.8)=2.82, 

p=0.008; T2: t(34)=2.73, p=0.010]. However, patients and healthy controls had 

similar performance levels on the random sequence [T1: t(27.56)=0.94, p=0.354; 

T2: t(31.09)=1.62, p=0.115]. Across the short time period between T1 and T2, 

patients’ tracking performance significantly improved by 7 % without further 

training for the repeated sequence only [t(15)=3.72, p=0.002, ƞ2=0.480], while 

there was a trend for the random sequence [t(15)=1.95, p=0.070]. This indicates a 

boost in performance early after the initial training (45-60 min) comparable to the 

healthy controls [t(34)=0.56, p=0.582], which might be due to the dissipation of 

training-induced temporary effects (Figure 6.5C).  

In line, patients’ overall performance significantly improved from T0 to T2 for the 

repeated sequence (11 % improvement) [t(15)=4.53, p<0.001], but not random 

sequence. This indicates that patients actually learned, but that the learning 

effects were masked at the end of training, most likely due to temporary effects. 

However, these learning-related improvements were significantly smaller 

compared to the healthy control group [repeated sequence: t(34)=-3.55, p=0.001; 

random sequence: t(34)=-1.90, p=0.066]. 
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6.4.2.3 Performance at retest2 

Lastly, overnight changes in tracking performance were assessed. Again, 

performance levels on the repeated sequence at T3 and T4 were significantly 

different between stroke patients and healthy controls [T3: t(34)=2.88, p=0.007; 

T4: t(34)=3.36, p=0.002], with patients overall being less accurate in tracking the 

target (mean performance = 11.54 RMSE) than controls (mean performance 

= 9.71 RMSE). No significant difference between groups was evident for the 

random sequence [T3: t(34)=1.34, p=0.188; T4: t(34)=1.13, p=0.266]. Overnight, 

stroke patients suffered a significant 10 % performance decrease (i.e. forgetting) 

of the repeated sequence only [t(15)=-3.51, p=0.003], which was similar to the 

12 % performance decrement observed in healthy controls [t(34)=0.01, p=0.992]. 

This phenomenon of overnight forgetting was specific for the repeated sequence 

and was not evident for the random sequence in either patients [t(15)=-0.09, 

p=0.927] nor healthy controls [t(19)=-0.72, p=0.483] (Figure 6.5C).  

Overall, stroke patients demonstrated significantly improved performance on the 

repeated sequence at T4 compared to T0 (9 % improvement) [t(15)=2.91, 

p=0.011] and a trend for the random sequence (6 % improvement) [t(15)=1.99, 

p=0.066]. However, stroke patients’ overall sequence-specific performance 

improvements were significantly smaller compared to healthy controls [t(34)=-3.67, 

p=0.001]. 

  



Predicting individual differences in motor learning after stroke 

198   
 

Table 6.3 | ANOVA results of patients’ and healthy controls’ tracking 

performance at different time points. 

 Group Time Sequence Type Interactions 

Performance changes across initial training 

T0 vs T1  

F(1,33)=0.01, 

p=0.330 

 

F(1,34)=9.69, 

p=0.004, 

ƞ2=0.222 

 

F(1,34)=15.73, 

p<0.001, 

ƞ2=0.316 

time x group: 

F(1,34)=6.70,  

P=0.014, ƞ2=0.165 

time x sequence: 

F(1,34)=16.74,  

p<0.001, ƞ2=0.330 

Performance changes after time delay (retest1, retest2) 

T1 vs T2   

F(1,34)=5.84, 

p=0.021, 

ƞ2=0.147 

 

F(1,34)=20.96, 

p<0.001, 

ƞ2=0.381 

 

F(1,34)=48.79, 

p<0.001, 

ƞ2=0.589 

sequence x 

group: 

F(1,34)=4.39,  

P=0.044, ƞ2=0.114 

 

T3 vs T4   

F(1,34)=6.84, 

p=0.013, 

ƞ2=0.167 

 

F(1,34)=8.41, 

p=0.006, 

ƞ2=0.198 

 

F(1,34)=44.83, 

p<0.001, 

ƞ2=0.569 

sequence x 

group: 

F(1,34)=5.56,  

p=0.024, ƞ2=0.140 

time x sequence:  

F(1,34)=9.07,  

p=0.005, ƞ2=0.211 

Overal performance changes  

T0 vs T2  

F(1,34)=1.03, 

p=0.317 

 

F(1,34)=50.39, 

p<0.001, 

ƞ2=0.597 

 

F(1,34)=20.49, 

p<0.001, 

ƞ2=0.376 

time x group: 

F(1,34)=9.61,  

p=0.004, ƞ2=0.220 

time x sequence: 

F(1,34)=29.53,  

P<0.001, ƞ2=0.465 

T0 vs T4  

F(1,34)=1.30, 

p=0.262 

 

F(1,34)=56.25, 

p<0.001, 

ƞ2=0.623 

 

F(1,34)=6.99, 

p=0.012, 

ƞ2=0.171 

time x group: 

F(1,34)=10.33,  

p=0.003, ƞ2=0.233 

time x sequence: 

F(1,34)=12.74,  

P=0.001, ƞ2=0.273 

Significant effects are indicated in bold. T0: beginning of training session; T1: 

end of training session; T2: beginning of retest1; T3: end of retest1; T4: 

beginning of retest2. n.s.: not significant. 
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6.4.2.4 Factors potentially influencing tracking performance 

Functional characteristics and awareness about the repeated sequence did not 

relate to individuals’ tracking performance, but performance level at various time 

points were related to one another. Therefore, I next evaluated whether these 

inter-dependences also exist in chronic stroke patients. Again, the initial ability to 

perform the motor skill appeared to have the least influence on subsequent 

performances, for both the repeated sequence (average r=0.21, p=0.432) and 

random sequence (average r=0.06, p=0.599) (Figure 6.6).     

 

Figure 6.6 | Correlations of patients’ performance between time. 

Between-time points (T0–T4) correlation coefficients for performance on the 

repeated (left panel) and random (right panel) sequence. The colour bar indicates 

the correlation coefficients (r) presented in the matrices.     

 

There were no significant correlations between functional/clinical characteristics 

such as motor impairment (indexed by PCA score), fatigue (FSS, NFI) or sleep 

and patients’ tracking performance level (p>0.06). Compared to healthy controls, 

patients similarly well gained awareness of the repeated sequence during initial 

training (patients: 75±19.0 % correct; healthy controls: 80±15 % correct) [Mann-

Whitney U=136.0, p=0.459] and recognized the repeated sequence 24 hours 

later, at retest2 (patients: 71±24 % correct; healthy controls: 84±22 correct) 

[Mann-Whitney U=114.5, p=0.149]. The level of patients’ awareness/recognition 

of the repeated sequence was unrelated to their performance on the motor 

learning task.  
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6.4.3 Changes in spectral power measures with training 

All patients were able to perform the simple motor task and there were no 

significant differences in movement kinematics between patients and healthy 

controls for the movement towards the target [RT: F(1,34)=0.01, p=0.971; MT: 

F(1,34)=0.13, p=0.719], however stroke patients were slower in returning to the 

initial start position [MT: F(1,34)=27.37, p<0.001].  

Averaged spectral changes in contralateral and ipsilateral sensorimotor cortices 

in response to wrist movement are shown in Figure 6.3 before (Pre) and at two 

time points (Post1 and Post2) after the initial training. The general features of the 

spectral changes in beta activity induced by the simple motor task in stroke 

patients were comparable to those observed in healthy adults (Chapter 5). As 

previously described, a reduction in beta power, MRBD, was observed in both 

sensorimotor cortices during movement towards the target and during return 

movement to the initial start position. Following return movement cessation, a 

strong but transient PMBR, with a stronger expression in contralateral 

sensorimotor cortex was observed. 

 

Table 6.4 | Summary of kinematic measures acquired during the 

performance of the simple motor task for patients and healthy controls. 

 Patients Controls 

RT [ms] 982±16 983±14 

MT [ms] 949±59 977±52 

PV [deg/s] 133±19 200±17 

Kinematic measures are presented for each EEG session (S1–S6) 

and condition (flexion, extension). RT: Reaction Time; MT: 

Movement Time; PV: Peak. Values given are mean ±SD. 

 

6.4.3.1 Resting beta power 

Analysis of absolute beta power during the pre-movement (resting) baseline 

period revealed no significant difference between stroke patients and age-

matched healthy controls in either contralateral or ipsilateral sensorimotor 

cortices (Figure 6.7A, F-statistics and p-values of all ANOVAs are summarized 

in Table 6.5), consistent with previous observations (Rossiter et al., 2014a). In 
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line with findings in Chapter 5, no hemispheric difference in beta power was 

identified, but again a significant change in absolute beta power across EEG 

sessions was identified. This change in absolute beta power was reflected by a 

significantly increased beta power immediately after training (Post1) in both 

contralateral [Pre vs Post1: t(35)=-4.06, p<0.001; Post1 vs Post2: t(35)=2.86, 

p=0.007] and ipsilateral sensorimotor cortices [Pre vs Post1: t(35)=-3.27, p=0.002; 

Post1 vs Post2: t(35)=2.22, p=0.033], which was transient in nature. However, this 

effect was driven by the healthy control group and was not evident when 

assessing the stroke patients alone [F(2,30)=1.45, p=0.250]. Lastly, no significant 

interactions were found.  

 

Table 6.5 | ANOVA results for spectral power of stroke patients and controls 

 Group Hemisphere Session Interactions 

BB  

F(1,34)=0.21, 

p=0.653 

 

F(1,34)=1.80,  

p=0.188 

 

F(2,68)=5.90,  

p=0.004, np
2=0.148 

n.s. 

MRBD  

F(1,34)=2.22, 

p=0.146 

 

F(1,34)=21.06, 

p<0.001, ƞp
2=0.383 

 

F(2,68)=.94,  

p=0.004, ƞp
2=0.149 

n.s. 

PMBR  

F(1,34)=0.31, 

p=0.576 

 

F(1,34)=7.25, 

p=0.011, ƞp
2=0.176 

 

F(2,68)=3.29,  

p=0.043, ƞp
2=0.088 

n.s. 

Significant effects are indicated in bold. BB: Pre-movement baseline beta; 

MRBD: Movement-Related Beta Desynchronization; PMBR: Post-Movement 

Beta Rebound; n.s.: not significant.  

 

6.4.3.2 Movement-related beta power changes 

Averaged beta power changes during movement (MRBD) and after movement 

cessation (PMBR) for both stroke patients and healthy controls and topographic 

maps are shown in Figure 6.7C-D. Interestingly, although MRBD was on average 

~10 % smaller in patients compared to healthy controls, estimates of MRBD in 

both contralateral and ipsilateral sensorimotor cortex were not significantly 

different between groups (Figure 6.7C). Similarly, estimates of PMBR were 
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comparable between stroke patients and age-matched healthy controls (Figure 

6.7D). As expected and observable in the topographical distributions, in particular 

for the PMBR, a significant hemispheric difference in the magnitude of both 

MRBD and PMBR was observed for patients and healthy controls, indicating that 

both beta-band dynamics were overall more pronounced in the hemisphere 

contralateral to the moving hand. Finally, a significant effect of ‘session’ was 

found for both movement-related beta dynamics. Post hoc analyses revealed a 

significant reduction across sessions in both contralateral [F(2,68)=6.33, p=0.003, 

ƞp
2=0.157] and ipsilateral sensorimotor cortex [F(2,68)=3.31, p=0.043, ƞp

2=0.089] 

for the magnitude of MRBD, but only in ipsilateral sensorimotor cortex for PMBR 

[F(2,68)=4.66, p=0.013, ƞp
2=0.120].  

Since previous studies reported that movement-related beta measures correlate 

with motor impairment (Rossiter et al., 2014a; Shiner et al., 2015), I next 

examined whether resting and movement-related beta power was associated 

with clinical or behavioural parameters acquired on day 1. However, no 

correlations between beta power measures and motor impairment were 

identified. Interestingly, absolute baseline beta power from both sensorimotor 

cortices and across all sessions was positively correlated with the level of fatigue 

(average across sessions; contralateral sensorimotor cortex: r=0.67, p=0.004; 

ipsilateral sensorimotor cortex: r=0.71, p=0.002). In other words, beta power was 

enhanced in stroke patients with more severe fatigue. However, closer inspection 

revealed that this effect was driven by one stroke patient with severe fatigue.  
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Figure 6.7 | Changes in beta power and corresponding topographic maps. 

A, Average pre-movement (resting) beta power of young and elderly groups from 

both sensorimotor cortices. Power in the pre-movement time window (-1–0 s) 

before (Pre), immediately after (Post1), and 24-hours after (Post2) training was 

derived from contralateral and ipsilateral sensorimotor cortices of young (dark 

and light blue) and elderly (red and light red) subjects. B, Topographical plots of 

grand-averaged beta power showing the pre-selected electrodes (black 
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diamonds) which were pooled as contralateral and ipsilateral regions of interest. 

C-D, Power in the movement (1–2 s; MRBD) and post-movement time window 

(6–7 s; PMBR) before (Pre), immediately after (Post1), and 24-hours after (Post2) 

training derived from contralateral and ipsilateral sensorimotor cortices of stroke 

patients (green and light green) and age-matched healthy controls (orange and 

light orange). Error bars indicate between-subject SEM. Significant between-

group differences are indicated with a ‘+’ ( grey ‘+’ indicates trend). Topographical 

distributions (right panels) of movement-related beta activity show contralateral 

and ipsilateral modulation patterns for MRBD and PMBR. 

 

6.4.4 Prediction of patients’ post-training tracking performance from a 

combination of neurophysiological, behavioural and 

functional/clinical measures 

In order to gain insight into the role of beta activity in explaining motor learning 

behaviour after stroke, a stepwise multiple linear regression approach within a 

LOOCV was utilized. In the next sections, I firstly assessed whether a 

combination of neurophysiological (beta power measures), behavioural 

(performance on the motor learning task) and functional/clinical characteristics 

can explain stroke patients’ tracking performance at two different time points, 

shortly after training (T2) and 24 hours later (T4). To reiterate, performance at T2 

was used as an index of fairly permanent learning effects, while T4 provides a 

reflection of the maintenance of the acquired motor skill overnight. Next, the 

contribution of neurophysiological and behavioural measures alone in predicting 

motor performance was explored.  

 

6.4.4.1 Prediction of patients’ tracking performance at T2 

Pre- and post-training beta activity (Pre, Post1), and behavioural performance at 

T0 and T1, as well as functional/clinical characteristics (age, time since stroke, 

lesion side, motor impairment, fatigue severity, attention, sleep) were explored as 

potential predictors of tracking performance at T2 (total number of 

predictors = 23), using stepwise linear regression.  

None of these variables significantly explained performance on the repeated 

sequence [r=0.32, n.s.]. Similarly, performance on the random sequence could 

not be significantly predicted based on a combination of neurophysiological, 

behavioural and clinical measures [r=-0.34, n.s.]. 
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6.4.4.2 Prediction of patients’ tracking performance at T4 

Pre- and post-training beta activity (Pre, Post1, Post2), and behavioural 

performance at training (T0, T1) and retest1 (T2, T3) sessions as well as 

functional/clinical characteristics (age, time since stroke, lesion side, motor 

impairment, fatigue severity, attention, sleep) were explored as potential 

predictors of tracking performance at T4 (total number of predictors = 31).  

While performance on the random sequence could not be predicted from these 

variables [r=0.03, n.s.], performance on the repeated sequence was significantly 

predicted, accounting for 81 % of variance [r=0.91, p<0.001] (Figure 6.8A). 

Beyond the behavioural performance at the end of training [T1: t(15)=-4.26, 

p<0.001] and during retest1 [T2: t(15)=14.14, p<0.001; T3: t(15)=7.81, p<0.001], the 

magnitude of contralateral (ipsilesional) PMBR immediately after training (Post1) 

consistently affected the level of performance on the next day, at T4 [t(15)=4.79, 

p<0.001] (Figure 6.8B). The positive coefficient for the beta power measure 

suggests that lower PMBR following training is associated with better 

performance 24 hours later. An additional parameter relating to the time post-

stroke demonstrated that greater time since stroke was beneficial for tracking 

performance [t(15)=-2.58, p=0.021]. Similarly, a partial correlation analysis with 

performance measures and time since stroke as confounding covariates showed 

a significant positive correlation between post-training PMBR in contralateral 

(ipsilesional) sensorimotor cortex and performance at T4 [r=0.78, p=0.005]. In 

other words smaller rebound is related to better performance at T4 (note that 

higher RMSE denotes worse performance). 
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Figure 6.8 | Prediction of stroke patients’ tracking performance at T4. 

Stepwise multiple linear regression with a combination of neurophysiological, 

behavioural and functional/clinical measures provided statistically significant 

performance prediction (A) as quantified by the correlation coefficient between 

the actual and predicted tracking performance of stroke patients. Together, these 

measures accounted for 81 % of variance in performance on the repeated 

sequence. Significance of this correlation was determined by permutation-testing. 

B, Patients’ behavioural performance at the end of training and during retest1 

exerted the strongest effect on performance of the repeated sequence. In 

addition, post-training movement-related beta activity related to performance, 

such that smaller magnitude of PMBR in contralateral (ipsilesional) sensorimotor 

cortex explained better performance 24 hours after training. Time since stroke 

also consistently affected performance. Averaged z-scored regression 

coefficients (β) quantify the influence of each significant predictor upon 

performance level at T4. Error bars represent SEM. Single-sample t-tests to test 

for differences from zero were employed. TS: Time since Stroke. *p<0.05, 

**p<0.01, ***p<0.001. 

 

Next, the predictive strength of neurophysiological or behavioural performance 

measures alone, or a combination of both was assessed to better understand 

their explanatory value (summary of comparison is provided in Table 6.6). While 

neurophysiological measures alone did not predict performance on the repeated 

sequence, in combination with behavioural performance measures, they 

significantly improved the prediction accuracy compared to the simple 

behavioural model [t(15)=6.77, p<0.001]. Although time since stroke exerted a 

significant effect upon tracking performance at T4, it did not add further predictive 
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strength to the combination of neurophysiological and behavioural measures 

[t(15)=2.02, n.s.].  

 

Table 6.6 | Comparison of prediction accuracy for stroke patients’ 

performance at T4. 

Predictor variables R R2 Mean 

RMSE 

Sum 

RMSE 

Performance on repeated sequence  

Neurophysiology 0.20 0.04 0.66 11 

Behaviour 0.90*** 0.81 0.32 5 

Neurophysiology + Behaviour 0.92*** 0.85 0.21 3 

Neurophsyiology + Behaviour + Functional 

characetristics (Time since stoke) 

0.91*** 0.81 0.18 3 

Performance on random sequence  

Neurophysiology  -0.43 -0.18 0.94 15 

Behaviour 0.10 0.01 0.83 13 

Neurophysiology + Behaviour 0.03 0.00 0.82 13 

Regression models were fitted with neurophysiological (pre- and post-training 

(Pre, Post1, Post2) BB, MRBD, and PMBR from both sensorimotor cortices) and 

behavioural performance measures (tracking performance at T0, T1, T2 and T3) 

alone, and a combination of both, and additionally demographic information. The 

predictive strength is quantified by the correlation (R) between the actual and 

predicted performance, based on LOOCV. A combination of oscillatory beta 

measures and behavioural performance estimates best predicted performance 

on the repeated sequence (blue ink). RMSE values are averaged and summed 

across the 16 subjects. RMSE: Root Mean Square Error. *p<0.05, **p<0.01, 

***p<0.001.    

 

6.5 Discussion 

By examining the motor learning capacity of well-recovered, chronic stroke 

patients and acquiring standard measures of EEG-derived beta power, the 

current study reported several key findings: 



Predicting individual differences in motor learning after stroke 

208   
 

1. Firstly, stroke patients’ ability to learn the continuous tracking task was 

preserved, but the overall level of performance achieved with short-term 

training was significantly reduced compared to healthy controls.  

2. Secondly, no stroke-related alterations were evident in the properties of 

beta oscillations, although an effect for MRBD in the direction reported 

by previous studies was observed (Rossiter et al., 2014a; Shiner et al., 

2015). 

3. Following on from Chapter 5, by implementing a multivariate approach, 

the relationship between cortical beta activity and the degree to which 

patients in the chronic phase post-stroke learn and retain new motor skills 

was explored. Crucially, although behaviour played a strong role, beta 

oscillatory activity significantly contributed to the prediction of 81 % of the 

variance in tracking performance 24 hours after initial training. 

 

6.5.2 Reduced training-related performance improvements in stroke 

patients compared to healthy controls 

Reacquisition of motor skills through rehabilitation is paramount to recovery from 

motor impairment after stroke and has been proposed to be a form of learning 

(Kitago and Krakauer, 2013; Krakauer, 2006). By assessing stroke patients’ 

capacity to learn a motor skill with their affected hand, and compare their 

performance to healthy controls, my results indicate that stroke patients are able 

to improve their performance on a trained task. However, despite a preserved 

ability to learn, the overall level of performance achieved by patients was 

significantly lower compared to the healthy control group, indicating stroke-

related motor learning deficits that result in overall smaller performance gains. 

Analysis of stroke patients’ performance did not reveal significant improvements 

with initial training. This was most likely due to temporary effects such as fatigue 

and boredom depressing performance temporarily at the end of training (see 

Figure 6.5A) (Adams, 1961; Brawn et al., 2010; Rickard et al., 2008; Schmidt 

and Wrisberg, 2008b), thus resulting in an underestimation of the actual post-

training performance level in patients. Allowing the temporary effects from the 

training to dissipate (i.e. rest between training and retest1 session), revealed that 

stroke patients actually were able to improve their performance, indicating 
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preserved motor learning capacity after stroke. This pitfall also highlights the 

importance of identifying appropriate target behaviour and selecting valid 

measures to assess (fairly permanent) gains in performance related to training, 

and further justifies my motivation to predict performance at T2 (as opposed to 

T1). Crucially, by matching baseline performance, it was possible to directly 

compare the training-related changes in performance of stroke patients to healthy 

age-matched controls. Hence, my results demonstrate that even though stroke 

patients were able to learn on the task, their post-training level of performance 

was significantly lower compared to healthy adults, even though offline learning 

was similar. As such, stroke patients demonstrated overall smaller performance 

gains with short-term motor learning. This suggests that matched performance 

does not necessarily imply that both groups have the same ability to improve and 

that even though the ability to learn is preserved, it is impaired compared to 

healthy controls.  

Taken together with the existing studies discussed in Chapter 1 section 1.3.5, 

my results support the notion that motor learning is preserved in stroke patients, 

most likely due to the distributed nature of the neural network supporting learning 

(Doyon and Ungerleider, 2002a; Karni et al., 1995; Sanes and Donoghue, 2000). 

However, it is difficult to draw unifying conclusions due to differences in tasks, 

duration of practice, effectors, patient characteristics, and outcome measures. In 

particular, most studies have used the difference between baseline and post-

training performance as a measure of motor learning, however, this type of 

analysis might be conceptually mistaken since normalization, either additive or 

multiplicative, can lead to contradictory results (Kitago and Krakauer, 2010). 

Thus, as opposed to normalized changes, here the absolute level of performance 

was assessed, which allowed to reveal that despite both groups demonstrating 

improvements in task performance and similar patterns of change in performance 

with rest (e.g. early boost and overnight forgetting), final levels of performance 

were significantly different between stroke patients and healthy controls.  

It could be argued that inclusion of well-recovered patients with mostly no overt 

impairment might compromise the study, however I view this as a strength as it 

allowed the investigation of motor learning independent of potentially obscuring 

influences of motor impairments. Furthermore, it clearly shows that well-
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recovered patients with ‘normal’ motor control remain different to healthy adults 

in terms of their ability to learn, most likely due to lesion-induced structural and 

functional changes in the neural networks supporting motor learning. Since the 

present study examined motor learning in chronic stroke patients over a short, 

single training session, it is possible that prolonged training (i.e. weeks) could 

lead to greater performance improvements. For example, patients might have a 

slower rate of improvement (Wadden et al., 2017), but are actually able to achieve 

the same level of performance as healthy adults with prolonged training. The 

amount or “dose” of practice required for stroke patients to learn is an important 

topic in rehabilitation, and it has been shown that the dose required for training-

related neuroplasticity to occur and thus, exert a positive influence on outcome is 

fairly high (Lohse et al., 2014). Therefore, it would be interesting in the future to 

investigate whether stroke patients can further improve on the motor learning task 

given an adequate dose of training or whether they reach a performance plateau 

that remains categorically different to healthy adults (Hardwick et al., 2017).  

 

6.5.3 Beta oscillations are unaffected by stroke but altered with motor 

learning 

In contrast to normal beta oscillations, aberrant beta activity is a signature of 

sensorimotor pathology (Brown, 2007; Doyle et al., 2005; Heida et al., 2014; 

Heinrichs-Graham et al., 2014; Kühn et al., 2004; Little and Brown, 2014; Rossiter 

et al., 2014a; Shiner et al., 2015). Impairment in beta rebound after stroke has 

previously been demonstrated with tactile stimulation (Laaksonen et al., 2012). 

More recently, MEG studies have also demonstrated stroke-related alterations in 

the properties of beta oscillations in the motor system. Specifically, the magnitude 

of movement-related beta dynamics was significantly reduced, with these 

dynamics also exhibiting a more bilateral pattern in patients compared to healthy 

controls (Rossiter et al., 2014a; Shiner et al., 2015). In addition, these studies 

revealed that greater motor impairment was associated with lower magnitude 

MRBD and PMBR in ipsilesional sensorimotor cortex, suggesting that the 

dynamic modulation of beta oscillations may be important for motor control.  

Given these findings, rather unexpectedly, the current results did not reveal 

significant differences in the magnitude of MRBD and PMBR from both 
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sensorimotor cortices between stroke patients and age-matched healthy controls. 

A possible explanation for the lack of stroke-related alterations in beta activity 

might be the narrow spectrum of post-stroke impairment in the current patient 

group, representing well-recovered patients with mostly no overt functional motor 

impairments compared to previous studies of moderate-to-severely impaired 

patients. For example, stroke patients in the study by Rossiter and colleagues 

presented with an average ARAT score of 45±19 for the contralesional (affected) 

hand (maximum score 57) (Rossiter et al., 2014a), while patients in the current 

study had a homogeneous score of 56±0.5, and similar motor abilities of the 

affected and unaffected upper limb. Given that effective recovery of motor 

function is associated with a normalization of brain activity back towards a pattern 

seen in healthy controls (Johansen-Berg, 2002; Ward et al., 2003a), it appears 

likely that the lack of post-stoke alteration in beta dynamics is due to restitution 

of nearly ‘normal’ beta activity in my well-recovered patient cohort.  

An alternative explanation might be the rather small sample of well-recovered 

patients. Although the study by Shiner and colleagues detected aberrant 

movement-related beta activity with as little as 10 chronic stroke patients (Shiner 

et al., 2015), this is most likely due to the heterogeneous sample of patients with 

a broad spectrum of motor functions. Indeed, closer inspection and post hoc 

analyses of beta power revealed that the magnitude of MRBD from contralateral 

sensorimotor cortex was significantly reduced in patients compared to healthy 

controls, or showed a trend, for two of the three EEG sessions. This suggests 

that a larger cohort would have likely yielded a significant effect for MRBD in the 

direction reported by previous studies.  

Interestingly, my results indicated that stroke patients who reported higher fatigue 

severity, exhibited higher beta power across both sensorimotor cortices. Whilst 

this effect was mainly driven by one stroke patient, it is an interesting and novel 

finding possibly linking beta oscillations and subjective levels of post-stroke 

fatigue. In particular, higher beta power in chronic stroke patients might reflect 

greater GABAergic inhibition consistent with recent findings of low excitability of 

cortical and subcortical inputs that drive motor cortex output with high fatigue 

(Kuppuswamy et al., 2015). Given the sparse literature on fatigue and cortical 

oscillations, with most studies investigating the effect of mental and physical 
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fatigue, but not chronic, post-stroke fatigue on resting and movement-related beta 

activity (Fry et al., 2017; Shigihara et al., 2013; Tecchio et al., 2006), future 

studies with a greater number of stroke patients and a broader spectrum of post-

stroke fatigue severity might be worthwhile to provide new perspectives on the 

neural mechanisms underlying fatigue and its implications for motor learning after 

brain damage. In the context of the current study, post-stroke fatigue besides 

lesion location, level of motor impairment, and time since stroke was thus 

considered as another source of variability in response to motor learning.  

In accordance with previous studies (Rossiter et al., 2014a), no difference in the 

overall power of pre-movement (resting) beta activity was observed between 

patients and controls or hemispheres. However, while healthy controls 

demonstrated a transient post-training increase in beta activity that returned to 

pre-training levels on day 2, stroke patients did not show a comparable pattern. 

Since the training-related modulation of beta power might be a marker of 

temporary suppression of LTP-like plasticity after motor learning, the lack of 

modulation observed in stroke patients might represent altered plasticity 

processes, potentially explaining the overall reduced ability to learn compared to 

the healthy cohort. However, whether this physiological response to training, i.e. 

a temporary increase in beta power, is necessary for practice-dependent 

plasticity processes to occur, and if absent or reduced, results in reduced motor 

learning ability, needs to be further investigated.  

 

6.5.4 Beta oscillations are predictive of tracking performance retention 

As discussed in Chapter 1 section 1.4, behavioural, clinical and demographic 

measures contribute to predictive models of response to treatment and long-term 

outcome after stroke (Hope et al., 2013; Kwakkel et al., 2003; Prabhakaran et al., 

2015; Shelton and Reding, 2001). Incorporating neuroimaging data that reveal 

the mechanisms underlying post-stroke plasticity and heterogeneity of motor 

recovery and response to rehabilitative training is likely to provide greater insight 

into the capacity for reorganization (Burke and Cramer, 2014; Ward, 2017). Thus, 

here, the predictive role of EEG-derived beta oscillations for post-stroke motor 

learning was explored, using a multivariate approach combining behavioural, 

clinical and neurophysiological measures.  
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My findings provide evidence that retention of sequence-specific tracking 

performance 24 hours after initial training can be successfully predicted by a 

combination of behavioural and beta oscillatory measures. In particular, even 

though performance scores had the strongest effect upon post-training 

performance levels, incorporating beta oscillatory measures enhanced the ability 

to predict stroke patients’ capacity to retain a newly acquired motor skill, such 

that a total of 81 % of variance was explained. Even though the type of beta 

measure and the direction of the association was different to the healthy subjects 

in Chapter 5, this generally supports the idea that estimates of movement-related 

beta activity provide a significant contribution to predicting individual differences 

in tracking performance not only in healthy, but also clinical population. The ability 

to accurately predict patients’ capacity for motor learning is important for 

individualised treatment planning and patient stratification of novel treatment 

approaches (Stinear, 2010; Ward, 2017). 

To date, most studies have investigated the relationship between properties of 

cortical beta oscillations and post-stroke motor impairment (Hall et al., 2010b; 

Laaksonen et al., 2012; Rossiter et al., 2014a; Shiner et al., 2015; Thibaut et al., 

2017), but to the best of my knowledge, no study has explored the relationship 

between beta oscillatory power and post-stroke motor learning capacity. When 

controlling for behavioural performance, post-training contralateral (ipsilesional) 

PMBR related to performance levels retained 24 hours after training, with patients 

who exhibited lower PMBR after training, performing better after a night’s sleep. 

Given the link between beta oscillations and GABAergic inhibition (Hall et al., 

2011, 2010a; Jensen et al., 2005; Muthukumaraswamy et al., 2013; Roopun et 

al., 2006; Yamawaki et al., 2008), smaller post-training PMBR, reflecting lower 

GABAergic inhibition might facilitate cortical plasticity associated with motor 

learning and early consolidation, thus resulting in better motor skill retention. This 

general interpretation is in line with MRS and PET studies reporting decreases in 

GABA levels being associated with better motor recovery after stroke (Blicher et 

al., 2015; Kim et al., 2014). Since plasticity is activity dependent, it should be 

noted that variability in post-training performance was explained not by resting 

beta activity but specifically by event-related (dynamic) changes in beta power, 

which are more closely related to motor function. This also demonstrates the 
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importance of using EEG/MEG in order to follow these dynamic changes in 

cortical excitatory and inhibitory processes. Thus, EEG-derived measures of beta 

oscillations, as markers of net inhibitory and excitatory mechanisms in humans, 

might improve our understanding of how motor skills are acquired on an individual 

level, beyond information provided by behavioural scores, which are unlikely to 

adequately reflect an individual’s potential for cortical reorganisation in response 

to motor learning.  

Although evidence suggest heightened responsiveness to motor training during 

the early post-stroke phase, likely due to increased potential for cortical plasticity 

(Cramer, 2008; Krakauer et al., 2012; Murphy and Corbett, 2009; Ward, 2017; 

Zeiler and Krakauer, 2013), the current study only included stroke patients in the 

chronic phase. This was motivated by practical considerations in their 

recruitment. In addition, as the sample size was relatively small with variable 

lesion location and time post-stroke, a deeper understanding of the relationship 

between cortical beta oscillations and motor learning should be achieved in a 

larger patient population including acute stroke patients in order to determine 

whether beta oscillatory measures early after stroke can similarly explain 

differences in motor learning capacity. Clearly, further work is required to 

understand the complex relationship between neuronal activity and motor 

learning after stroke, but the present results open new interesting lines of 

investigation, in particular for future rehabilitation research that employs 

predictive models of motor learning. Specifically, the predictive methodological 

approach may not only specify if the individual may respond to training but also 

provide an indication of when to best provide rehabilitation.  

 

6.5.5 Conclusion 

In conclusion, the current results extend my previous findings on the unique 

contribution of beta oscillatory dynamics in explaining individual differences in 

motor learning. Specifically, it demonstrates the potential of neurophysiological 

measures to enhance prediction of retained tracking performance of a previously 

learned motor skill and suggest that beta oscillations may have value as 

biomarkers of cortical function and plasticity after stoke. 
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 General discussion 

The brain’s intrinsic potential to react as a highly dynamic system that changes 

in response to motor learning and injury is paramount for everyday life activities 

and functional recovery after stroke. In this thesis, I have attempted to bridge the 

gap between cellular and behavioural accounts of cortical plasticity by 

investigating the relationship between cortical beta oscillations, as candidate 

biomarkers of net excitatory and inhibitory processes in humans, and individual 

differences in the ability to learn and retain new motor skills in both healthy 

(Chapter 5) and diseased states (Chapter 6). I have demonstrated that 

properties of beta-band activity help to explain individual differences in 

performance in both healthy individuals and stroke patients in a way that 

behaviour alone could not. These findings built upon the demonstration that the 

here employed beta power estimates show high intra-individual reliability over 

time, validating the notion that these measures reflect meaningful individual 

differences that can be utilized in basic and clinical research (Chapter 4). 

Together, the work presented here suggests that measures of beta oscillations 

provide useful predictive information about an individual’s motor learning 

capacity, beyond information provided by behavioural characteristics.  

Since each experimental chapter contains a relatively extensive discussion of the 

issues pertinent to that study, in this summary I draw together the main findings 

of the experiments, outline the implications of this body of work, and discuss 

some limitations and future extensions to the field. 

 

7.1 Key findings 

The work presented here is founded upon a large body of physiological, 

pharmacological, behavioural and neuroimaging studies proposing a role for 

cortical plasticity in motor skill learning and recovery after stroke. Having ventured 

into several research fields such as motor learning, neuronal oscillations and 

stroke, the experiments presented provide novel findings that advance these 

respective fields. The key findings are summarised below. 

Given the massive upsurge in the interest in neuronal oscillations, and in 

particular rhythmic activity at beta frequencies, due to their potential role as 
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neurophysiological marker of motor system function and dysfunction (Nicolo et 

al., 2015; Takemi et al., 2015; Ward, 2015; Wu et al., 2015), in Chapter 4, I 

established for the first time that, given careful execution of experimental 

conditions, movement-related beta dynamics show high intra-individual reliability. 

The highly reproducible nature validated the notion that these measures are an 

appropriate assay for longitudinal and clinical studies, and was a prerequisite for 

the subsequent enquiry. 

Based on daily life experience that people show considerable inter-individual 

differences in their ability to learn, I then started to explore the neurophysiological 

processes underlying these differences, which is of significant clinical importance 

for improving long-term rehabilitative outcomes after brain injury (Stinear and 

Byblow, 2014; Stinear, 2010; Ward, 2017). In Chapter 5, I firstly demonstrated 

that elderly adults show comparable motor learning as their younger 

counterparts, supporting the view of preserved motor learning with advancing age 

(for review on the debate see (Seidler, 2006; Voelcker-Rehage, 2008)). 

Corroborating previous findings (Gaetz et al., 2010; Heinrichs-Graham and 

Wilson, 2016; Rossiter et al., 2014b), I further show that elderly subjects exhibited 

higher resting beta power and MRBD in both contralateral and ipsilateral 

sensorimotor cortex,  implying increased GABAergic inhibition, and potentially 

reduced cortical plasticity in the elderly. By implementing a multivariate approach 

with LOOCV, accounting for multicollinearity between measures and allowing 

generalization of results, I then revealed that pre-training movement-related beta 

activity explains some of the individual differences in motor learning, but only after 

accounting for behaviour. As such, the state of the brain’s sensorimotor cortex 

prior to learning, as captured by beta oscillatory activity, might provide useful 

predictive information that can be utilized in basic research and clinical studies. 

Finally, in Chapter 6, I explored the neurophysiological processes underlying 

individual differences in motor learning after stroke. I showed that chronic stroke 

patients have a preserved ability for motor learning, although reduced when 

compared to healthy controls. Unexpectedly, and contradicting previous findings 

(Rossiter et al., 2014a; Shiner et al., 2015), possibly due to various factors such 

as sample size and level of impairment, no significant stroke-related alterations 

in resting or movement-related beta activity were observed. Multivariate 
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modelling, taking into account behavioural, clinical and demographic 

characteristics, then revealed that post-training movement-related beta activity 

explains some of the variation observed in 24-hour retention of the previously 

acquired motor skill in stroke patients.  

Together, the findings in Chapter 5 and Chapter 6 indicate that beta oscillations 

may have value as biomarkers of cortical function and plasticity in the healthy as 

well as lesioned brain. Although further studies with larger cohorts are needed to 

establish a robust link between individual differences in motor learning and beta 

oscillatory dynamics, the novel findings illustrate the potential value of 

incorporating cortical oscillatory measures, reflecting neurophysiological 

mechanisms, together with behavioural information to enhance prediction 

accuracy. 

 

7.2 Clinical implications for rehabilitation   

The reason for wanting to understand the relationship between cortical beta 

oscillations and individual differences in motor learning is the desperate clinical 

need for improved restorative treatments to maximize outcomes after stroke. As 

discussed in Chapter 1, accumulating evidence suggests that NIBS and 

pharmacological approaches represent promising treatment strategies to 

dramatically improving patients’ outcome (Chollet et al., 2011; Kim et al., 2006; 

Zimerman et al., 2012). However, current implementation of plasticity-modifying 

interventions in phase III trials lack a clear mechanistic approach and are thus 

unlikely to succeed (Ward, 2008). To achieve progress, the biological 

mechanisms underlying the observed behaviour need to be understood in 

humans. Appropriate biomarkers that bridge the gap between cellular and 

behavioural accounts of cortical function and plasticity in both healthy and 

diseased states, would help to demonstrate efficacy of therapeutic therapies in 

the elderly and stroke patients, improve decision-making about who and when to 

treat, and allow individualised treatment planning rather than a ‘one size fits all’ 

approach. For example, given the discussed post-stroke structural and functional 

changes, with evidence for an early critical window of heightened plasticity, the 

timing of rehabilitative treatment will clearly have a major effect on patients’ 

outcome. 
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The growing interest in biomarkers that predict patients’ motor recovery and 

outcomes has led to the identification of several anatomical and functional 

measures that carry predictive potential beyond the early clinical assessment of 

motor impairment (Kwakkel et al., 2003; Prabhakaran et al., 2015). For example, 

patients with intact TMS-induced MEPs in their affected UL typically experience 

better motor recovery. In addition, more extensive lesion-induced corticospinal 

tract (CST) damage accounts for worse UL motor recovery (for review see 

(Bembenek and Kurczych, 2011; Burke and Cramer, 2014; Stinear, 2010)), while 

incorporating information about damage to cortical and subcortical areas involved 

in sensorimotor function together with information about CST damage is better 

able to predict motor outcome (Rondina et al., 2016). Recent attempts with EEG 

demonstrated that greater post-stroke resting functional connectivity in the beta 

frequency was associated with better subsequent clinical improvement (Nicolo et 

al., 2015; Wu et al., 2015). However, since no single clinical nor 

neurophysiological/neuroimaging measure has been able to accurately explain 

individual recovery potential, combining these measures might provide greater 

insight into the capacity for reorganization and might provide the optimal 

approach for prediction of long-term outcomes after stroke.  

Approaches incorporating a combination of  clinical and/or neurophysiological 

and/or neuroimaging measures into predictive models of long-term outcome have 

been undertaken (Quinlan et al., 2015; Stinear et al., 2017, 2012), but the 

predictive role of neuroimaging measures needs to be further explored. 

Notwithstanding, neuroimaging/neurophysiological measures might have an 

ascending role in individualised treatment planning and clinical decision making. 

In that regard, EEG that can be rapidly performed at the bedside is a promising 

tool for the identification of widely available and cost-effective biomarkers that 

advance our understanding of cortical function in health and disease.  

 

7.3 Methodological considerations and future directions 

As I demonstrated in Chapter 5 and Chapter 6, EEG-derived oscillatory 

measures hold the potential to extend the insights offered by animal and 

pharmacological studies of the mechanisms contributing to learning and post-

stroke recovery. Importantly, by designing a motor learning task that optimally 
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promotes learning in healthy and clinical populations as outlined in Chapter 3, 

and ensuring that the employed EEG-derived beta oscillatory measures are 

highly reliable within individuals as shown in Chapter 4, it was possible to 

demonstrate a link between beta oscillatory dynamics and individual differences 

in motor learning. However, further studies are clearly needed to establish the 

robustness and generalizability of these findings, with the aim of translating them 

into the clinical setting.  

In particular, the work presented here focused on stroke patients in the chronic 

phase post stroke with well-recovered motor functions. The emphasis on chronic 

stroke was motivated by practical considerations in their recruitment as well as 

their relatively stable levels of motor function, which allows attributing changes in 

performance to the experimental training. However, given heightened 

responsiveness to training during the critical period early after stroke (Biernaskie 

et al., 2004; Zeiler and Krakauer, 2013), future studies in acute stroke patients 

with a broad spectrum of motor impairments are needed to further shed light upon 

the mechanisms underlying early spontaneous biological recovery, and how to 

better take advantage of or augment this window of opportunity to maximise 

therapeutic effects. Along these lines, longitudinal studies should investigate the 

evolution of oscillatory measures, including event-related dynamics, associated 

with recovery from stroke with and without rehabilitative interventions. Further, 

some pharmacological agents are known to have an impact on both GABAergic 

inhibition and properties of beta oscillations (Baker and Baker, 2003b; Hall et al., 

2011; Jensen et al., 2005; Muthukumaraswamy et al., 2010). Future studies 

should thus manipulate the balance between excitatory and inhibitory 

mechanisms in order evaluate the concurrent changes in beta oscillatory 

dynamics and motor learning behaviour, thus strengthening the here identified 

association between both.   

Since rehabilitation interventions are based on motor learning principles, the 

choice and accuracy of metrics to examine different features of movement 

behaviour and learning is important. As highlighted in Chapter 6, rather than 

using normalized performance (e.g. relative to baseline) which might be 

conceptually fraught (Kitago and Krakauer, 2010), the current work assessed 

learning based on absolute performance levels at two different time points. While 
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inaccurate deduction of learning caused by inadequate metric selection, might for 

example suggest a failure of training, when in fact poor choice of outcome 

measures rather than a lack of efficacy of training is the problem, it highlights the 

pitfall associated with the diversity of analytical approaches employed in the field 

of motor learning. Currently there are no standard procedures regarding the 

choice of outcome measures (Huang and Krakauer, 2009), which makes 

comparisons between motor learning studies difficult. As such, in order to 

advance our understanding of motor learning in humans, and its underlying 

processes, a unified approach needs to be developed in the future.  

 

7.4 Concluding remarks 

The picture that this thesis paints is one of a complex relationship between the 

brain and behaviour, with a potential role of EEG-derived cortical oscillations for 

motor learning in the healthy and diseased brain. My research and that of others 

suggests promising routes to a better understanding of the biological 

mechanisms underlying motor learning and recovery from stroke, with important 

translational value. Although all the work reported here is based on a laboratory-

based motor learning task, my hope is that future work incorporating various 

sources of information about the neurophysiological mechanisms by which the 

human brain supports learning of different motor aspects will lead to clinical 

advances in how rehabilitative treatments for stroke are delivered, helping stroke 

survivors in their daily struggle to regain lost motor functions.  

 

 

 

 

 

Even though spontaneous brain activity emerges without an external force, for a brain 

to be useful it should adapt to the outside world.  

György Buzsaki in Rhythms of the brain, 2006   
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Appendix 

Edinburgh Handedness Inventory  

Handedness 

      
Which hand do you use for the following 
activities?    
Do you ever use the other hand?     

      

Which 
hand do 
you use 
when?   Left 

No 
pref Right 

Do you ever 
use the 
other hand 

1 Writing         

2 Drawing         

3 Throwing         

4 Using scissors         

5 Using toothbrush         

6 Using knife (without fork)         

7 Using spoon         

8 Using broom (upper hand)         

9 Striking match         

10 Opening box (holding lid)         

11 Holding a computer mouse         

12 Using a key to unlock a door         

13 Holding a hammer         

14 Holding a brush or comb         

15 Holding a cup while drinking         

      

      
Mark Cohen, 2008     
adapted from Oldfield (1971). 
Neuropsychologia.  
 
    

 Subject DOB:_________________   

 Date:________________________   

 Experimenter:_________________   
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Fatigue Severity Scale (FSS) 

Please read each statement below and rate your agreement or disagreement with 

the statements using numbers between 1 and 7 based on how you felt in the last 

one week. A low value (e.g. 1) indicates strong disagreement and a high value 

(e.g. 7) indicates strong agreement.  

1. I am easily fatigues. 

2. Fatigue causes frequent problems for me. 

3. My fatigue prevents sustained physical functioning. 

4. Fatigue interferes with carrying out certain duties and responsibilities. 

5. Fatigue is among my three most disabling symptoms. 

6. Fatigue interferes with my work, family or social life. 

 

 

Neurological Fatigue Index (NFI) 

 

For each statement please state if you 1. strongly disagree, 2. disagree, 3. agree, 

4. strongly agree based on how you have been feeling in the past two weeks. 

 

1. I can become tired easily. 

2. Sometimes I lose my body strength. 

3. My limbs can become very heavy. 

4. My body can’t keep up with what I want to do. 

5. The longer I do something the more difficult it becomes. 

6. Sometimes I have no option but to simply stop what I have been doing. 

7. I usually get tired on most days. 

8. I can become weak even if I am not doing anything. 

9. Sometimes I really have to concentrate on what are usually simple things. 

10. I have problems with my speech when I am tired. 

11. My coordination gets worse as the day goes on  

12. Mental effort really takes it out on me  
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St Mary’s sleep questionnaire 

 

This questionnaire refers to your sleep over the past 24 hours. 

 

1. At what time did you settle down for the night? 

2. At what time did you fall asleep last night? 

3. At what time did you finally wake this morning? 

4. At what time did you get up this morning? 

5. Was your sleep: 

- Very light 

- Light 

- Fairly light 

- Light average 

- Deep average 

- Fairly deep 

- Deep 

- Very deep 

6. How many times did you wake up? 

7. How much sleep did you have last night? 

8. How much sleep did you have during the day, yesterday? 

9. How well did you sleep last night? 

- Very badly 

- Badly 

- Fairly badly 

- Fairly well 

- Well 

- Very well 
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