The effects of acute Fluoxetine administration on temporal discounting in youth with ADHD

Christina O Carlisi¹, Kaylita Chantiluke, PhD ¹, Luke Norman¹, Anastasia Christakou, PhD¹, Nadia Barrett, MRCPsych², Vincent Giampietro, PhD³, Michael Brammer, PhD³, Andrew Simmons, PhD³, Katya Rubia, PhD¹

¹Dept of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, ²South London and Maudsley NHS Foundation Trust, ³Dept of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, ⁴NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation Trust,

Correspondence to:
Prof Katya Rubia
Department of Child Psychiatry/MRC Center for Social, Genetic and Developmental Psychiatry (SGDP), PO46, Institute of Psychiatry, 16 De Crespigny Park, London, SE5 8AF, UK
Tel.: 0044-207-8480463
Fax: 0044-207-2085800
Email: katya.rubia@kcl.ac.uk
Acknowledgements: CC was supported by an NIHR BRC PhD studentship, and LN was supported by an MRC-IOP excellence PhD studentship.

Financial Support: This work was supported by the UK Department of Health via the National Institute for Health Research (NIHR) Biomedical Research Centre (BRC) for Mental Health at South London and the Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King’s College London.

Declaration of Interest: K.R. has received funding from Lilly for another project and consultancy fees from Lilly, Shire, and Novartis. MB is a consultant for P1 Vital, Ltd, Oxford, UK. The other authors have no conflict of interests to declare.

The authors assert that all procedures contributing to this work comply with the ethics standards of the relevant national and institutional committees on human experimentation and with the Helsinki Declaration of 1975, as revised in 2008.
ABSTRACT

Background

Serotonin is under-researched in Attention-Deficit/Hyperactivity Disorder (ADHD), despite accumulating evidence for its involvement in impulsiveness and the disorder. Serotonin furthermore modulates temporal discounting (TD), which is typically abnormal in ADHD relative to healthy subjects, underpinned by reduced fronto-striato-limbic activation. This study tested whether a single acute dose of the selective serotonin reuptake inhibitor (SSRI) fluoxetine upregulates and normalises reduced fronto-striato-limbic neurofunctional activation in ADHD during TD.

Methods

Twelve boys with ADHD were scanned twice in a placebo-controlled randomised design under either fluoxetine (between 8-15mg, titrated to weight) or placebo while performing an individually adjusted functional magnetic resonance imaging (fMRI) TD task. Twenty healthy controls were scanned once. Brain activation was compared within patients under either drug condition and compared to controls to test for normalisation effects.

Results

Repeated-measures whole-brain analysis within patients revealed significant upregulation with fluoxetine in a large cluster comprising right inferior frontal cortex, insula, premotor cortex and basal ganglia, which furthermore correlated trend-wise with TD performance, which was impaired relative to controls under placebo, but normalised under fluoxetine. Fluoxetine furthermore downregulated default mode areas of posterior cingulate and precuneus. Comparisons between controls and patients under either drug condition revealed normalization with fluoxetine in right premotor-insular-parietal activation, which was reduced in patients under placebo.

Conclusions

The findings show that a serotonin agonist upregulates activation in typical ADHD dysfunctional areas in right inferior frontal cortex, insula and striatum as well as downregulating default mode network regions in the context of impulsivity and TD.
INTRODUCTION

Attention-Deficit/Hyperactivity Disorder (ADHD) is defined as age-inappropriate inattention and/or hyperactivity/impulsiveness (APA, 2013). It is one of the most common neurodevelopmental disorders with around 5% prevalence worldwide (Polanczyk et al., 2014). ADHD patients have deficits in executive functions (EF) such as inhibition, attention and working memory (Willcutt et al., 2008), underpinned by abnormalities in fronto-striatal, fronto-temporo-parietal and fronto-cerebellar networks (Hart et al., 2012, Hart et al., 2013, Rubia et al., 2014a). Furthermore, they have deficits in timing functions (Noreika et al., 2013) and in “hot” EF, referring to EF involving motivation and affect such as reward-related decision-making (Kerr and Zelazo, 2004), as measured by temporal discounting (TD) and gambling tasks (Noreika et al., 2013, Rubia et al., 2009). Nonetheless, there is heterogeneity in cognitive impairments, with some patients not showing impairments or only in some cognitive domains which are likely underpinned by different pathophysiological pathways (Nigg et al., 2005, Sonuga-Barke, 2003, Sonuga-Barke et al., 2010).

TD tasks require choices between small immediate and larger delayed rewards and measure the extent to which a reward is subjectively discounted when delayed in time, i.e., the sensitivity to temporal delays measured in units of reward (Rubia et al., 2009). The ability to inhibit immediate rewards and wait for larger future rewards depends on well-developed frontal lobe-mediated motivation control and temporal foresight and is key for mature decision making. TD matures with age (Christakou et al., 2011) and varies between individuals, with steeper TD, i.e., more rapidly decaying rates of reward discounting with increasing time (Richards et al., 1999), in more impulsive subjects (Noreika et al., 2013, Rubia et al., 2009). In individually-adjusted TD paradigms (Christakou et al., 2011, Richards et al., 1997), the immediate reward is adjusted using an algorithm based on previous choices for different delays, converging towards the value of the participant’s subjective equivalent of the fixed delayed reward (Richards et al., 1999). From this, a typically hyperbolic delay discounting function is calculated, the steepness of which indicates the individual TD rate, which is associated with impulsivity (Critchfield and Kollins, 2001, Richards et al., 1999).

ADHD patients are impaired in TD tasks (Noreika et al., 2013), with, however, some negative findings, mostly in non-individually-adjusted task versions (Scheres et al., 2006, Scheres et al., 2010, Sonuga-Barke et al., 1992). FMRI studies of TD in healthy adults implicate ventromedial-fronto-limbic networks of reward-based decision-making and dorsolateral and inferior-fronto-insula-striato-parietal networks of temporal foresight (Christakou et al., 2011, Wesley and Bickel, 2014). Despite documented TD deficits in ADHD, few fMRI studies have investigated its neurofunctional correlates. ADHD adolescents showed underactivation relative to controls during delayed choices in an adjusted
fMRI TD task in inferior frontal cortex (IFC), insula, striatal and cerebellar regions (Rubia et al., 2009) and significantly weaker correlations between better TD and activation during delayed choices in IFC, superior temporal lobes, insula, supplementary motor area and cerebellum (Chantiluke et al., 2014d). In adult ADHD, abnormal striato-limbic activation has been observed (Plichta et al., 2009).

Neurotransmitters such as serotonin (5-HT) are implicated in ADHD (Oades, 2007, 2008), potentially via modulation of these neural circuits. Converging evidence across methodologies shows that serotonergic systems may be dysfunctional in ADHD (Oades, 2007), with evidence for chemical alterations of 5-HT systems, decreased 5-HT platelet levels (Spivak et al., 1999), and increased ADHD-related behaviour after 5-HT depletion in ADHD patients (Zepf et al., 2010). Second, there is evidence for an association between 5-HT-related polymorphisms and ADHD (Gizer et al., 2009, Rommelse et al., 2010) and methylphenidate treatment response (McGough et al., 2009). Also, the selective serotonin reuptake inhibitor (SSRI) fluoxetine has been shown to be effective in reducing ADHD-related symptoms in children (Barrickman et al., 1991, Quintana et al., 2007) and to improve the efficacy of stimulants in human and animal studies (Findling, 1996, Gainetdinov et al., 1999, Gammon and Brown, 1993). Furthermore, the concurrent administration of 5-HT and dopamine amino-acid precursors can improve ADHD symptoms (Hinz et al., 2011). However, replication is needed as these studies are limited by comorbid samples (Quintana et al., 2007) and non-randomised trials in small samples (Barrickman et al., 1991). Last, in healthy adults, tryptophan depletion, which reduces brain 5-HT by up to 60%, downregulates activation in key ADHD deficit areas of IFC and basal ganglia (Lamar et al., 2014, Lamar et al., 2009, Rubia et al., 2005), which are upregulated with serotonin agonists (Del-Ben et al., 2005). Also, 5-HT has been implicated in reward-based decision-making in healthy adults (Cools et al., 2011, Robinson et al., 2012, Rogers, 2011), where striatal 5-HT levels have been shown to modulate choices of longer, delayed rewards (Doya, 2008, Schweighofer et al., 2007, Tanaka et al., 2007).

In conclusion, there is evidence that 5-HT is associated with ADHD, with impulsivity, in particular TD performance, and that it modulates IFC-striatal activation, a key ADHD deficit. Despite this, hardly any fMRI studies have tested the effects of serotonin agonists on brain function in ADHD. We have previously shown that in ADHD children, the SSRI fluoxetine versus placebo upregulated and normalised IFC-striatal and parietal underactivation during inhibition (Chantiluke et al., 2014a, Chantiluke et al., 2014c), and enhanced the deactivation in default mode network (DMN) regions during working memory (Chantiluke et al., 2014b).

This study therefore aimed to investigate the effect of a single dose of fluoxetine relative to placebo on brain activation in ADHD adolescents during a TD task. Furthermore, to test for potential
normalisation effects of fluoxetine on abnormal brain activation in ADHD patients under placebo, we also compared brain activation during both drug conditions to that of healthy adolescents.

Based on previous findings, we hypothesized that ADHD adolescents under placebo would show steeper TD rates (Noreika et al., 2013) and reduced IFC-insular-striatal activation during TD (Chantiluke et al., 2014d, Plichta et al., 2009, Rubia et al., 2009). Furthermore, based on our fMRI studies showing upregulation and normalisation with fluoxetine in task-relevant regions during related tasks of cognitive control in ADHD (Chantiluke et al., 2014a, Chantiluke et al., 2014b, Chantiluke et al., 2014c), and evidence for 5-HT modulation of IFC-striatal regions in healthy adults (Lamar et al., 2009, Rubia et al., 2005), we hypothesized that fluoxetine would upregulate IFC-insular-striato-parietal activation within patients and normalise regional underactivation relative to controls.

**METHODS**

**Participants**

Thirty-two right-handed (Oldfield, 1971) boys with (N=12) and without ADHD (N=20) were recruited from local clinics and support groups, aged 11-17 years, with IQ$\geq$70 measured by the Wechsler Abbreviated Scale of Intelligence-Revised (WASI-R) short form (Wechsler, 1999). ADHD boys had a clinical DSM-IV diagnosis of non-comorbid ADHD, inattentive/hyperactive-impulsive combined subtype, assessed using the standardized Maudsley diagnostic interview (Goldberg and Murray, 2006). Patients scored above clinical threshold for ADHD symptoms on the Strengths and Difficulties Questionnaire (SDQ; (Goodman and Scott, 1999)) and the Conner’s Parent Rating Scale-Revised (CPRS-R; (Conners et al., 1998)). They also scored below clinical threshold for ASD on the Social Communication Questionnaire (SCQ; (Rutter et al., 2003)). Nine ADHD boys were on psychostimulants but withheld medication for 48 hours prior to scanning.

Patients were scanned twice in a randomised, double-blind, placebo-controlled design. Due to the half-life of fluoxetine (1-3 days) and its metabolite norfluoxetine (5-16 days) (Wong et al., 1995), scans were conducted 3-4 weeks apart. To ensure the fluoxetine dose had reached peak plasma levels (after 5-8 hours (Wong et al., 1995)), patients were scanned 5 hours post-administration. Liquid fluoxetine was titrated to age and weight: boys 10-13 years and <30kg received 8mg, those $>$30kg received 10mg. Boys 14-17 years and <30kg received 10mg, and those $>$30kg received 15mg. Placebo was equivalent volumes of peppermint water, similar in taste and appearance to fluoxetine.
Twenty healthy age and handedness-matched control boys were recruited locally by advertisement and scanned once. Controls scored below clinical threshold on the SDQ, SCQ and CPRS-R and did not have any psychiatric condition.

Exclusion criteria for all participants were neurological disorders, drug/alcohol dependency and MRI contraindications.

The study was conducted according to the latest version of the Declaration of Helsinki. Ethical approval was obtained from the local Research Ethics Committee. Study details were explained to both child and guardian, and written informed consent was obtained for all participants.

**Temporal Discounting fMRI paradigm**

Prior to the first scan, subjects practiced the 12 min task once in a ‘mock’ scanner. Subjects choose by pressing a left or right button between receiving a small amount of money immediately (£0-£100) or £100 in one week, month or year. Delay choices (20 trials of each delay length) were randomised, but the delayed option was consistently displayed on the right side, and the variable immediate choices on the left side of the screen to minimize potential sensorimotor mapping effects. Choices were displayed for 4s, followed by a blank screen of at least 8s (inter-trial-interval: 12s). The amount of immediate reward was adjusted through an algorithm based on previous choices which was calculated separately for each of the three delays. This narrows the range of values, converging into an indifference point where the immediate reward is considered by the subject to be equivalent to the delayed amount for the given delay (Christakou et al., 2011, Rubia et al., 2009). This algorithm ensures equal numbers of immediate and delayed choices to be contrasted in the fMRI analysis.

**Analysis of Performance Data**

To estimate the steepness of TD for each subject, the indifference value between the immediate amount and the delayed £100 for each delay was calculated, equivalent to the subject’s subjective value of £100 after each delay, and defined as the midpoint between the lowest immediate reward chosen by the subject and the next lowest immediate reward available (i.e. the value of the immediate reward offered at which point the subject began to instead consistently choose the delayed reward) (Christakou et al., 2011, Rubia et al., 2009).
Reward is typically discounted as a hyperbolic decay function depending on amount, delay and a free impulsiveness indicator “k”, calculated by fitting a hyperbolic function to the indifference values for each delay (see Supplement).

However, the limitations of the fMRI task adaption, i.e. relatively few trials and only three delay points, limit the goodness-of-fit of the data to a non-linear curve function. In addition, the distribution of k-values was not normal, skewed by low-frequency and high-value outliers. Thus, TD was measured using the area under the curve (AUC) which is more appropriate for investigations with quantitative, inferential statistics (Myerson et al., 2001). The normalized subjective values of the delayed £100 for each delay were plotted against the normalized delays and AUC of these plots were calculated for each participant, using this obtained value as the main dependent variable. AUC correlated inversely with k-values (r=-0.898, p<0.001) whereby smaller AUC values denote steeper discounting rates, indicating increased choice impulsivity.

A repeated-measures within-group analysis of variance (ANOVA) was conducted within patients with medication condition (placebo, fluoxetine) as within-subjects variable to test for medication effects on TD. Two ANOVAs were conducted with group as independent variable and area under the curve (AUC) as dependent measure to test for differences in TD performance between controls and ADHD patients on either placebo or fluoxetine. To test for potential main effects of drug administration order and of an interaction between order and drug condition, order was included as a between-subjects factor in the repeated-measures ANOVA.

fMRI Image Acquisition

Gradient-echo echo-planar MR imaging (EPI) data were acquired at King’s College London, Institute of Psychiatry’s Centre for Neuroimaging Sciences on a 3T General Electric SIGNA HDx MRI scanner (GE Healthcare, UK). For details of scan acquisition, see Supplement.

fMRI Image Analysis

Event-related activation data were acquired in randomized trial presentation and analysed using the non-parametric XBAM software package developed at the Institute of Psychiatry, King’s College London (www.brainmap.co.uk; (Brammer et al., 1997)). The individual and group-level analyses methods are described in detail elsewhere (Brammer et al., 1997, Bullmore et al., 1999a, Bullmore et al., 2001, Bullmore et al., 1999b, Cubillo et al., 2014b) and in the online Supplementary Material.
**ANCOVA of within-patient medication effects**

To investigate medication effects on brain activation within the ADHD group, a within-group repeated-measures analysis of covariance (ANCOVA) with motion as covariate and medication condition as within-subjects factor was conducted using randomization-based testing for voxel or cluster-wise differences, as described elsewhere (Bullmore et al., 2001, Bullmore et al., 1999b) and in the supplementary material. Voxel- and cluster-level statistical thresholds were set so as to obtain less than one false positive 3D cluster per map (p<0.05 was used for voxel and p<0.005 for cluster comparisons). The standardised BOLD response values for each participant were extracted for each of the significant clusters of the ANCOVA analyses and plotted to determine the direction of effects. Repeated-measures ANOVAs on the extracted BOLD response measures were conducted within patients to test for potential effects of scan-order and interactions between scan order and drug condition.

**ANCOVA of between-group effects**

One-way ANCOVAs with group as main factor and motion as covariate were conducted using randomization-based testing to test for case-control differences under placebo or fluoxetine (Bullmore et al., 2001, Bullmore et al., 1999b). For these comparisons, p<0.05 (voxel-level) and p<0.05 (cluster-level) were used. Standardized BOLD responses were then extracted from significant clusters for each participant and plotted to determine direction of effects.

**Correlations with behaviour and IQ**

To examine whether clusters which showed group effects in case-control comparisons were related to IQ or TD, the BOLD response in these clusters was extracted for each participant and Pearson correlations were performed with IQ and AUC within each group (ADHD placebo, ADHD fluoxetine, controls).

**RESULTS**

**Participant characteristics**

Univariate ANOVA revealed no significant group differences in age, but IQ, which was lower in ADHD (Table 1). However, since low IQ is associated with ADHD (Bridgett and Walker, 2006), IQ was not covaried as covarying for differences between groups that were not randomly selected violates ANCOVA assumptions (Miller and Chapman, 2001). Nonetheless, to assess potential effects of IQ on case-control comparisons, BOLD responses were correlated with IQ and analyses were
repeated covarying for IQ. As expected, patients had significantly lower CPRS-R t-scores, SDQ and SCQ scores than controls (Table 1).

**Performance data**

For repeated-measures ANOVA within-patients, no significant drug effects were found on AUC \[F(df=1,11)=0.08, p=n.s.\], reaction time (RT) \[F(df=1,11)=0.08, p=n.s.\] or omission errors (OM) \[F(df=1,7=0.44), p=n.s.\] (see Table 1). Case-control ANOVAs showed no differences in RT or OM, but controls had larger AUC than patients under placebo \[F(df=1,30)=4, p<0.05\] but no longer differed from patients under fluoxetine \[F(df=1,30)=2, p=n.s.\], suggesting that fluoxetine normalized case-control performance differences (see Table 1).

Drug administration order had no main effect on the primary behavioral outcome of AUC in the ADHD group \[F(df=1,10)=.07, p=n.s.\] and there was no interaction between scan order and drug condition \[F(df=1,10)=1.31, p=n.s.\].

**fMRI data**

**Motion**

No differences were found for largest head displacement in 3-dimensional space within the ADHD group under each drug condition \[F(df=2,10)=0.51, p=n.s.\]. Also, no group-by-displacement interaction was found between controls and ADHD under placebo \[F(df=2,29)=2.63, p=n.s.\] or fluoxetine \[F(df=2,29)=2.54, p=n.s.\]. Nevertheless, to exclude potential effects of non-significant motion, motion parameters in 3D-Euclidian space were included as covariates in the fMRI analyses.

**Group brain activation maps for delayed–immediate choices**

For the contrast of delayed minus immediate choices, controls showed activation in dorsomedial PFC (dmPFC) and anterior cingulate cortex (ACC), insula, pre- and post-central gyri and parieto-occipital and cerebellar regions. ADHD patients on placebo showed activation in ACC, pre- and post-central gyrus, posterior cingulate (PCC), and occipito-cerebellar regions, while under fluoxetine they showed activation in right dorsolateral and inferior PFC (DLPFC/IFC)/ insula extending into basal ganglia (BG), ACC, temporo-parietal and occipital cortices and cerebellum (see Supplementary Material and Figure S1).
**Within-group differences between ADHD patients on placebo versus fluoxetine**

Repeated-measures ANCOVA revealed a significant drug effect in a large cluster comprising right IFC, insula, precentral and superior temporal cortices extending into BG, which was enhanced under fluoxetine relative to placebo (Figure 1, Table 2A). Post-hoc calculations in SPSS indicated an observed power of 89% (partial $\eta^2=0.53$). Activation in IFC was significantly negatively correlated in the placebo group with AUC ($r=-0.676$, $p<0.016$). Under Fluoxetine, however, the correlation was at a trend-level positive ($r=0.563$, $p=0.057$).

Under placebo relative to fluoxetine, patients had enhanced activation during delayed-immediate choices in two clusters, one comprising bilateral cerebellar hemispheres and vermis, PCC, precuneus and occipital lobe, and the other in left pre- and postcentral gyrus, extending into middle frontal gyrus and inferior parietal lobe (IPL) (Figure 1, Table 2B). Furthermore, activation in the cerebellum/PCC/precuneus cluster was negatively correlated with the IFC cluster that was upregulated under fluoxetine ($r=-0.859$, $p<0.001$).

Drug administration order had no effect on within-group differences in BOLD response [right IFC: $F(df=1,10)=2.8$, $p=n.s.$; cerebellum/occipital: $F(df=1,10)=.40$, $p=n.s.$; left pre/postcentral gyrus: $F(df=1,10)=.88$, $p=n.s.$], and there was no interaction between drug administration order and condition [IFC: $F(df=1,10)=0.07$, $p=n.s.$; cerebellum/occipital: $F(df=1,10)=0.15$, $p=n.s.$; left pre/postcentral gyrus: $F(df=1,10)=.75$, $p=n.s.$].

**Between-group differences**

Controls versus ADHD patients on placebo

Between-group ANCOVA showed significantly increased activation in controls relative to ADHD under placebo for delayed–immediate choices in 3 right-hemispheric clusters comprising right pre- and postcentral gyri, extending into IPL and insula. Patients on placebo showed increased activation relative to controls in left anterior cerebellum/occipital lobe (Table 3A, Fig 2A). No significant correlations were observed between extracted BOLD response from these clusters and IQ. Furthermore, ANCOVA with IQ as covariate showed that all significant clusters remained with the exception of right insula. No correlations were observed between AUC and extracted BOLD response in any clusters.
Controls vs. ADHD patients on fluoxetine

Controls relative to ADHD patients on fluoxetine showed enhanced activation in left pre- and postcentral gyri reaching into IPL. No clusters were increased in ADHD relative to controls (Table 3B, Fig 2B). Thus, the right hemispheric clusters which were enhanced in activation in controls relative to ADHD under placebo were no longer observed, suggesting that fluoxetine normalized these activation differences. No significant correlations were observed between extracted BOLD response and IQ. ANCOVA with IQ as covariate showed that all significant clusters remained. No correlations were found between AUC and extracted BOLD response in significant clusters.

DISCUSSION

Behaviourally, an acute dose of fluoxetine normalised TD abnormalities in ADHD relative to controls. At the brain level, within patients, fluoxetine relative to placebo significantly upregulated activation in a large right-hemispheric IFC-premotor-insular-striatal cluster, which correlated trend-wise with better TD. Fluoxetine additionally down-regulated activation in presumably default mode network activations in PCC/precuneus and in pre and postcentral gyrus/IPL as well as cerebellum. Relative to controls, patients on placebo showed underactivation in right insula, pre/postcentral gyrus and IPL but enhanced activation in left anterior cerebellum/PCC. Fluoxetine normalized all case-control differences, due to upregulation/downregulation of these regions within patients, but lead to underactivation in left-hemispheric pre/postcentral gyrus/IPL in ADHD relative to controls, due to downregulation of this activation within patients.

Fluoxetine relative to placebo upregulated a large right-lateralized cluster in ADHD comprising IFC, premotor cortex, insula and BG, which was associated trend-wise with better TD. This right IFC-insular-striatal network comprises key regions for TD important for integrating external information with internal value representations to support goal-directed EF (Christakou et al., 2009, Christakou et al., 2013a, Rubia et al., 2009, Wesley and Bickel, 2014, Wittmann et al., 2007). Right IFC is a key cognitive control hub region, crucial for inhibiting immediate reward choices as well as for inter-temporal bridging and future reward representation (Radua et al., 2014, Wiener et al., 2010). The BG are linked to a reward-valuation network that mediates reinforcement learning, reward-processing and inter-temporal bridging (Koch et al., 2009, Peters and Büchel, 2011,
Wittmann et al., 2007) while the insula plays a role in future reward-value representation as well as timing functions including temporal foresight (Carter et al., 2010, Radua et al., 2014, Wesley and Bickel, 2014, Wiener et al., 2010). In particular right hemispheric IFC, insula and BG have been shown to be consistently hypoactivated in ADHD in meta-analyses of EF tasks (Cortese et al., 2012, Hart et al., 2013), including TD (Chantiluke et al., 2014d, Rubia et al., 2009). Right IFC underactivation has furthermore been shown to be disorder-specific relative to other childhood disorders such as conduct and obsessive-compulsive disorder (Norman et al., 2015, Rubia, 2011, Rubia et al., 2014a).

In this study, we only observed underactivation in ADHD relative to healthy adolescents in insula and premotor regions, rather than in IFC and basal ganglia, presumably due to low power.

Given that our recent meta-analysis findings of a consistent upregulation with stimulants of right IFC, insula and BG activation in ADHD (Rubia et al., 2014b), the findings suggest that serotonin agonists may have comparable upregulatory effects to stimulants. In fact, the upregulated region in VLPFC reaching into anterior insula, putamen and superior temporal lobe is in a very similar location to the cluster observed in our meta-analysis of methylphenidate effects on ADHD brain function (Talairach coordinates: 42,20,-12), with a sizeable effect size of 1 relative to the meta-analytic effect size of 1.5 (Rubia et al., 2014b). Furthermore, it is strikingly similar to the upregulated IFC location in our fMRI studies of methylphenidate effects on inhibition and timing, with effect sizes of .7 and .2 respectively (Cubillo et al., 2014b, Rubia et al., 2014b, Smith et al., 2013). The finding of right IFC-striatal upregulation together with normalisation of behavioural TD deficits extends previous evidence for modulation of behavioural TD rates with 5-HT (Schweighofer et al., 2008, Schweighofer et al., 2007) and of IFC-striatal activation with 5-HT modulators such as tryptophan depletion and SSRIs in healthy adults (Del-Ben et al., 2005, Lamar et al., 2009, Rubia et al., 2005) to the ADHD population. It also extends our previous findings in ADHD that fluoxetine enhances and normalises frontal activation during other impulsiveness-related functions such as IFC-striatal regions during inhibition (Chantiluke et al., 2014c) and DLPFC during working memory (Chantiluke et al., 2014b). The findings of right IFC modulation suggest that indoleamine agonists have similar effects to catecholamine agonists on ADHD brain function, given that not only methylphenidate but also atomoxetine upregulated right IFC activation during inhibition and timing (Cubillo et al., 2014a, Cubillo et al., 2014b, Smith et al., 2013).

The fact that fluoxetine normalised both, underactivation in right pre/postcentral gyri, insula and IPL and behavioural TD deficits in ADHD is in line with the role of lateral fronto-insular-striato-parietal circuitry in intertemporal choice (Bickel et al., 2009, McClure et al., 2004, Xu et al., 2009) and for the modulation of these regions by 5-HT (Cools et al., 2011, Long et al., 2009, Robinson et al.,
Apart from fronto-insular-striatal regions, IPL are also consistently underactivated in ADHD during EF (Cortese et al., 2012, Hart et al., 2012, Hart et al., 2013). We have found left IPL underactivation to be normalised in ADHD with fluoxetine during inhibition (Chantiluke et al., 2014c). The upregulation and normalization with fluoxetine of insula, pre/postcentral and IPL deficits in ADHD thus provides promising novel evidence for modulatory effects of serotonin agonists on typically dysfunctional fronto-insular-parietal systems in ADHD.

The downregulation of PCC/precuneus under fluoxetine versus placebo likely reflects deactivation of the DMN, comprised of ACC, precuneus and PCC, thought to represent mind-wandering, and which is typically anti-correlated with task-positive regions as it needs to be switched off during cognitive effort (Northoff et al., 2010). This is reinforced by the negative correlation under placebo of this cluster with the IFC activation. There is accumulating evidence that the DMN is insufficiently deactivated and anticorrelated with task-positive activation in ADHD (Christakou et al., 2013b), leading to enhanced mind-wandering, poor attention, EF and timing functions. We have found a similar effect of fluoxetine enhancing the deactivation of PCC during working memory in ADHD patients (Chantiluke et al., 2014b), which we also observed with methylphenidate and atomoxetine (Cubillo et al., 2014a). The finding suggests that fluoxetine, like catecholamine agonists (Rubia et al., 2014b), can strengthen the weak deactivation of the DMN in ADHD, presumably improving mind wandering. Given that the key functional deficits in ADHD are both reduced activation in key fronto-striato-parietal networks mediating EF as well as a reduced deactivation of the DMN (Rubia et al., 2014a), the findings suggest that a 5-HT agonist positively modulates both “task-positive” as well as “task-negative” activation deficits of not switching off the DMN.

5-HT is relatively ubiquitous in the brain. However, 5-HT modulates specifically ADHD-relevant impulsivity-related functions mediated by ventrolateral-prefrontal regions which are dependent on 5-HT input such as inhibitory control and reward-related decision making (Dalley and Roiser, 2012). The upregulation with a 5-HT agonist of key right-hemispheric IFC-striatal activation that is typically abnormal in ADHD suggests that abnormal 5-HT may be underlying abnormal activation in these networks and not just catecholamine systems, in line with accumulating evidence of a role of 5-HT in ADHD (Barrickman et al., 1991, Gizer et al., 2009, Hinz et al., 2011, McGough et al., 2009, Oades, 2008, Quintana et al., 2007, Rommelse et al., 2010, Spivak et al., 1999, Zepf et al., 2010). However, it cannot be ruled out that fluoxetine had no indirect effects on other neurotransmitter systems which are known to be influenced by 5-HT such as dopamine, acetylcholine and other monoamines (Bymaster et al., 2002, Mongeau et al., 1997, Oades, 2008). All
3 main monoamine systems are likely to interact in a concerted manner to mediate impulsiveness-relevant functions (Dalley and Roiser, 2012).

The strength of this study is a carefully selected non-comorbid ADHD group. Limitations are a relatively small patient sample size and the fact that for ethical and financial considerations, the control group was scanned only once while patients were scanned twice. However, the randomisation accounted for potential training effects, and order did not affect the results. The significantly lower IQ in the ADHD group, typical for the population, is a limitation, in particular because IQ impacts upon decision making (Toplak et al., 2010). However, covariance and correlation findings did not suggest that IQ confounded group differences. Finally, long-term stimulant use affects brain function and structure, so deficit findings may have been mitigated by the majority of patients taking stimulant medication (Hart et al., 2012, Rubia et al., 2014a).

Conclusions

A single fluoxetine dose in ADHD upregulated activation in key right IFC-premotor-insular-striatal circuitry that mediates TD and which correlated trend-wise with better TD, and enhanced the deactivation of posterior DMN regions. Moreover, fluoxetine, via upregulation of these right hemispheric regions, normalized underactivation in ADHD under placebo relative to controls in right premotor-insular-parietal areas and behavioural TD abnormalities. The findings show for the first time that a serotonin agonist can modulate right IFC-insular-striato-parietal neural mechanisms underlying poor temporal foresight in ADHD. While the study aim was to clarify the mechanism of action of an acute dose of fluoxetine, which has the advantage of revealing true drug effects not confounded by indirect symptom improvements after chronic administration, future studies need to assess longer-term effects, as clinical behavioural changes are typically observed after weeks of administration. Longer-term SSRI administration has been shown to lead to downregulation of 5-HT1a receptors and serotonin transporters (Lesch et al., 1991) and may well have different effects on brain function than acute doses, which are clinically more informative.

REFERENCES


Christakou, A., Murphy, C., Chantiluke, K., Cubillo, A., Smith, A., Giampietro, V., Daly, E., Ecker, C., Robertson, D. & Murphy, D. (2013b). Disorder-specific functional abnormalities during sustained attention in youth with Attention Deficit Hyperactivity Disorder (ADHD) and with Autism. Molecular Psychiatry 18, 236-244.


Table 1. Participant characteristics

<table>
<thead>
<tr>
<th>Variables</th>
<th>Controls (N=20)</th>
<th>ADHD (N=12)</th>
<th>F test (DF)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Demographic Data</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>15.29 (1.78)</td>
<td>14.86 (1.71)</td>
<td>0.43 (1,30)</td>
<td>0.52</td>
</tr>
<tr>
<td>Handedness</td>
<td>88.4 (16.37)</td>
<td>92.92 (11.48)</td>
<td>0.70 (1,30)</td>
<td>0.41</td>
</tr>
<tr>
<td>IQ</td>
<td>118.9 (11.91)</td>
<td>94.5 (7.35)</td>
<td>40.71 (1,30)</td>
<td>&lt; 0.001</td>
</tr>
<tr>
<td>CPRS-R total T-score *</td>
<td>48.63 (8.82)</td>
<td>82.83 (7.79)</td>
<td>113.79 (1,26)</td>
<td>&lt; 0.001</td>
</tr>
<tr>
<td>SCQ total score †</td>
<td>2.24 (2.51)</td>
<td>6.58 (3.29)</td>
<td>16.32 (1,27)</td>
<td>&lt; 0.001</td>
</tr>
<tr>
<td>SDQ total score ‡</td>
<td>4.89 (3.69)</td>
<td>20.75 (4.31)</td>
<td>116.32 (1,28)</td>
<td>&lt; 0.001</td>
</tr>
<tr>
<td><strong>Performance Data</strong></td>
<td>Plac/Fluox</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUC</td>
<td>0.557 (0.13)</td>
<td>0.440 (0.20)/0.458 (0.23)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RT (ms)</td>
<td>2141 (591.47)</td>
<td>2354 (578.6)/2306 (381.5)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>OM</td>
<td>0.75 (1.83)</td>
<td>1.92 (2.4)/1.58 (2.0)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Abbreviations: SD=standard deviations; DF=degrees of freedom; Plac=placebo; Fluox=fluoxetine; RT=reaction time; ms=milliseconds; OM=omissions
* CPRS-R total T-score could not be obtained for 4 control participants
† SCQ scores could not be obtained for 3 control participants
‡ SDQ scores could not be obtained from 2 control participants
Table 2. Within-patient comparisons of activation differences for delayed-immediate choices

<table>
<thead>
<tr>
<th>Brain regions of activation difference</th>
<th>Brodmann Area (BA)</th>
<th>MNI coordinates (x,y,z)</th>
<th>Voxels</th>
<th>Cluster p value</th>
<th>Partial eta²</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) ADHD Fluoxetine &gt; ADHD Placebo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R IFC/DLPFC/insula/precentral gyrus/STL/putamen/caudate/globus pallidus</td>
<td>47/10/46/45/6/22</td>
<td>52,0,-20</td>
<td>107</td>
<td>0.003</td>
<td>0.53</td>
</tr>
<tr>
<td>(B) ADHD Placebo &gt; ADHD Fluoxetine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L + R lateral cerebellum &amp; vermis/occipital lobe/PCC/precuneus</td>
<td>30/31/23/19/18</td>
<td>-11,-75,-12</td>
<td>384</td>
<td>0.0002</td>
<td>0.38</td>
</tr>
<tr>
<td>L postcentral/precentral gyri/IPL/middle frontal gyrus</td>
<td>2/3/1/6/40/5</td>
<td>-30,-22,48</td>
<td>116</td>
<td>0.0007</td>
<td>0.38</td>
</tr>
</tbody>
</table>

Abbreviations: R=right; L=left; IFC=inferior frontal cortex; DLPFC=dorsolateral prefrontal cortex; STL=superior temporal lobe; PCC=posterior cingulate cortex; IPL=inferior parietal lobe. Partial eta² refers to the effect size of the differences in activation between groups.
Table 3. Case-control comparisons of activation differences for delayed-immediate choices

<table>
<thead>
<tr>
<th>Subject contrast</th>
<th>Brain regions of activation difference</th>
<th>Brodmann Area (BA)</th>
<th>MNI coordinates (x,y,z)</th>
<th>Voxels</th>
<th>Cluster p value</th>
<th>Partial eta²</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>(A) CONTROLS versus ADHD PLACEBO</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C &gt; ADHD</td>
<td>R pre/postcentral gyrus/insula</td>
<td>6/4/3/2</td>
<td>56,-5,5</td>
<td>14</td>
<td>0.04</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>R precentral/postcentral gyrus</td>
<td>6/4/3/2/1/40</td>
<td>41,-11,37</td>
<td>25</td>
<td>0.04</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>R postcentral gyrus/IPL</td>
<td>4/1/2/40</td>
<td>-34,-22,45</td>
<td>14</td>
<td>0.04</td>
<td>0.24</td>
</tr>
<tr>
<td>ADHD &gt; C</td>
<td>L postcentral gyrus/IPL</td>
<td>2/3/40</td>
<td>-34,-22,45</td>
<td>4</td>
<td>0.03</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>L cerebellum (anterior)/occipital lobe/PCC</td>
<td>19/30</td>
<td>-14,-71,-12</td>
<td>16</td>
<td>0.02</td>
<td>0.12</td>
</tr>
<tr>
<td><strong>(B) CONTROLS versus ADHD FLUOXETINE</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C &gt; ADHD</td>
<td>L precentral/postcentral gyri/IPL</td>
<td>6/4/3/2/1/40</td>
<td>-34,-22,45</td>
<td>77</td>
<td>0.001</td>
<td>0.27</td>
</tr>
<tr>
<td>ADHD &gt; C</td>
<td>No observed clusters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: R=right; L=left; IPL=inferior parietal lobe. Partial eta² refers to the effect size of differences in activation between groups.
Figure Legends

Fig. 1. Within-patient comparisons. Axial sections show medication effects within the ADHD group. RED=fluoxetine > placebo, BLUE=placebo > fluoxetine. Also shown are the statistical measures of the blood oxygen level-dependent (BOLD) response for each of the brain regions that showed a significant effect of medication within patients. R=right, L=left; IFC=inferior frontal cortex; STL=superior temporal lobe; PCC=posterior cingulate cortex; IPL=inferior parietal lobe; MFG=middle frontal gyrus. Talairach z-coordinates are indicated for slice distance (in mm) from the intercommissural line. The right side of the image corresponds to the right side of the brain.

Fig. 2. Case-control comparisons. Axial sections show the between-group ANCOVA findings between controls and patients under (A) placebo and (B) fluoxetine. RED=controls > ADHD, BLUE=ADHD > controls. Also shown are the statistical measures of the blood oxygen level-dependent (BOLD) response for each of the brain regions that showed a significant group effect. R=right, L=left, IPL=inferior parietal lobe, CB=cerebellum. Talairach z-coordinates are indicated for slice distance (in mm) from the intercommissural line. The right side of the image corresponds to the right side of the brain.