

Supplement to Bounds On Treatment Effects On Transitions

Online Appendix C: Average treatment effect on survivors

In this appendix we consider the average effect when averaging over the subpopulation of individuals who would have survived until \(t \) under both treatment and no-treatment. We call this average effect the Average Treatment Effect on Survivors, \(\text{ATES}_t \):

Definition 1 Average Treatment Effect on Survivors (ATES)

\[
\text{ATES}_t = E \left(Y^1_t | Y^0_{t-1} = 0, Y^0_{t-1} = 0 \right) - E \left(Y^0_t | Y^1_{t-1} = 0, Y^0_{t-1} = 0 \right)
\]

The bounds for \(\text{ATES}_t \) are given in Theorem 1.

Theorem 1 (Bounds on ATES) Suppose that Assumption 1 holds. If \(\Pr(Y_{t-1} = 0 | D = 1) + \Pr(Y_{t-1} = 0 | D = 0) - 1 \leq 0 \), then \(\text{ATES}_t \) is not defined.

If \(\Pr(Y_{t-1} = 0 | D = 1) + \Pr(Y_{t-1} = 0 | D = 0) - 1 > 0 \), then we have the following sharp bounds

\[
\max \left\{ 0, \frac{\Pr(Y_t = 1, Y_{t-1} = 0 | D = 1) + \Pr(Y_t = 0 | D = 0) - 1}{\Pr(Y_{t-1} = 0 | D = 1) + \Pr(Y_{t-1} = 0 | D = 0) - 1} \right\} - \text{ATES}_t \leq
\]

\[
\min \left\{ 1, \frac{\Pr(Y_t = 1, Y_{t-1} = 0 | D = 0)}{\Pr(Y_{t-1} = 0 | D = 0) + \Pr(Y_{t-1} = 0 | D = 1) - 1} \right\} - \text{ATES}_t \leq
\]

\[
\max \left\{ 0, \frac{\Pr(Y_t = 1, Y_{t-1} = 0 | D = 0) + \Pr(Y_t = 0 | D = 1) - 1}{\Pr(Y_{t-1} = 0 | D = 1) + \Pr(Y_{t-1} = 0 | D = 1) - 1} \right\}.
\]

Proof: First, consider bounds on \(\Pr(Y_t = 1, Y_{t-1} = 0 | D = 1) = \Pr(Y^1_t = 1, Y^0_{t-1} = 0) \) By Assumption 2

\[
\Pr(Y_t = 1, Y_{t-1} = 0 | D = 1) = \Pr(Y^1_t = 1, Y^0_{t-1} = 0).
\]

By the law of total probability

\[
\Pr(Y^1_t = 1, Y^0_{t-1} = 0) = p^0_t(1|0,0)p_{t-1}(0,0) + p^0_t(1|0,\neq 0)p_{t-1}(0, \neq 0)
\]

Therefore,

\[
\Pr(Y_t = 1, Y_{t-1} = 0 | D = 1) = p^0_t(1|0,0)p_{t-1}(0,0) + p^0_t(1|0,\neq 0)p_{t-1}(0, \neq 0)
\]

Solving for \(p^1_t(0|0,0) = \Pr(Y_t = 1, Y_{t-1} = 0 | D = 1) - p^0_t(1|0,\neq 0)p_{t-1}(0, \neq 0) \)

\[
\Pr(Y_t = 1, Y_{t-1} = 0 | D = 1) = \frac{\Pr(Y_t = 1, Y_{t-1} = 0 | D = 1) - p^0_t(1|0,\neq 0)p_{t-1}(0, \neq 0)}{p_{t-1}(0,0)}
\]
The expression on the right-hand side is decreasing in \(p_t^0(1|0, \neq 0) \). The lower bound is obtained by setting \(p_t^0(1|0, \neq 0) \) at 1 and the upper bound by setting \(p_t^0(1|0, \neq 0) \) at 0.

\[
\Pr(Y_t = 1, \overline{Y}_{t-1} = 0|D = 1) - p_{t-1}(0, \neq 0)
\]

\[
\leq \mathbb{E} \left[Y_t^1|\overline{Y}_{t-1} = 0, \overline{Y}_{t-1} = 0 \right] \leq \frac{\Pr(Y_t = 1, \overline{Y}_{t-1} = 0|D = 1)}{p_{t-1}(0, 0)}.
\]

Because

\[
\Pr(\overline{Y}_{t-1} = 0|D = 1) = p_{t-1}(0, 0) + p_{t-1}(0, \neq 0)
\]

we have

\[
\frac{\Pr(Y_t = 1, \overline{Y}_{t-1} = 0|D = 1) - \Pr(\overline{Y}_{t-1} = 0|D = 1) + p_{t-1}(0, 0)}{p_{t-1}(0, 0)}
\]

\[
\leq \mathbb{E} \left[Y_t^1|\overline{Y}_{t-1} = 0, \overline{Y}_{t-1} = 0 \right] \leq \frac{\Pr(Y_t = 1, \overline{Y}_{t-1} = 0|D = 1)}{p_{t-1}(0, 0)}.
\]

The upper bound is decreasing and the lower bound is increasing in \(p_{t-1}(0, 0) \). From the proof of Theorem 1 we have

\[
p_{t-1}(0, 0) \geq \max \{ \Pr (\overline{Y}_{t-1} = 0|D = 1) + \Pr (\overline{Y}_{t-1} = 0|D = 0) - 1, 0 \}.
\]

If \(\Pr (\overline{Y}_{t-1} = 0|D = 1) + \Pr (\overline{Y}_{t-1} = 0|D = 0) - 1 > 0 \) then we are sure that there are survivors in both treatment arms. Upon substitution of this lower bound

\[
\frac{\Pr(Y_t = 1, \overline{Y}_{t-1} = 0|D = 1) + \Pr (\overline{Y}_{t-1} = 0|D = 0)}{p_{t-1}(0, 0)} - 1
\]

\[
\leq \mathbb{E} \left[Y_t^1|\overline{Y}_{t-1} = 0, \overline{Y}_{t-1} = 0 \right] \leq \frac{\Pr(Y_t = 1, \overline{Y}_{t-1} = 0|D = 1)}{\Pr (\overline{Y}_{t-1} = 0|D = 1) + \Pr (\overline{Y}_{t-1} = 0|D = 0) - 1}.
\]

By an analogous argument we have

\[
\frac{\Pr(Y_t = 1, \overline{Y}_{t-1} = 0|D = 0)}{p_{t-1}(0, 0)} - 1
\]

\[
\leq \mathbb{E} \left[Y_t^0|\overline{Y}_{t-1} = 0, \overline{Y}_{t-1} = 0 \right] \leq \frac{\Pr(Y_t = 1, \overline{Y}_{t-1} = 0|D = 0)}{\Pr (\overline{Y}_{t-1} = 0|D = 1) + \Pr (\overline{Y}_{t-1} = 0|D = 0) - 1}.
\]

Substitution of these results for \(\mathbb{E} \left[Y_t^1|\overline{Y}_{t-1} = 0, \overline{Y}_{t-1} = 0 \right] \) and \(\mathbb{E} \left[Y_t^0|\overline{Y}_{t-1} = 0, \overline{Y}_{t-1} = 0 \right] \) and because both probabilities are bounded by zero and one gives the bounds on ATES_t.