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Abstract 
 
One challenging aspect of quartz crystal microbalance (QCM) measurements is the characterization 
of adsorbed particles as the change in resonance frequency (Δf) is proportional not only to the 
inertia of the adsorbed layer but also to that of the hydrodynamically-coupled fluid. Herein, by 
solving numerically the Navier-Stokes equations, we scrutinize ∆f for sparsely deposited, rigid 
spherical particles, that are firmly attached to an oscillating surface. The analysis is shown to be 
applicable to adsorbed, small unilamellar vesicles (SUVs) of controlled size under experimental 
conditions in which adhesion-induced vesicle deformation is negligible. The model supports a 
hydrodynamic explanation for the overtone dependence of Δf, and was fitted to experimental data 
concerning three monodisperse populations of SUVs with different average sizes ranging between 
56 and 114 nm diameter. Using this procedure, we determined the average size of adsorbed vesicles 
to be within 16% of the size that was measured by dynamic light scattering experiments in bulk 
solution. In conclusion, this model offers a means to extract particle size from QCM-D 
measurement data, with applications to biological and synthetic nanoparticles. 
  



2 
 

Introduction  

The quartz crystal microbalance with dissipation monitoring (QCM-D) is a measurement technique 

that enables highly sensitive characterization of adsorbates, and has found wide application across 

the interfacial sciences and biotechnology.1-4  The QCM-D operates as a label-free, acoustic sensor. 

Its transducing element is a thin (typically 0.3 mm) quartz crystal, which is piezoelectrically driven 

to execute a thickness-shear oscillation at its resonance frequency (typically 5 MHz) and odd 

overtones thereof.5 In conventional measurement configurations, this resonance frequency f and the 

width of the resonance peak Γ, or equivalently the rate of the energy dissipation D = πΓ/f, are 

measured, and changes in these measurement signals may occur due to adsorption, desorption, or 

structural reconfiguration events occurring on the quartz crystal surface.6, 7 The oscillating quartz 

emits a viscously damped shear wave into the surrounding fluid, which can be either gas or liquid. 

The decay length of these waves (which equals 250 nm for a 5 MHz, AT-cut quartz crystal) is 

referred to as the viscous penetration depth δ.8 The penetration depth is illustrated in Fig. 2b with a 

contour map of the velocity field, showing non-zero velocity in a thin fluid layer attached to the 

wall. Owing these hydrodynamic effects, the QCM-D technique is sensitive to not only the adlayer, 

but also the corresponding, so-called “coupled fluid”.9 In a seminal work, Kanazawa and Gordon 

analyzed the effect of the coupled fluid on the QCM-D signal as a function of the viscosity and the 

density of the fluid.10  

 Extracting adlayer material and/or the geometrical properties, such as thickness, roughness or 

elasticity, usually requires fitting the QCM-D data with a model for the force acting on the 

oscillating quartz. Over the years, various models have been developed. The most widely used 

model is the Sauerbrey model, which is a proportionality between the resonance frequency Δf and 

the adsorbed mass11 that is valid when the adlayer is perfectly flat, rigid and firmly attached to the 

quartz surface. While these conditions may be satisfied for small and strongly adhering molecules, 

it may not hold for flexible layers, composed of e.g. soft, water-rich biomacromolecules or lipid 
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bilayers, where slippage occurs between the monolayers at the solid to liquid crystalline phase 

transition temperature.12 Modeling flexible adlayers requires including elastic and dissipative 

material properties. Mason et al. 13  and later Voinova et al. 14 extended the Sauerbrey model to 

include these properties, based on shear wave theory in viscoelastic media. In addition to the 

adlayer thickness and mass, the resulting model also provides the (frequency dependent) storage 

and loss moduli of the adlayer.14-16  

It should be emphasized that the above mentioned models assume a laterally homogeneous 

film. Consequently, when the absorbed mass is laterally heterogeneous, e.g., in the form of 

individual particles, the validity of these models breaks down. Consequently analyzing 

heterogeneous layers using QCM-D requires solving the interaction between these lateral variations 

and the surrounding fluid using the three-dimensional hydrodynamics equations. This task has been 

completed for rough surfaces,17 where the hydrodynamics is analytically tractable, when the 

amplitude of the roughness is small compared to its wavelength.18 In addition lateral heterogeneous 

problems have been reduced to analytically tractable, laterally homogeneous problems using 

volume-averaging. This approach has been applied to porous layers,19  and to layers of tethered 

polymers, where in the latter case, a non-Newtonian rheological model was used to extract the 

polymer size and shape from the ΔΓ/Δf - ratio.20 In addition there are a few reports on numerical 

simulations of the hydrodynamics of adsorbed particles on oscillating surfaces, providing insight 

into the hydrodynamic interaction between adsorbed particles,21  and into the role of the flexibility 

of the bonds between the particles and the surface.22 Another approach analyzes heterogeneous 

layers by extrapolating QCM-D data on (-Δf, -ΔΓ/Δf) - coordinates to the limit of zero energy 

dissipation: ΔΓ = 0, which corresponds to a hypothetical layer of densely and rigidly packed 

particles.23 24 Assuming the height of this layer to be equal to the particle size, the latter is estimated 

using the Sauerbrey relationship. Despite a few agreements with alternative size measurements,35,36 

there is no rigorous theoretical basis to relate the particle size to -Δf in the ΔΓ = 0 limit, and it 
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remains an open question as to why the extrapolation method works in certain cases, while it is 

unsuccessful in other cases. 

Hence, there remain outstanding challenges when analyzing QCM-D data for heterogeneous 

layers of particles. As mentioned above, the complexity of this problem is related to the coupling 

between the particles and the surrounding fluid.17, 21, 25-30 When the particles are relatively close to 

each other, they interact hydrodynamically, i.e., they interact with fluid disturbances that are 

generated by neighboring particles. Since fluid disturbances decay over a length scale on the order 

of the particle radius a, there exists a limit of low surface coverage, where the distances between the 

particles are (i) sufficiently large to prevent hydrodynamic coupling between the particles and (ii) 

sufficiently small to ensure a measurable QCM-D signal. As compared to more dense systems, 

studying this limit provides advantages as it reduces the complexity of the hydrodynamics to that of 

a single particle, as opposed to the case where particles are closer together and hydrodynamically 

interact. While the dynamics of the fluid coupled to hydrodynamically interacting particles has been 

investigated experimentally41,43 and numerically,21 the corresponding fundamental problem of fluid 

coupled to hydrodynamically isolated particles has, to the  best of our knowledge, not yet been 

addressed. 

Herein, we analyze the corresponding hydrodynamics of rigid spherical particles that are 

firmly attached to an oscillating surface, using dimensional analysis and numerical simulation. As 

explained above, we circumvent the problem of hydrodynamic coupling between the particles by 

focusing on the limit of a very low surface coverage. Using this approach, we are able to derive a 

model, which allows us to extract the particle size and the particle surface coverage from QCM-D 

measurement data. This approach is markedly different from conventional QCM-D models, which 

focus on the dense limit and model the adlayer as a homogeneous film. We will show that despite 

the assumption of the rigidity of the particles, the model can be applied to characterize soft matter, 

such as lipid vesicles, under appropriate experimental conditions.  



5 
 

Problem Statement & Dimensional Analysis 

We consider solid spheres (radius a and mass mP = ρP4πa3/3, with ρP the particle mass density), 

which are rigidly attached to the QCM-D sensor surface. Furthermore, we consider the limiting case 

where the spacing between the spheres is much larger than the sphere radius. In this limit, there is 

negligible hydrodynamic coupling between the spheres, which implies that the QCM-D force for N 

absorbed spheres equals N times the force for one isolated sphere. The QCM-D frequency shift ∆f 

and the bandwidth shift ∆Γ are related to the force Δ𝐹 acting on the quartz, as follows:31  

Δ!
!
+ 𝑖 Δ!

!
= − Δ!

!!!!!
 .                            (1) 

Here 𝑈, f and ω = f2π are the velocity amplitude, the frequency and the angular frequency of the 

quartz, respectively, and 𝑖 = −1. The force Δ𝐹 in Eq. (1) is referred to as the “QCM-D force”. 

Furthermore, for ideal resonators, mQ is the mass of the quartz, while for real resonators mQ is 

slightly different.31 The hat “^” on 𝑈 and Δ𝐹 indicates a complex valued amplitude of an oscillating 

quantity. An oscillating (real valued) quantity Q is related to its complex valued amplitude 𝑄 via 

𝑄 = ℜ 𝑄exp(𝑖𝜔𝑡) , where ℜ signifies the real part. As shown in Eq. (1) the real part of Δ𝐹/𝑖𝑈 

corresponds to the inertia component of the QCM-D force, which is in phase with the displacement 

oscillation of the quartz surface and is manifested in the ∆f response, while the imaginary part of 

Δ𝐹/𝑖𝑈 corresponds to the friction component of the QCM-D force, which is opposite to the 

velocity oscillation of the quartz surface and is reflected in the ∆Γ response. The QCM-D force 

Δ𝐹 = 𝑚!𝑖𝜔𝑈 + ∆𝐹!  is composed of two parts, the inertia of the sphere (mass mP times 

acceleration 𝑖𝜔𝑈) and the difference of the hydrodynamic force Δ𝐹!  on the combined system of the 

oscillating wall and the sphere minus the hydrodynamic force on the oscillating wall without the 

sphere.  

In supporting Section S1, we use dimensional analysis to show that Δ𝐹! depends on the 

various variables in the following way: 
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Δ𝐹! = 𝑖𝜌!𝑎!𝜔𝑈𝜑
!
!

 .                                                                                         (2) 

Here δ = (2νF/ω)1/2 is the viscous penetration depth, νF = ηF/ρF is the fluid kinematic viscosity, ρF is 

the fluid mass density, ηF is the fluid dynamic viscosity, and 𝜑 is a (yet unknown) dimensionless, 

complex valued function of a single dimensionless variable δ/a. The imaginary unit has been added 

to Eq. (2) to ensure that the real and imaginary parts of 𝜑 correspond to frequency shift and 

bandwidth shift, respectively. Eq. (2) is derived under the assumption of a small Reynolds number 

Re = 𝑈 𝑎/𝜈!. This condition is satisfied under typical liposome adsorption conditions; see 

Supporting Section S1. A small Reynolds number renders the hydrodynamic equations linear [Eq. 

(3)], such that hydrodynamic force Δ𝐹! is a linear superposition of the contributions from the 

individual overtones, i.e., the overtones are decoupled. It is furthermore emphasized that in the 

linear, small amplitude regime, the QCM-D force amplitude Δ𝐹 is proportional to the velocity 

amplitude 𝑈, and the latter does affect the sensor response, which measures the ratio between 

Δ𝐹 and 𝑈; see Eq. (1).    

 

Hydrodynamic Simulations 

We simulate the three-dimensional (3D) and time-dependent hydrodynamics around a solid sphere 

(radius a), which is rigidly attached to an oscillating QCM-D surface. We refer to the combined 

system of the sphere and the QCM-D surface as “the substrate”. The substrate oscillates with a 

velocity 𝑈 cos 𝜔𝑡 . As presented in Fig. 1a, the computational domain consists of a rectangular 

box, which is attached to the QCM-D sensor surface. The sizes of the computational domain in the 

horizontal directions are both equal to L, while the domain size in the vertical direction equals Lz. 

The coordinate system is also shown in Fig. 1a. The x direction coincides with the direction of the 

oscillation, which is parallel to the wall. The y direction is parallel to the wall and normal to the x 

direction. The z direction is normal to the wall.  

As argued above, we assume a sufficiently small Reynolds number Re = 𝑈 𝑎/𝜈!, such that 
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the nonlinear, advection term in the Navier-Stokes equation of fluid motion is negligible, which 

then reduces to the linear Stokes equation: 

!𝒖
!"
= − !

!!
𝛁𝑝 + 𝜈!∇!𝒖+ 𝜔 𝑈 sin 𝜔𝑡 𝜹!.              (3) 

Here u is the fluid velocity vector, which has components (ux, uy, uz), p is the fluid pressure and δx 

is the unit vector in the x direction. Eq. (3) described the flow in the reference frame, that is attached 

to the oscillating substrate. In this frame, the substrate appears steady, which offers advantages 

when solving the hydrodynamics as compared to the frame in which the substrate is moving. In the 

co-moving reference frame the Stokes equation [Eq. (3)] contains one additional body force term, 

which is proportional to minus the acceleration of the substrate: 𝜔 𝑈 sin 𝜔𝑡 𝜹!.  

The solution to Eq. (3) is numerically approximated, by employing a Lattice Boltzmann (LB) 

scheme. Details of this scheme are given in supporting Section S2. The 3D space and time are 

discretized on a four dimensional hyper-cubic grid, with a spatial and temporal lattice spacing of Δx 

and Δt, respectively. In this grid, the sphere is represented as a 3D staircase, which is illustrated in 

Fig. 1b. The flow is initialized using the solution for the oscillating flat plate, without the sphere 

𝒖(𝑡 = 0) = 𝑈 cos(𝑧/𝛿)exp(−𝑧/𝛿)𝜹!.32 After startup, the simulated flow undergoes a transition 

period before reaching a periodic, oscillatory state. The transition period ∼a2/νF is small compared 

to one oscillation period T. Simulating two oscillation periods is therefore sufficient to ensure that 

the system has reached the periodic, oscillatory state.  

From the simulated, time-dependent (real valued) hydrodynamic force FH(t) that acts on the 

substrate, we compute the complex valued QCM-D force amplitude Δ𝐹 by Fourier transformation. 

Details of this procedure are outlined in supporting Section S3. As defined in Eq. (1), the real part 

of Δ𝐹/𝑖𝑈 corresponds to the inertia force of the particle and that of the coupled fluid, that is 

responsible for Δf, while the imaginary part of Δ𝐹/𝑖𝑈  corresponds to the hydrodynamic friction, 

that is responsible for ΔΓ.   

As we are interested in Δf as a function of the scaled penetration depth δ/a, we vary the latter 



8 
 

parameter between 0.6 and 4.6, by varying the particle radius a/Δx between 10 and 20 and by 

varying the frequency fΔt between 0.25×10-4 and 4×10-4, while keeping the viscosity fixed at νF = 

1/6 Δx2/Δt. The fluid mass density ρF has the value of one in the simulations. An overview of the 

parameters is given in supporting Table S1. The absolute value of the velocity amplitude is 𝑈 = 10-

4 Δx/Δt, which ensures a small Reynolds number, i.e., Re = 𝑈 𝑎/𝜈! ≤ 1.2×10-2, which validates 

the use of Eq. (3). To verify that the staircase approximation (Fig. 1b) is sufficiently accurate, i.e., 

that we are using sufficient grid resolution, and that the domain is sufficiently large, we validate in 

supporting Section S4 the accuracy of the present numerical method, by comparing simulations to 

analytical solutions for two test cases (see supporting Tables S2 and S3 and supporting Fig. S2). In 

addition, we compare simulations of the sphere on the oscillating wall by using different grid 

resolutions (see Table S1 and Fig. S3), which show that for δ/a < 3 there is grid-independence for 

the frequency shift (<1%) and a slight grid dependence for the bandwidth shift (<10%).  

 

QCM-D Experiments 

In this work, we derive from hydrodynamics simulations a relation between the QCM-D frequency 

shift and the size of adsorbing spherical particles. In order to test this relation, QCM-D experiments 

were conducted at 25.0 ± 0.5 °C in order to monitor the adsorption of small unilamellar vesicles 

(SUVs) onto a surface, that is coated with TiO2. The coating ensures intact vesicle adsorption 

without rupture; see e.g. Refs. [33, 34, 35]. The QCM-D signals are recorded for overtones n = 3, 5, 

7, 9, and 11. The first overtone is omitted due to the anomalous radial sensitivity of this particular 

sensor for n = 1, as compared to the other overtones.36  

Details of the materials and methods are provided in supporting Section S6. Briefly, SUVs are 

produced by mixing 1,2-dioleoyl-sn-glycero-3-phosphocholine lipids with an aqueous, buffer 

solution (pH 7.5), containing 150 mM NaCl, and extruding the mixture through a membrane with 

either 30 nm, 50 nm or 100 nm pores. We refer to these vesicles as SUV1, SUV2 and SUV3, and 
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properties are summarized in Table 1. The resulting nominal (intensity-weighted) vesicle radii are 

measured with dynamic light scattering (DLS) to be 27 nm, 38 nm and 57 nm, respectively. The 

corresponding size distributions are presented in supporting Fig. S4.  

It is known that lipid vesicles deform into a dome shape upon adsorption, due to the van der 

Waals surface adhesion force.37 It is also known that in the present system, the surface adhesion 

force increases with the ionic strength, due to the screening of repulsive electrostatic forces, since 

both TiO2 and DOPC are negatively charged in aqueous, buffer solution; see, e.g., Ref. [38]. Since 

our focus is on spherical particles, we mix the vesicles in a buffer solution, with a relatively low 

ionic strength: 75 mM, which reduces the adhesion force, and induces a negative osmotic pressure, 

that counteracts and minimizes  possible shape deformations39. A previous study, based on QCM-D 

and localized surface plasmon resonance experiements, showed that under similar ionic 

strength/osmotic pressure conditions, SUVs adhere firmly to the TiO2 surface and remain nearly 

spherical.35 

It is noted that trans-membrane ion diffusion, through the DOPC membrane may result in 

equilibration of the internal and the external ion density. However, the equilibration time scale, 

which is limited by the trans-membrane diffusivity of sodium (see Ref.  [40] and references 

therein), which is orders of magnitude smaller than that for chloride,41 is estimated in the range 103 - 

107 s, depending on the measurement technique and lipid used. Since this time scale is, on average, 

beyond the current experimental measurement period, we expect a trans-membrane osmotic 

pressure difference during the experiment.  

In order to elucidate the effect of ionic strength on vesicle shape, we conducted a control 

QCM-D vesicle adsorption experiment, where SUV2 were mixed in aqueous, buffer solution with a 

relatively high ionic strength: 250 mM NaCl.  

To verify that in low ionic strength (75 mM) the liposomes (i) are firmly adhering to the 

substrate (ii) are assuming a spherical shape and (iii) are not deformed by hydrodynamic forces, we 
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estimate the various forces that act on the vesicles, which are the surface adhesion force: FA = EAa 

= 4×10-12 N, the membrane bending force: FB = 8πκ/a = 6×10-11 N, 37 the osmotic pressure force: 

FO = 4πa2ΔcRT = 7×10-9 N,37 and the hydrodynamic force: 𝐹! =  Δ𝐹! = 𝜌!𝑎!𝜔 𝑈 𝜑 !
!

=

1×10!!!N. Here EA = 6×10-5 Jm-2 is the adhesion energy density between lipid bilayer and TiO2 

surface (estimated in Ref. [38]), a = 6×10-8 m is the vesicle radius (for SUV3 see Table 1), κ = 10-19 

J is the bending energy, Δc = 150 mol m-3 is the ion concentration difference over the bilayer, R = 

8.3 J K-1 mol-1 is the ideal gas constant, T = 295 K is the temperature, ρF = 103 kg m-3 is the fluid 

mass density, ω = 2πf0 is the angular frequency of the quartz, f0 = 5×106 s-1 is the fundamental 

frequency of the quartz, 𝑈 = 𝜔𝑑 =6×10-2 m s-1 is the velocity amplitude of the quartz, d = 2×10-9 

m is the displacement amplitude of the quartz,42 and 𝜑 !
!

= 30 is estimated from Fig. 3a below.  

Since the osmotic force is several orders of magnitude larger than the adhesion force: FO >> 

FA and the hydrodynamic force: FO >> FH, the vesicles are likely to assume a (nearly) spherical 

shape, and do not experience shape fluctuations. In addition, the time scale associated with trans-

membrane water diffusion, based on permeability measurements, is in the range of 10-4 - 10-3 s, 43 

which is several orders of magnitude larger than one oscillation period 2×10-7 s, prohibiting volume 

changes, that are associated with shape fluctuations. 

The adhesion force (estimated at 150 mM ionic strength in Ref. [38]) is of the same order of 

magnitude as the hydrodynamic force FH, which means that vesicles may be subject to sliding or 

rocking motion. Below we discuss the magnitude of these effects, based on a comparison between 

experimental and numerical results. 

 

Results and Discussion 

Simulations 

In Fig. 2a, we visualize the x-component of the simulated fluid velocity ux in the vertical xz-plane, 
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intersecting the sphere on the oscillating wall. The snapshot is taken at time t  = 7T/4, where T = 1/f 

is one oscillation period. This is the moment, when the quartz velocity equals zero. The scaled 

penetration depth in this case is δ/a = 0.6. For reference we plot in Fig. 2b the theoretical velocity 

field next to an oscillating wall without sphere, using the same parameters: 𝑢!(𝑡 = 7𝑇/4) =

𝑈 sin(𝑧/𝛿)exp(−𝑧/𝛿). In Fig. 2c we plot ux profiles on vertical line traces. The profile directly 

above the sphere [marked by (1) in Fig. 2a] is somewhat different from the profile directly above 

the plane [away from the sphere; marked by (2) in Fig. 2a] with a stronger reversed flow region, 

which corresponds to a vortex that is being shed from the sphere each cycle; see supporting Movie 

S1. For comparison we also plot the theoretical profile in Fig. 2c [marked by (3) in Fig. 2b], which 

matches the numerical solution away from the sphere very well. 

Fig. 3 shows the complex valued, scaled QCM-D force Δ𝐹/(𝑖𝜌!𝑎!𝜔𝑈). As defined in Eq. (1) 

the real and imaginary parts of the scaled QCM-D force correspond to the QCM-D frequency and 

bandwidth shifts. Fig. 3a shows the real part 𝔑 as a function of δ/a. It is seen that, for δ/a < 3, the 

data are well described by the following linear function of δ/a: 

𝔑 Δ!
!"!!!!!

= 4.2 !!
!!
+ 4.8+ 6.7 !

!
 .                                                  (4) 

The first term within the square brackets corresponds to an inertia force that is proportional to the 

particle mass (Sauerbrey term), and the last two terms correspond to two force contributions from 

the coupled fluid. The first is an inviscid contribution, which scales with the particle volume ∼ a3, 

and the second is a viscous contribution, which scales with the particle area times the penetration 

depth ∼ a2δ. Inserting Eq. (4) into (the real part of) Eq. (1) gives the following QCM-D frequency 

shift Δf: 

Δ!
!
= − !"!!!!!

!!
4.2 !!

!!
+ 4.8+ 6.7 !

!
 .                                     (5) 

To arrive at Eq. (5) we have multiplied the single particle result [Eq. (4)] by the number of adsorbed 

particles N and we have used that f = f0n , where f0 is the quartz fundamental frequency and n is the 
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overtone number. For convenience, we rewrite Eq. (5) into an expression involving the particle 

surface fraction φ = π(a/L)2:  

!"
!
= −𝜙 !!

!
!!
!!

!
!!
4.2 !!

!!
+ 4.8+ 6.7 !

!
.                                (6) 

Here we have used that N = AQ/L2 and mQ = ρQAQlQ, where AQ is the quartz surface area, L is the 

inter-particle distance, lQ is the thickness of the quartz and ρQ is the mass density of the quartz. 

Eq. (6) predicts that the hydration ratio H of the coupled fluid mass to the total coupled mass 

(particle plus fluid) decreases with increasing particle size as: 𝐻 = 4.8+ 6.7 !
!
/ 4.2 !!

!!
+ 4.8+

6.7 !
!

, and equals H = 0.9 for a = 15 nm, which is reasonably close to the measured value of H = 

0.8 for a = 15 nm liposomes. 27 

Note that the δ/a term within the square brackets in Eq. (6) depends on the overtone number n 

since δ = (νF/πf0)1/2n-1/2. Thus, Eq. (6) predicts that Δf/n depends on overtone, which is typically 

observed for heterogeneous layers of adsorbed particles.23, 24, 30, 44-46 In the literature, this overtone 

dependence is usually attributed to the softness of the particles, e.g., proteins, viruses and vesicles, 

or to the softness of the bonds between the particles and the substrate.22, 47 The present result [Eq. 

(6)], on the other hand, supports a purely hydrodynamic explanation for the overtone dependence of 

Δf/n for heterogeneous layers, which was also suggested using roughness theory18 for 

heterogeneous proteins films.46,22 

It is emphasized that the linear relation between Δf/n and δ/a [Eq. (6)] is valid for δ/a < 3, 

while for δ/a > 3, the Δf/n is seen to deviate from linearity (Fig. 3a), which is consistent with the 

simulated insensitivity of Δf/n towards n for proteins with a = 6 nm, where δ/a ranges between 42 

and 12 for n between 1 and 13. 22 

Fig 3b shows the imaginary part ℑ of the scaled QCM-D force ℑ Δ𝐹/[𝑖𝜌!𝑎!𝜔𝑈]  as a 

function of δ/a. This quantity, which corresponds to the QCM-D bandwidth shift or dissipation 

shift, represents the dissipative force, which originates from viscous friction and is directed opposite 
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to the quartz velocity. As can be seen from Fig. 3b, this friction force is a factor of four smaller than 

the inertia force ℜ Δ𝐹/[𝑖𝜌!𝑎!𝜔𝑈]  (Fig. 3a), which is consistent with previous experiments and 

simulation; see e.g. Ref. [24]. These data further support that softness is not a requirement for 

significant (overtone dependent) bandwidth shift, as is sometimes suggested in the literature; see 

e.g. Ref. [44]. Instead our results indicate, that these effects also occur in purely rigid systems, due 

to viscous forces. 

 

Vesicle Adsorption Experiments  

QCM-D experiments are conducted using small unilamellar vesicles (SUVs). The goal of the 

experiments is to demonstrate the utility of Eq. (6) to extract the size of spherical particles from 

QCM-D measurement data. We use SUVs with nominal (intensity weighted) radii of 27 nm 

(SUV1), 38 nm (SUV2) and 57 nm (SUV3); see Table 1. All vesicles are prepared in buffer 

solution with 150 mM ionic strength. Prior to the QCM-D experiment the vesicles are mixed in 

buffer solution with an ionic strength of 75 mM (low ionic strength). We conducted one additional 

experiment where SUV2 was mixed in buffer solution with a high ionic strength of 250 mM.  

 We start by analyzing the QCM-D data for SUV2 in low ionic strength. Figs. 4a and 4b show 

the measured frequency shift –Δf/n and bandwidth shift ΔΓ/n as functions of time t for various 

overtones n. Note that in this work we plot the negative frequency shift –Δf/n, since this quantity is 

itself positive. Also, while the QCM-D instrument measures the dissipation shift ΔD, in this work 

we report the bandwidth shift ΔΓ = nf0ΔD/π, as this quantity is dimensionally equivalent to the 

frequency shift. The vesicles are added at t = 0 min, and as expected, monotonic adsorption is 

observed, reflected by the monotonically increasing –Δf/n, that saturates roughly 20 min after 

starting vesicle injection. In agreement with our numerical results (Fig. 3) and with previous 

experimental results; see e.g. Ref. [24], the measured bandwidth shift (Fig. 4b) is a few-fold smaller 

than the measured frequency shift (Fig. 4a). Furthermore ΔΓ/n shows slight, non-monotonic 
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behavior, which has previously been observed for particulate adsorbates. 24 

In order to apply Eq. (6) to extract the size of spherical particles from QCM-D data, we focus 

on the initial adsorption phase, during which there is low particle surface coverage. Fig. 4c shows 

that, for t < 0.8 min, the –Δf/n at the odd overtones are linear functions of time. Assuming a 

constant adsorption rate, the linearity of –Δf/n(t) implies that there is negligible hydrodynamic 

coupling between the adsorbed particles, i.e., the hydrodynamic effect of an individual particle on 

the QCM-D does not depend on the number of adsorbed particles. Fig. 4c shows that -Δf/n(t) is 

linear up to ~25 Hz and by inserting into Eq. (6): -Δf/n = 25 Hz, lQ = 3×10-4 m, ρQ = 2.65×103 kg m-

3, δ = 1.5×10-7 m, a = 4 ×10-8 m, n = 3, f0 = 5×106 Hz and ρP = ρF = 103 kg m-3 we find the 

corresponding particle surface fraction of φ = 0.01 (1%), which is equivalent to an average, inter-

particle distance L of 19 particle radii a. This inter-particle distance supports a negligible 

hydrodynamic interaction. It is noted that the final frequency shift at saturation: -Δf/n = 125 Hz for 

n = 3 (Fig. 4a), is smaller than what Eq. (6) would predict. This discrepancy reflects that the 

hydrodynamic force per particle diminishes, as the particles get closer together, due to overlap of 

the fluid that is coupled to neighboring particles. In the limit when particles are closely together, the 

second and the third terms within the square brackets of Eq. (6) diminish: 

!"
!
= −4.2𝜙 !!

!
!!
!!

!
!!

.                                                        (7) 

For the saturation frequency of -Δf/n = 125 Hz (n = 3 in Fig. 4a), Eq. (7) predicts a surface coverage 

of φ = 0.37 (37 %). However inserting φ = 0.37 into our low-coverage relation [Eq. (6)] gives -Δf/n 

= 1011 Hz, which is an order of magnitude larger than the measured value of 125 Hz. This example 

illustrates that Eq. (6) can only be applied at low particle surface coverage. It is noted that a 10-fold 

discrepancy has previously been observed between the mass equivalent of the QCM-D frequency 

shift and alternative measurements of the adsorbed liposome mass, based on for instance the surface 

plasmon resonance technique; see e.g. Ref. [48]. 

 In Fig. 4d, –Δf/n is plotted as a function of the penetration depth δ = (νF/πf0)1/2n-1/2 at a fixed 
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time of t = 0.4 min. Since, in the linear adsorption regime, -Δf/n(δ) is independent of time (up to a 

proportionality constant), the exact value of t has no effect on the following analysis. For δ/a < 3 

the modeled frequency shift –Δf/n [Fig. 3a and Eq. (6)] contains two terms, i.e., a constant term and 

a linear term (as functions of δ), while for δ/a > 3 the modeled frequency shift deviates from 

linearity. Consequently, we can obtain two parameters (particle radius a and particle surface 

fraction φ) by fitting Eq. (6) to the experimental data in Fig. 4d, excluding n = 3, which corresponds 

to δ/a > 3, as seen in Fig. 6a below. We thereby obtain φ = 5.6×10-3 (0.56%) and a = 32 nm, which 

is within 16% of the value a = 38 nm, measured by DLS (see supporting Fig. S4). The small 

discrepancy may partly be attributed to the fact, that smaller vesicles diffuse faster towards the 

surface than larger vesicles, which would result in a slightly smaller mean vesicle radius on the 

surface (measured by QCM-D) than in the bulk solution (measured by DLS).49  

Next we compare Eq. (6) to an alternative method to extract particle size from QCM-D data. 23 

This method, which is illustrated in Fig. 5, involves extrapolating the QCM-D data on the (-Δf/n, -

ΔΓ/Δf) - plane to the limit of zero energy dissipation: ΔΓ = 0. The intercept -Δf*/n of the 

extrapolation with the horizontal axis is interpreted as that of a rigid film with a thickness of twice 

the particle radius. The radius can thus be found by invoking the Sauerbrey relation:  

!!∗

!
= − !!

!!

!!
!!

.                    (8) 

For SUV2 in low ionic strength (Fig. 5), we find a = 20 nm, which is 50% smaller than the DLS 

result: a = 38 nm. This example illustrates that, at high particle surface coverage, QCM-D data 

interpretation is complicated by hydrodynamic interactions between the particles. Therefore, the 

effective film height [assumed 2a in Eq. (8)] may be sensitive to the configuration of the particles 

on the QCM-D surface.  

We continue to experimentally verify our model [Eq. (6)] using two additional vesicles: SUV1 

and SUV3 (see Table 1), with nominal (intensity weighted) radii of a = 28 and 57 nm, respectively, 

measured by DLS (see supporting Fig. S4). Experimental Δf data are plotted in Fig. 6a, together 
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with the numerical data. Here the experimental frequency shift as well as the penetration depth are 

scaled with the vesicle radius, obtained from DLS, and the unknown particle surface fraction φ is 

found by fitting Eq. (6) to the experimental data. The experimental Δf data agree well with Eq. (6), 

provided that δ/a < 3.  

To extract the particle size we fit Eq. (6) to the (δ, -Δf/n) data. Following this procedure we 

find for SUV1, SUV2 and SUV3 a particle radius of a = 24 nm, 32 nm and 53 nm, which are within 

16% of a = 28 nm, 38 nm and 57 nm, respectively, obtained from DLS. These results confirm the 

applicability of Eq. (6) to determine particle radius a from QCM-D data. This furthermore supports 

that the assumptions underlying Eq. (6) are to a reasonable extent satisfied by SUV1, SUV2 and 

SUV3 adhering to TiO2 under low ionic strength conditions. This suggests that, in this system, the 

adhesion between these SUVs and the substrate is sufficiently strong to ensure rigid adhesion, but 

not as strong as to induce substantial deformation.  

Experimental ΔΓ data in Fig. 6b for SUV1, SUV2 and SUV3 are within 15% of the numerical 

values. The discrepancy is somewhat larger than for the frequency shift (Fig. 6a), reflecting that for 

these systems, the bandwidth shift is more difficult to accurately measure or simulate than the 

frequency shift; see also Ref. [21].  

In order to scrutinize the effect of the ionic strength on the vesicle shape, we conduct a control 

experiment, using SUV2 (a = 38 nm obtained from DLS) under high ionic strength conditions (250 

mM NaCl). Based on a diffusion limited adsorption model: N ~ cQ1/3D2/3t [see supporting Eq. (S3)], 

the number of adsorbed vesicles N in high ionic strength is expected to be the same as in low ionic 

strength. This is because both experiments are conducted using identical SUV bulk number density 

c and volumetric flow rate Q, and the (possible) change in vesicle bulk diffusivity D is less than 

10% under an (osmotic) constant-area deformation from spherical to ellipsoidal.50,51 In supporting 

Fig. S4 we use DLS to measure D in different ionic strengths, which confirms insensitivity towards 

shape deformation.  
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Fig. 6c shows the frequency shift during the initial, linear adsorption phase of SUV2 in high 

ionic strength. Compared to SUV2 in low ionic strength (Fig. 4c), SUV2 in high ionic strength 

induces a smaller –Δf/n. Assuming similar N in both cases, this suggests a reduced vesicle volume, 

i.e., the adsorbed vesicles in high ionic strength appear to be deformed, which is consistent with 

increased vesicle-substrate attraction as well as osmotic pressure-induced deformation.  

In order to further scrutinize the effect of high ionic strength on adsorbed vesicle shape, we 

analyze in Fig. 5 the corresponding QCM-D data, with the extrapolation method. 23 This method 

involves plotting the QCM-D data on (-Δf/n, -ΔΓ/Δf) coordinates and intersecting the linear curve 

fit with the horizontal axis. The intersect may be interpreted as an effective film height, by using the 

Sauerbrey relation; see Eq. (8). As shown in Fig. 5, the resulting, effective film height for SUV2 in 

high ionic strength is 50% smaller as compared to the corresponding film height in low ionic 

strength, which supports that the vesicles in high ionic strength are substantially deformed as 

compared to the vesicles in low ionic strength.  

It is noted that, since the adsorbed vesicles in high ionic strength are expected to be non-

spherical, Eq. (6) cannot be applied to find the vesicle size. To illustrate this case, we plot in Figs. 

6a and 6b the experimental data for SUV2 in high ionic strength together with the corresponding 

data in low ionic strength. The corresponding scaled frequency shift shows a significantly smaller 

slope as a function of the scaled penetration depth (Fig. 6a), and the bandwidth shift is ∼50% 

smaller than for the vesicles in low ionic strength. Furthermore, when we fit Eq. (6) to the 

corresponding  -Δf/n(δ) data, we find a = 190 nm, which is five times as large as the expected value 

of a = 38 nm (DLS). This discrepancy underscores that the vesicles in high ionic strength are non-

spherical and cannot be described by Eq. (6), which is valid for spherical particles only.  

In summary, Eq. (6), which is based on curve fitting the outcome of simulations of the 

hydrodynamics around spherical particles, correctly extracts the particle size from QCM-D data for 

sufficiently small vesicles in low ionic strength, while for vesicles in high ionic strength the 
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extracted value deviates substantially from the reference measurement, which supports substantial 

deformation of adsorbed vesicles in high ionic strength.  

Conclusion 

Based on numerical simulation and dimensional analysis, we have derived a model for the quartz 

crystal microbalance frequency shift Δf, due to the adsorption of spherical particles in the range: δ/a 

< 3, where a is the particle radius and δ is the viscous penetration depth, which corresponds to the 

parameter range that is accessible for adsorbed particles, such as globular proteins, viruses, colloids 

and vesicles. The model considers the limit of a low surface coverage, i.e., a large inter-particle 

distance, such that hydrodynamic coupling and mechanical interactions between particles may be 

ignored. The model explains the experimentally observed overtone n dependence of Δf/n due to a 

dependence of the coupled fluid on δ. The model can be fitted to QCM-D data in order to extract 

the size of spherical particles and the particle surface coverage. Using this procedure, we 

determined the radius of three differently sized vesicles within 16% of DLS measurements, which 

supports that these vesicles behave hydrodynamically similar as rigid spheres. This was 

accomplished by minimizing the effects of adhesion-induced vesicle deformation, through a tuning 

of the ionic strength. In conclusion, the present model allows extracting heterogeneous adlayer 

properties from QCM-D data, with applications across a wide range of biological particulates (e.g., 

exosomes, viruses) and synthetic nanoparticles. Furthermore the present numerical simulation 

methodology can be applied to alternative adlayer configurations, supporting the design of for 

instance bio-inspired macromolecular materials. 52 

 

Acknowledgement 

This article is dedicated to the memory of Dr. Kay K. Kanazawa, a long-time friend and colleague 

who provided stimulating advice that motivated work in this direction. We would also like to 



19 
 

acknowledge funding support from the National Research Foundation (NRF2015NRF-POC001-

019) to N-J.C. 

Supporting Information 

Dimensional analysis, details of the lattice Boltzmann method, determining the QCM-D force from 

the simulation, accuracy of the numerical simulation, diffusion limited adsorption model, 

experimental materials and methods, three tables with simulation parameters and results, three 

figures with simulation results, one figure with dynamic light scattering results and one movie with 

simulation results. 

Author Information 

Corresponding Author 

*E-mail: njcho@ntu.edu.sg. 

Author Contributions 

The manuscript was written through contributions of all authors. All authors have given approval to 
the final version of the manuscript. 
 
Notes 

The authors declare no competing financial interest. 

 

 

 

 

Table 1. The vesicles, studied in this work, are extruded through filters with three different pore 

sizes. The nominal radius a measured by dynamic light scattering is intensity weighted. The radius 

a predicted by the model is obtained by fitting Eq. (6) to QCM-D data on (-∆f/n, δ)-coordinates, as 

exemplified in Fig. 4d below. 
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Name Pore Size [nm] a [nm] DLS a [nm] Eq. (6) 

SUV1 30 28 24 

SUV2 50 38 32 

SUV3 100 57 53 
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Fig. 1. Numerical setup. (a) Computational domain and coordinate system. (b) Staircase 
approximation of the sphere, for which the number of lattice spacings Δx per sphere radius a equals 
a/Δx = 10. 
 

  

(a) (b)
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Fig. 2. Numerical simulation of a sphere attached to an oscillating wall. (a) Simulated x 
component of the fluid velocity ux in the (x, z) plane, intersecting the sphere (see Fig. 1a). In this 
case, δ/a = 0.6 and the snapshot is taken at time t  = 7T/4, which is the moment when the quartz 
velocity equals zero.  Here δ is the penetration depth, a is the particle radius and T is the oscillation 
period. (b) Theoretical fluid velocity in the absence of the sphere using the same parameters as in 
(a): 𝑢!(𝑡 = 7𝑇/4) = 𝑈 sin(𝑧/𝛿)exp(−𝑧/𝛿). Here 𝑈 =10-4 Δx/Δt is the absolute value of the 
velocity amplitude and Δx and Δt are the grid spacing and the time step, respectively. In panels (a) 
and (b), blue corresponds to ux = 0 and red corresponds to ux =0.3 𝑈  (c) The ux profiles on the line 
traces, which are indicated in (a) and (b) with (1), (2) and (3).  
 

 
 
 
 
 
Fig. 3 Real (inertia) part (a) and imaginary (friction) part (b) of the scaled QCM-D force due to the 
adsorption of a sphere as a function of the scaled viscous penetration depth δ/a. Here Δ𝐹 is the 
complex valued QCM-D force amplitude  [defined in Eq. (1)], ρF is the fluid mass density, ω is the 
angular frequency, 𝑈 is the complex valued velocity amplitude of the quartz, a is the particle radius 
and δ is the viscous penetration depth. The markers are simulation results and the line is the model 
[Eq. (6)] 
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Δ Fig. 4. Experimental QCM-D data for adsorption of SUV2 in low ionic strength. (a) Negative 
frequency shift (divided by overtone number n) -Δf/n for various n as a function of time. (b) 
Bandwidth shift (divided by overtone number n) ΔΓ/n for various n as a function of time. (c) 
Negative frequency shift during the initial, linear adsorption phase. (d) -Δf/n as a function of 
penetration depth δ = (νF/πnf0)1/2 at t = 0.4 min, where νF is the fluid kinematic viscosity (of water) 
and f0 is the fundamental frequency of the quartz. The solid line is a fit of Eq. (6), where the surface 
coverage φ and the particle radius a act as fitting parameters. In all panels, the measurement noise is 
smaller than the marker size.  
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Fig. 5 Experimental QCM-D data on (-Δf/n, -ΔΓ/Δf) – coordinates using SUV2 in low ionic 
strength (75 mM) and in high ionic strength (250 mM). The data follow straight lines, which, when 
extrapolated, intercept the horizontal axis at an overtone-independent frequency shift -Δf*/n, which 
according to Ref. [23] can be related to the particle radius: a = -Δf*/(n2f0lQ), where f0 is the quartz 
fundamental frequency and lQ is the thickness of the quartz, which results in a = 20 nm for the 
vesicles in low ionic strength and a =11 nm for vesicles in high ionic strength. 
 

 
 

 

Fig. 6 Scaled frequency shift Δf (a) and scaled bandwidth shift ΔΓ (b) as functions of scaled 
penetration depth δ obtained from simulation and from QCM-D experiments, using three different 
vesicles. The experimental data are scaled using the particle radius a from DLS (see Table 1) and 
using the surface coverage φ, that is a fitting parameter. The overtone number is n = 3, 5, 7, 9 and 
11 and ρQ is the mass density of the quartz, ρF is the mass density of the fluid and lQ is the thickness 
of the quartz. The solid line in (a) is Eq. (6). (c) Negative frequency shift (divided by overtone 
number n) -Δf/n for various n as a function of time during the initial, linear adsorption phase, for 
SUV2 in high ionic strength. Note that the frequency shift is smaller than for SUV2 in low ionic 
strength (Fig. 4c), which is indicative of adhesion induced vesicle deformation. 
 
 

0 1 2 3 4 5 6
0

10

20

30

40

δ/a

−
∆
f
π
ρ
Q
l Q

φ
f
0
n
ρ
F
a

 

 

Numerical
SUV1 75mM
SUV2 75 mM
SUV3 75 mM
SUV2 250 mM

(a)

0 1 2 3 4 5 6
0

5

10

15

δ/a

∆
Γ
π
ρ
Q
l Q

φ
f
0
n
ρ
F
a

 

 

Numerical
SUV1 75mM
SUV2 75 mM
SUV3 75 mM
SUV2 250 mM

(b)

0 0.2 0.4 0.6 0.8
0

5

10

15

20

25

time [min]

−
∆
f
/n

[H
z]

 

 
n = 3
n = 5
n = 7
n = 9
n = 11

(c)

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

− ∆f
n [Hz]

− ∆Γ
∆f

 

 

75 mM

250 mM

n = 11
n = 9
n = 7
n = 5
n = 3



25 
 

References 

1. S. J. Martin, V. E. Granstaff and G. C. Frye, Analytical Chemistry, 1991, 63, 2272-2281. 
2. K. A. Marx, Biomacromolecules, 2003, 4, 1099-1120. 
3. I. Reviakine, D. Johannsmann and R. P. Richter, Analytical Chemistry, 2011, 83, 8838-

8848. 
4. N.-J. Cho, C. W. Frank, B. Kasemo and F. Höök, Nature Protocols, 2010, 5, 1096-1106. 
5. A. Arnau, Piezoelectric transducers and applications, Springer, 2004. 
6. M. Rodahl, F. Höök, A. Krozer, P. Brzezinski and B. Kasemo, Review of Scientific 

Instruments, 1995, 66, 3924-3930. 
7. M. Rodahl and B. Kasemo, Review of Scientific Instruments, 1996, 67, 3238-3241. 
8. M. Rodahl and B. Kasemo, Sensors and Actuators A: Physical, 1996, 54, 448-456. 
9. J. Fang, C. Ren, T. Zhu, K. Wang, Z. Jiang and Y. Ma, Analyst, 2015, 140, 1323-1336. 
10. K. K. Kanazawa and J. G. Gordon, Analytica Chimica Acta, 1985, 175, 99-105. 
11. G. Sauerbrey, Zeitschrift Fur Physik, 1959, 155, 206-222. 
12. Y. Okahata, K. Kimura and K. Ariga, Journal of the American Chemical Society, 1989, 111, 

9190-9194. 
13. W. P. Mason, W. O. Baker, H. J. McSkimin and J. H. Heiss, Physical Review, 1949, 75, 

936. 
14. M. V. Voinova, M. Rodahl, M. Jonson and B. Kasemo, Physica Scripta, 1999, 59, 391. 
15. D. Johannsmann, Macromolecular Chemistry and Physics, 1999, 200, 501-516. 
16. D. Johannsmann, Physical Chemistry Chemical Physics, 2008, 10, 4516-4534. 
17. S. J. Martin, G. C. Frye, A. J. Ricco and S. D. Senturia, Analytical Chemistry, 1993, 65, 

2910-2922. 
18. L. Daikhin, E. Gileadi, G. Katz, V. Tsionsky, M. Urbakh and D. Zagidulin, Analytical 

Chemistry, 2002, 74, 554-561. 
19. L. Daikhin and M. Urbakh, Langmuir, 1996, 12, 6354-6360. 
20. A. Tsortos, G. Papadakis and E. Gizeli, Analytical Chemistry, 2016, 88, 6472-6478. 
21. D. Johannsmann and G. Brenner, Analytical Chemistry, 2015, 87, 7476-7484. 
22. D. Johannsmann, I. Reviakine, E. Rojas and M. Gallego, Analytical Chemistry, 2008, 80, 

8891-8899. 
23. E. Tellechea, D. Johannsmann, N. F. Steinmetz, R. P. Richter and I. Reviakine, Langmuir, 

2009, 25, 5177-5184. 
24. I. Reviakine, M. Gallego, D. Johannsmann and E. Tellechea, Journal of Chemical Physics, 

2012, 136, 084702. 
25. J. Vörös, Biophysical Journal, 2004, 87, 553-561. 
26. L. Macakova, E. Blomberg and P. M. Claesson, Langmuir, 2007, 23, 12436-12444. 
27. P. Bingen, G. Wang, N. F. Steinmetz, M. Rodahl and R. P. Richter, Analytical Chemistry, 

2008, 80, 8880-8890. 
28. M. Edvardsson, S. Svedhem, G. Wang, R. Richter, M. Rodahl and B. Kasemo, Analytical 

Chemistry, 2008, 81, 349-361. 
29. I. Carton, A. R. Brisson and R. P. Richter, Analytical Chemistry, 2010, 82, 9275-9281. 
30. C. Grunewald, M. Schmudde, C. N. Noufele, C. Graf and T. Risse, Analytical Chemistry, 

2015, 87, 10642-10649. 
31. D. Johannsmann, The Quartz Crystal Microbalance in Soft Matter Research: Fundamentals 

and Modeling, Springer, 2014. 
32. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon Press, Oxford, UK, 1959. 
33. E. Reimhult, F. Höök and B. Kasemo, Langmuir, 2003, 19, 1681-1691. 
34. J. A. Jackman, G. H. Zan, Z. Zhao and N.-J. Cho, Langmuir, 2014, 30, 5368-5372. 
35. J. A. Jackman, S. Yorulmaz Avsar, A. R. Ferhan, D. Li, J. H. Park, V. P. Zhdanov and N.-J. 



26 
 

Cho, Analytical Chemistry, 2016, 89, 1102-1109. 
36. P. J. Cumpson and M. P. Seah, Measurement Science and Technology, 1990, 1, 544. 
37. U. Seifert and R. Lipowsky, Physical Review A, 1990, 42, 4768. 
38. R. Tero, T. Ujihara and T. Urisu, Langmuir, 2008, 24, 11567-11576. 
39. J. A. Jackman, J.-H. Choi, V. P. Zhdanov and N.-J. Cho, Langmuir, 2013, 29, 11375-11384. 
40. D. Papahadjopoulos, Biochimica et Biophysica Acta (BBA)-Biomembranes, 1971, 241, 254-

259. 
41. S. Paula, A. G. Volkov and D. W. Deamer, Biophysical journal, 1998, 74, 319-327. 
42. B. Borovsky, B. L. Mason and J. Krim, Journal of Applied Physics, 2000, 88, 4017-4021. 
43. R. Fettiplace and D. A. Haydon, Physiological Reviews, 1980, 60, 510-550. 
44. I. Reviakine, F. F. Rossetti, A. N. Morozov and M. Textor, Journal of Chemical Physics, 

2005, 122, 204711. 
45. A. L. Olsson, I. R. Quevedo, D. He, M. Basnet and N. Tufenkji, ACS Nano, 2013, 7, 7833-

7843. 
46. E. Rojas, M. Gallego and I. Reviakine, Analytical Chemistry, 2008, 80, 8982-8990. 
47. D. Johannsmann, I. Reviakine and R. P. Richter, Analytical Chemistry, 2009, 81, 8167-

8176. 
48. E. Reimhult, M. Zäch, F. Höök and B. Kasemo, Langmuir, 2006, 22, 3313-3319. 
49. J. A. Jackman, G. H. Zan, V. P. Zhdanov and N.-J. Cho, The Journal of Physical Chemistry 

B, 2013, 117, 16117-16128. 
50. F. Perrin, Journal De Physique Et Le Radium, 1936, 7, 1-11. 
51. J. Pencer, G. F. White and F. R. Hallett, Biophysical Journal, 2001, 81, 2716-2728. 
52. G. N. Pandian and H. Sugiyama, Bulletin of the Chemical Society of Japan, 2016, 89, 843-

868. 
 


