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Abstract

Diffusion imaging has been instrumental in understanding damage to the central
nervous system thanks to its sensitivity to microstructural changes. Clinical
applications of diffusion imaging have grown exponentially over the past couple
of decades in many neurological and neurodegenerative diseases such as
Multiple Sclerosis (MS). For several reasons, MS has been extensively researched
using advanced neuroimaging techniques, which makes it an “example disease”
to illustrate the potential of diffusion imaging for clinical applications. In
addition, MS pathology is characterised by several key processes competing with
each other, such as inflammation, demyelination, remyelination, gliosis and
axonal loss, enabling the specificity of diffusion to be challenged. In this review
we will describe how diffusion imaging can be exploited to investigate micro-,
meso- and macro-scale properties of the brain structure and discuss how they
are affected by different pathological substrates. Conclusions from literature are
that larger studies are needed to confirm exciting results from initial
investigations, before current trends in diffusion imaging can be translated to the
neurology clinic. Also, for a comprehensive understanding of pathological
processes it is essential to take a multiple-level approach where information at

micro-, meso- and macroscopic scale are fully integrated.



Introduction:

Diffusion MRI (dMRI) is sensitive to the hindrance of diffusion by tissue
microstructure, and thus provides an indirect measure of the size, orientation
and shape of cellular structures in vivol. This makes dMRI unique in its ability to
provide microstructural information non-invasively. Ever since the introduction
of diffusion tensor imaging (DTI)?2 the scalar indices derived from the tensor,
such as mean diffusivity (MD), which quantifies the magnitude of diffusion
within a voxel, and fractional anisotropy (FA)3, which measures the
directionality of diffusion, have been applied to a wide range of neurological and

psychiatric disorders.

The sensitivity of dMRI to the microscopic translational motion of water
molecules is also reflected into its sensitivity to the principal direction of
diffusion, which can be assumed to coincide with that of the underlying white
matter fibers (at least for voxels comprising of a single major fibre bundle). This
forms the basis for diffusion ‘tractography’# a method able to produce 3D
‘reconstructions’ of probable white matter pathways that offer a reasonable

representation of anatomy.

Recently the possibility to reconstruct white matter connections using diffusion
tractography has been combined with network analysis and graph theory, to
form an integral part of “connectomics”, a science branch aiming at mapping all
neural connections within the central nervous system (CNS), i..e the brain

connectome>®.



These features make dMRI a technique sensitive to all scales, ranging from the
microscopic properties of tissue to the connections that can be mapped at

specific network (mesoscopic) or whole-brain (macroscopic) level’.

While DTI has proven sensitive to subtle brain abnormalities, its translation into
clinical routine (other than for the diagnosis of acute stroke®?) has been limited.
To be of real clinical added value, a biomarker would have to provide
information more specific than what already available through conventional
imaging (i.e. identifying lesional tissue). The lack of specificity, or, in other words
the inability to link patterns of diffusion abnormalities with specific pathological
substrates, may have contributed to a limited adoption into the clinical setting of
DTI. Attempts to address this issue have led to the development of a series of
frameworks that are either model-free or employ higher order models of
diffusion, with a more direct interpretation of model parameters in terms of their
potential biological substratel?. The downside of this approach is the increased
mathematical complexity of such models, which makes their adoption in clinical

settings difficult.

With the aim to review the added value and the pitfalls of dMRI in clinical
applications, here we will focus on multiple sclerosis (MS), and on the potentials
of dMRI to clarify the effects of this disease on the brain at the micro-, meso- and
macro-scopic scales. MS was chosen as “example” disease, as its pathology is
characterised by several key processes competing with each other, enabling the

specificity of diffusion to be challenged.



Basic diffusion MRI concepts

Details about dMRI methods and techniques are covered by several papers and
book chapters, e.g.,11-13. Here we will simply introduce the parameters needed

for understanding the subsequent discussion.

Diffusion sensitization can be introduced by the use of pulsed magnetic field
gradients played out in addition to the standard imaging gradients. The
dephasing caused by the gradients results in signal attenuation proportional to
the diffusion coefficientl4. The amount of diffusion sensitization, dependent on
the amplitude, separation and duration of the gradients, is summarised by the b
factor (or b value)!. The time allowed for the diffusion process encoding is
referred to as the diffusion time tdiff and its definition depends on the pulse
sequence used. Typically the acquisition is repeated several times varying the
orientation and the amplitude of the gradients. The specific pattern used will
depend on the application, the model to be fitted and the techniques used for

image processing.

Diffusion Tensor Imaging (DTI)? is assuming that water diffusion in tissue can be
associated with a diffusion tensor (DT) characterized by three eigenvalues

(e1, €2, €3) identifying the principal direction of diffusivity, and the corresponding
three eigenvalues (A1, A2, A3). From the eigenvalues it is possible to derive
indices reflecting properties of the underlying tissue such as mean diffusivity

(MD, average of the three eigenvalues), fractional anisotropy (FA, proportional to



the variance of the eigenvalues)?3, axial diffusivity (AD, equal to A1) and radial

diffusivity (RD, equal to the average of A2 and A3).

Q-space imaging (QSI) is a model-free approach that attempts to provide a more
accurate description of tissue microstructure and to overcome the limitations of
DTI-derived indices such as FA and MD1516, QSI relies on the acquisition of dMRI
data at multiple b (or ‘q’, with g2 proportional to b/tdiff) values to sample the
signal decay with q. The Fourier Transform of the signal curve gives the
probability density function (PDF) of molecular diffusion. Three parameters,
namely the root mean square displacement (RMSD), the probability for zero
displacement (Po), and the kurtosis (K, i.e. a measure of deviation from Gaussian
behaviour) can then be derived. If kurtosis is the parameter of interest, this can
also be derived using diffusion kurtosis imaging (DKI), a simpler approach to
characterize the non-Gaussianity of the probability distribution, less demanding
in terms of data acquisition, although still requiring multiple b values?’. DKI can

provide parameters such as the mean kurtosis (DK), independent on the

direction of observation, or the K;; or K, which are the kurtosis along and

across the main eigenvector direction (as defined by the diffusion tensor).

The appeal of directly measuring physical properties has prompted the
development of models linking the dMRI signal directly to properties of tissue,
such as the axon diameter, neurite density (ND) and orientation dispersion
(OD)13.18-20, Such models are making assumptions to capture the influence of

restriction and hindrance on water movement. The non-monoexponential decay



of the diffusion signal at high b values suggests the presence of more than one
water compartment with differing diffusion behaviours. In order to capture this
compartmentalisation, quite a substantial number of models have been proposed
over the years as shown by Ferizi et al.1%, who have compared them head to head
thanks to a rich dataset acquired with many diffusion weightings. Three
compartment models seem to describe the signal decay at best and fit the data

considerably better than the DT model.

Multiple Sclerosis: a quick overview

MS is an inflammatory condition affecting the CNS, and constitutes the greatest

cause of non-traumatic disability in young adults in the Western world.

The first MS episode is referred to as clinical isolated syndrome (CIS). Forty to
sixty percent of patients presenting with CIS develop a clinically definite MS over
the course of the years2l. The most common MS phenotype is relapsing-remitting
(RR) MS, characterized by recurring episodes of inflammation and demyelination
(relapses) affecting one or more domains, including for example motor, visual
and cognitive systems unpredictably. During a relapse typically the patient
experiences acute symptoms, followed by complete or partial recovery. In the
majority of patients, the relapses eventually become difficult to distinguish from
each other, with a less clear recovery, and the patient enters a phase of

progressively accumulating disability, referred to as secondary progressive



multiple sclerosis (SPMS). In 10-15% of patients the clinical course is

progressive from the onset and is referred to as primary progressive MS (PPMS).

From a pathological point of view, MS is characterized by the presence of
confluent demyelinated lesions in the white and grey matter of the brain, optic
nerve and spinal cord. These lesions are caused by immune cell infiltration
across the blood-brain barrier (BBB) that promotes inflammation,
demyelination, gliosis and neuroaxonal degeneration, leading to disruption of
neuronal signalling. Demyelinated areas in the white matter can be partially
repaired by remyelination, although histological evidence of this process shows
that the myelin sheath does not recover its original structural properties (e.g. it
is characterized by thinner layers and a redistribution of the sodium channels
along the axonal membrane)?2. While white matter lesions are visible on
conventional T2-weighetd MRI, and BBB leakage can be detected with
gadolinium-enhanced T1-weighetd MR], the correlation between lesion volume
and physical disability is moderate in RRMS, and modest at best in the
progressive forms due to the complexity of the pathophysiology of MS23.24, [n
addition, subtle damage is known to occur outside of visible lesions, in the so-
called normal-appearing white matter (NAWM) and grey matter (NAGM)?25. This
damage is primarily characterised by neuro-axonal loss, which ultimately results
in impaired connectivity between different areas of the CNS and can explain
patient disability better than macroscopic demyelinated lesions, particularly in

SPMS?26,



It has been shown in several studies that inflammation, demyelination and
axonal loss, while linked to each other, can also happen independently in MS?27,
Damage can also happen in white matter and grey matter separately, where grey
matter atrophy may not be consistent with grey matter demyelination?8. Given
the complexity of MS pathology, we believe that MS offers a good model for
investigating whether dMRI can provide added value by offering quantitative
indices to disentangle the mechanism of this disease, not captured by
conventional imaging. Proposing novel imaging biomarkers at different scales,
dMRI could potentially be more specific to the pathophysiological substrate of

MS, while also being more sensitive to disease progression.

Microscopic scale: insights about localised pathology

DMRI offers a variety of tissue models that can be used to assess tissue
microstructure, from the simplistic DTI model, to more complex mathematical
representations that aim at providing biophysically meaningful indices, to
model-free approaches requiring specialised acquisition schemes. A fundamental
step required for any of the indices derived from these models to be adopted in
clinical studies is that of validation, which can be achieved through simulations,
animal models, post-mortem tissue and histological comparison. Here we
attempt an overview of this enormous ever-growing field in order to provide the
added value and limitations of such methods in MS.

MS was one of the first clinical applications of dMRI, and more than 300 MS
papers based on DTI have been published to date. The main outcomes can be
summarised as follow: DTI parameters are abnormal within MS lesions, with

typically increased diffusivity (mean, radial, and axial) and reduced anisotropy



compared to the normal appearing white matter (NAWM)29.30, Examples of DTI
indices in a patient with MS are shown in figure 1. These results are consistent
with increased water content, loss of myelin and axons, and the presence of
gliosis. Also, DTI parameters are sensitive to the substrate of lesional damage, as
demonstrated by the large variability of DTI indices within lesions31. More
interestingly, abnormal DTI parameter values are typically found in the NAWM
of patients compared to age-matched healthy controls, consistent with subtle but
widespread damage known to occur in MS. These initial findings have
contributed to establish that white matter damage is widespread in MS even in
the early phases, although they did not provide a clear definition of the substrate
underpinning these abnormalities. The results obtained in the grey matter (GM)
are more intriguing, particularly those obtained in the basal ganglia and the
thalamus. Ciccarelli et al.32 were the first to report a paradoxical increase in FA in
the caudate and putamen of patients with MS compared to controls, along with a
reduction in the MD. The authors excluded that these findings could be caused by
gliosis, which would have resulted in more disorganization (e.g. reduced
anisotropy, increased T2) and attributed them to axonal degeneration due to
fiber transection in remote focal MS lesions. Later, other authors reported
increase of tissue anisotropy of the basal ganglia and the thalamus in RRMS and
SPMS patients33.34 and its correlation with patients disability scores33-36 . The
inability of MD and FA to distinguish and quantify co-existing inflammation, axon
injury and myelin damage, however, limits its usefulness in understanding the
mechanisms of MS. In particular, it was shown very early on that very different
patterns of microstructural changes can result in the same amount of decreased

anisotropy3’. In order to address this limitation, some authors have looked at the



additional information provided by the single eigenvalues, and in particular of
“axial” and “radial” diffusivities383°. While results in animal work supports the
interpretation of AD as a marker for axonal injury and dysfunction, and of RD as
proxy for myelin injury, generalising this interpretation can be dangerous and
lead to the wrong conclusions40:41,

(figure 1)

As already mentioned, the DTI-derived indices are relatively “crude” and non-
specific; they are calculated on the assumption of a Gaussian probability density
function for the diffusion of water molecules!#. Several processes occurring at
microstructural level, however, may affect the diffusion signal in unpredictable
fashion, and their effect might not be accurately captured by Gaussian models. In
this situation, model-free approaches (e.g. QSI and DKI introduced above) are
preferable and can give parameters that are associated to biophysical properties
of the underlying substrate. For example from QSI it is possible to estimate the
full width half maximum (FWHM) of the probability distribution function, which
is known to be strictly linked to axonal properties such as diameter#2. QSI
requires a large number of data points, and q values beyond those typically
achievable in a clinical protocol. For all these more complex approaches,
acquisition time and diffusion scheme requirements are demanding, and not
necessarily available on all clinical scanners. For these reasons, only a handful of
clinical applications are available, and usually limited to pilot studies,
demonstrating the sensitivity of these techniques to pathology. As for all novel
imaging biomarkers, these methods require validation against histology. Q-space
and DKI were applied in animal models and in post-mortem tissue to support

studies in vivo in brain and spinal cord of healthy subjects and patients with MS.



One of the most popular models of multiple sclerosis is experimental allergic
encephalomyelitis (EAE), which induces inflammation and demyelination and is
mainly induced at spinal cord level. EAE can be caused in different animal

species*3, and has been extensively used to study MS.

A g-space analysis of EAE diseased swine spinal cords revealed abnormal
displacement, probability and anisotropy values within macroscopic plaques
(visible on T2-weighted scans), but also in the NAWM#4, Direct comparison with
histology confirmed that areas of abnormal q-space parameters overlapped with
areas of pathology as assessed by hematoxylin and eosin, Luxol fast blue, and
neurofilaments stains. However, this study did not provide a clear interpretation

of these parameters in terms of myelin, axons or glial cells density.

The first example of in-vivo QSI was applied in the brain of MS patients by Assaf
et al. who measured g-space parameters in 13 MS patients and 6 healthy
controls, using a region of interest approach. Comparing QSI with DTI, they
showed that the former provides the highest sensitivity to subtle pathological
changes in the NAWM?#5. Representative parametric maps reproduced from this
paper are shown in Figure 2. Results of the study indicated that q-space FWHM
was more sensitive to damage in the NAWM than DTI-derived indices (e.g. FA), in
mild as well as severe cases of MS. The authors explained these findings as a
consequence of the higher sensitivity of high b-value dMRI to the slow diffusing
water molecules component of the signal, reflecting myelin integrity in white
matter. In the attempt to provide further insight into the substrate of these

changes, the same Authors have further investigated NAWM with QSI, confirming



their original findings and showing an association with MRS-derived markers of

neuronal integrity#®.

(figure 2 approximately here)

Spinal cord damage often correlates better with disability than brain damage in
MS47, therefore efforts are dedicated to implementing novel imaging biomarkers
in this structure too. Despite the difficulty of dMRI of the spinal cord, in vivo QSI
investigations have been reported48-50, The reason for the success of QSI in the
spinal cord is that it is possible to take advantage of the highly symmetric
microstructure of spinal cord tissue compared to brain; in fact, in the spinal cord
fibers are running parallel to its longitudinal axis, hence the acquisition protocol
can be simplified by probing diffusion along just two orthogonal directions
(along and across the spinal cord). These studies showed consistent results with
brain findings, also indicating that the source of specific clinical symptoms might

be explained by different biophysical substrates (i.e. RMSD and Po)#°.

Among g-space parameters, the diffusion kurtosis, K has received more attention
than others in MS, especially because it has been associated with myelination®?,
as confirmed by studies in the spinal cord of marmosets with chemically induced

demyelination, and in shiverer mice>233,

Consistently, recent reports based on DKI have demonstrated abnormal K values

in both NAWM and NAGM of patients with MS54-56, Metrics along specific white



matter tracts were shown to correlate with neuropsychological measures and

evoked potentials>7.

While g-space and DKI offer the added value of increased sensitivity to
pathological changes, correlating with some histological features, still they do
not provide specific information about their nature. Ideally, more direct
measurements of microstructure biomarkers, such as axonal density or radius
are desirable. In principle diffusion MRI can be exploited to infer this
information, but typically these techniques require prohibitively long acquisition
times and specialised equipment. Mathematical models of the behaviour of water

diffusion in tissue propose an alternative to DTI and QSI.

The specificity of parameters obtained from such models makes them ideal
candidates for investigating the patholophysiology of MS. Nevertheless, to date
there are no published papers reporting their application to MS populations, and
therefore we can only speculate on their usefulness.

One report using diffusion basis spectrum imaging (DBSI®8), an approach that
models axons as anisotropic diffusion tensors, and cells and extracellular space
as isotropic diffusion tensors, demonstrated that each of the parameters derived
from DBSI correlated with a distinct histological stain>? in post-mortem MS brain
tissue. Surprisingly, to date, other multi-compartments models developed with
clinical scanners in mind, such as Neurite Orientation and Density Imaging
(NODDI)13, have not been reported in vivo in MS yet.

To date, the main contribution of dMRI to the characterisation of MS at the

microscopic scale has been to provide biomarkers sensitive to subtle changes,



invisible on conventional imaging. The ability to detect damage to the NAWM of
both brain and spinal cord, as well as the ability to differentiate lesions that
appear similar on T2-weighted MRI, but that are characterised by different
substrates, are a clear advantage of dMRI over conventional imaging methods.
Despite their potential added value in terms of microstructural specificity, due to
lengthy acquisition times and the need for specialised acquisition and analysis, to

date advanced methods have been explored only in small samples.

Mesoscopic scale: insights into specific functional systems

Understanding local properties of tissue microstructure that characterise local
tissue alterations due to a disease sometimes may not be enough for explaining
functional impairment. Therefore, it is important to place the local disruption
within the context of the functional networks it affects as current correlation of
clinical scores and conventional MRI, such as lesion load, is unsatisfactory and

unspecific®?.

DMRI tractography enables the reconstruction of specific white matter bundles,
by estimating the principal direction(s) of diffusion within a voxel. Once a tract
has been segmented out with tractography, tract-specific measures such as
volume, MD, FA, or other MRI parameters, can be estimated within the tract. This
offers the unique opportunity to target pathways associated with specific
functional impairments, and focus on clinically eloquent areas. Unsurprisingly,
several groups investigating MS have focused on the sensory-motor system. Most

studies included a quantification of tissue damage along the cortico-spinal tract



(CST) as well as of the primary motor cortex (the latter usually obtained through
estimation of atrophy or cortical thickness)¢1-63, MD, AD and RD of the CST were
consistently found to be increased in MS patients compared to healthy controls,
and associated to measures of functional impairment, such as the timed-walk
test or the pyramidal functional system of the expanded disability status scale
(EDSS) 6263, FA was less significantly associated with disability®2. One study that
recruited patients with lesions within the CST showed that the surface area of
the paracentral cortex was inversely correlated to the CST connectivity
(estimated by probabilistic tractography) on the affected side, while the opposite
was true for the unaffected side®*. These results suggest the intriguing
hypothesis that a lesion in the CST may cause plastic changes to the morphology

of the primary motor cortex.

A more sophisticated approach for studying functional systems relies on the use
of graph theory®. According to this framework, each relevant grey matter area
acts as a “node”, with various nodes connected by edges. The edges are the white
matter connections and can be characterised by dMRI tractography. Topological
scores can be used to evaluate measures of integration/segregation and
efficiency of the network. Pardini et al.6> used graph theory to quantify a motor
network efficiency score based on FA, tissue volume, and magnetization transfer
ratio (MTR, proportional to myelin content®%67), which was shown to explain
58% of the variation in EDSS in a group of 71 patients with MS.

Other pathways have been studied with similar methodology, including the
cingulum, with both its sections being associated with symptoms such as

fatigue®8, and episodic memory and speed of processing®?.



This network approach is particularly interesting as it may help to clarify the
frequent paradoxical observation of severe clinical symptoms against
radiological evidence of relatively spared brain tissue®® A speculative
explanation could be that when each single pathway within a functional system
is only subtly affected by MS pathology (which could range from demyelination,
to axonal loss or inflammation), the functional system impairment emerges only
when the pathways alterations are combined at network level, ultimately
resulting in dysfunction. In other words, the degree of damage of each edge is too
modest to result in a significant difference with respect to healthy controls
(Figure 3); however, if each single “edge” of the network is affected, graph
metrics may be able to capture the abnormalities. This approach comes at the

price of losing information about precise localisation of specific tissue damage.

(Figure 3 approximately here)

The added value of studying meso-scale properties of specific functional systems
to capture impairment must be weighted against the well-known pitfalls of
tractography’9, which make an unsupervised use of such technique in the clinical

setting challenging.

Macroscopic scale: the brain as an integrated system

The concept of white matter as the wiring that connects distinct functional areas

can be generalised to describe the whole brain as a complex network. DMRI is

currently the only technique able to map anatomical connectivity non-invasively,



with the aim of defining the so-called “structural connectome””1. Examining the
brain as an integrated network can provide new insights about large-scale
neuronal communication and provides a platform to understand how brain
connectivity relates to human behaviour, and how it may be altered in disease.
This approach to investigating the brain is at the opposite end of the microscopic
localised scale, far from closing the gap between imaging metrics and
microscopy, but it is essential to understanding functional impairment and

functional reserve.”273

A whole-brain network can be defined similarly to the system networks
introduced above at the mescoscopic scale. It can be seen as an ensemble of
neuronal elements, the “nodes”, between which some pairwise relationships
(“links” or “edges”) can be defined. In the case of the structural connectome,
typically the nodes are defined through the parcellation of the whole grey
matter’4 based on anatomical?>, functional, or cyto-architectonic criteria’e.
Random parcels have also been used??, as well as data-driven approaches’8. The
links between these nodes are defined by the white matter connections, which
are reconstructed by diffusion tractography. The links can be weighted using the
number of reconstructed streamlines’?, tract-specific dMRI indices®?, or
microstructural properties derived from other quantitative MRI techniques®l. As
for specific networks, graph theory provides a theoretical framework in which
the topology of the network can be examined®. The power of this approach is in
its ability to reduce a very complex structure into a handful of easily treatable
summary measures. This is an emerging field that promise to complement more

traditional approaches of investigating microscopic local properties.



Two independent studies8283 demonstrated that in the early stages of MS the
structural connectome is altered while the functional connectome is preserved,
providing a new insight in the mechanisms of structural and functional
derangement (Figure 4). Interestingly, this sequence of events seems to occur in
the opposite direction to neurodegenerative disorders such as Alzheimer
disease, where functional changes have been reported to precede structural
ones8485, A topological disruption of several sub-networks was also reported in
relapsing remitting MS patients®¢, with reduced whole-brain network efficiency
correlating with disability. These topological features ultimately define the
vulnerability or resilience of the network to injuries. Given the impact of white
matter damage on the whole brain network efficiency, as demonstrated also in
simulation frameworks®7, graph theory provides a powerful tool for exploring
the relationship between connectome damage and clinical status. As for the
mesoscale approach, this comes at the price of losing the specificity of
localisation and biological substrate of the damage. From a methodological point
of view, the connectomic approach is still undergoing intense development and
lacks of agreement on several technical aspects, including how to optimally
parcellate the cortex, how to run the tractography, how to weight the edges of
the graph®8 The connectomic approach, though, can capture subtle diffuse
changes that spread across several functional and structural systems,

independently of the source of damage of affected edges or nodes.

(figure 4 approximately here)



Conclusions:

Current literature is providing a whole new set of techniques that have the
potential of revealing the substrates of pathological changes in MS, and more
generally in neurological diseases. These tend to be too demanding in terms of
image acquisition and analysis to be exploited in large clinical studies, and often
are not supported by sufficiently strong evidence of validity. Recent software and
hardware developments, such as the development of fast acquisition schemes?8®
and the availability of increasingly strong magnetic field gradients®, are likely to
facilitate the clinical adoption of dMRI.

From a microscopic point of view, while models are providing indices potentially
specific to a microstructural characteristic, such as axonal density, in reality
there is a coexistence of substrates influencing each other.

Despite its current limitations, dMRI provides the added value of some level of
multi-modal investigation of pathology (by providing a range of biologically
meaningful indices). At the same time dMRI also offers the unique opportunity of
interrogating damage from a multi-scale approach by combining microscopic,
mesoscopic and macroscopic information.

Clinically, if all pitfalls were to be overcome, dMRI could have the potential of
providing complementary information to conventional imaging and clinical data

for increasing patient specificity and therefore influencing clinical care.
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Figure Legends

Figure 1. DTI maps in a patient with MS. (A) FLAIR scan showing the
distribution of macroscopic lesions: (B) Mean diffusivity; (C) Radial diffusivity;
(D) Fractional anisotropy. Note the diversity in the lesional tissue appearance in

different maps. The red arrows point at the same lesion on the 3 maps.

Figure 2. In-vivo q-space imaging in a patient with MS. (a) g-space
probability (zero-filled), (b) g-space displacement (zero-filled), (c) Fractional
anisotropy, (d) FLAIR, and (e) T1-weighted images. Reproduced from Assaf et

al., 200245 with permission from John Wiley &Sons, Inc.

Figure 3. Sketch of potential multiple damage of different sources affecting
network edges in MS. (a) Fully connected healthy network. A, B, C, D are the
nodes and ab, ac, ad, bc, cd and bd are edges that can be characterised by
different weights and properties. (b) Fully connected network attacked by
several disease processes. Edges are either healthy or damaged to different
extents. Changes at edge and node level will have a cumulative effect on the
overall properties of the network. Graph metrics may be able to capture
differences between the healthy and damaged networks, at the price of loosing

the local specificity of tissue alterations.

Figure 4. Whole-brain network comparison between patients with
clinically isolated syndrome (CIS), patients with MS, and healthy controls

(NC). The node sizes indicate the significance of between-group differences in



the regional efficiency. (A) For the structural network (SC), nodes in blue showed
reduced efficiency in CIS and MS patients compared with controls, and decreased
efficiency in MS compared with CIS. (B) For the functional network (FC), nodes
in red showed increased efficiency in CIS compared with controls and nodes in
blue showed decreased efficiency in MS compared with CIS or

controls. Reproduced from Shu et al., 201682 with permission from Nature

Publishing Group.



