非平衡等离子点火中放电过程的数值模拟
张泽华1 罗开红1,2 陈阳1
(1. 清华大学燃烧能源中心，北京 100084；
2. 伦敦大学学院机械工程系，伦敦 WC1E7JE)

摘要 非平衡等离子点火是一种利用非平衡等离子体的化学效应和热效应来引燃混合物的新型点火方式。具有拓宽稀
燃极限、降低点火延迟等优点，近年来引起研究人员的关注。等离子体是一个带电粒子的复杂系统，粒子间存在电离、激
发、离解、电荷转移等复杂的相互作用。本文分析了非平衡等离子体中电子影响下的模型，采用氧化还原电场强度下
的简化机理，对氮氧化碳气中的介质阻抗放电过程进行了模拟，分析了非稳定粒子的产生和O自由基的生成过程。

关键词 非平衡等离子体；等离子点火；等离子助燃；介质阻抗放电

Numerical Simulation of Discharge Process in Nonequilibrium Plasma Assisted Ignition
ZANG Ze-Hua1 LEO Kai-Hong1,2 CHEN Yang1
(1. Center for Combustion Energy, Tsinghua University, Beijing 100084; 2. Department of Mechanical Engineering, University College London, London WC1E7JE)

Abstract Nonequilibrium plasma assisted ignition is a way to ignite combustible mixtures due to
the chemical and thermal effect of plasma. The nonequilibrium plasma assisted ignition can extend
the lean burn limits and reduce the ignition delay time. Recently, the potential use of nonequilibrium
plasma for increasing lean burn flame stability and reducing emissions has garnered increasing
interest of researchers. Plasma is a complicated system of neutral and charged particles with various
interactions such as ionization, excitation, dissociation and charge transfer. In this thesis, an insight
in to the electron-impact collision in nonequilibrium plasmas is provided, a nanosecond discharge
process in a mixture of nitrogen and oxygen was simulated with a simplified kinetics for a high reduced
electric field (>100 Td). The formation of O radical and other excited states were analyzed.

Key words nonequilibrium plasma; plasma assisted ignition; plasma assisted combustion

0 引言

传统火花塞点火具有点火效率低，单极点火，燃烧速率慢等特性，容易引起燃烧的不稳定，在更加苛刻的点火条件下难以满足点火需求 [1–6]，同时
也常出现设备烧蚀，火花塞表面出现沉积物等状况，影响火花塞使用寿命。近年来，在改进和提升
火花塞性能方面取得了很大进展，同时也面临着难
以突破的瓶颈。为了从根本上克服传统火花塞点火
的不足，等离子点火、激光点火和微波点火等新型的
点火方式得到越来越多的关注。等离子点火可以活
化反应物，提高燃烧速度，提高火焰的稳定性，能够
实现多通道点火和体积点火，可以降低点火能，缩短
点火延迟时间 [1–6]。有望被应用于涡扇发动机和超
音速燃烧冲压喷气发动机等设备燃烧室的点火 [1]。

等离子点火有很好的性质和照明的前景，但是其
机理研究方面尚有缺失，本文使用简化的等离子
化学动力学模型对空气介质阻抗放电过程进行了
数值模拟，旨在探讨等离子点火过程的模拟方法，为
发展精确可靠的点火方式奠定基础。

1 等离子体中粒子碰撞过程分析

等离子体是由电子、离子等带电粒子以及中性
粒子 (原子、分子、微粒等) 组成的，宏观上呈现准
中性，且具有集体效应的混合气体 [7]。实验室中产生的
等离子体很少能处于热平衡的状态，通常是电子温
度和重粒子温度分别满足麦克斯韦分布，但是电子的热运动剧烈程度要远高于重粒子，也就是说电子温度要远高于重粒子，这种电子和重粒子没有达到热平衡状态的等离子体就称为非平衡等离子体。非平衡等离子体是一个复杂的粒子体系，粒子间的碰撞过程十分多样，包括超弹性散射、Feshbach 共振、彭宁电离、电离激发和俄歇效应等等。

1.1 截面数据和 BOLSIG+

对于非平衡等离子点火过程，电子影响下的激发和电离是主要的粒子碰撞形式，本文中模型的气体为氮气和氧气的混合物，氮气和氧气的摩尔分数分别为 0.8 和 0.2，即 N₂:O₂ = 4:1，接近空气中的氮氧比例。计算所使用的碰撞截面数据包含了涉及氧分子的 17 种电子碰撞和涉及氮分子的 25 种电子碰撞，所使用的具体截面数据来自文献 [8], [9]，其中氧气的截面数据如图 1 所示。

放电过程中的非平衡状态的电子能量分布是偏离麦克斯韦分布的，非平衡的电子能量分布函数可通过求解玻尔兹曼方程来计算，玻尔兹曼方程是分布函数所满足的一个方程，通过求解不同状态下的分布函数可以得到电子的输运特性 [11]。

求解玻尔兹曼方程是一件非常复杂的工作，具体的方法和求解过程远远超出本文的范围，Hugletaar 等 [12] 在前人的基础上开发了玻尔兹曼方程的求解器 BOLSIG+，许多研究人员 [5,10,13] 采用 BOLSIG+ 为等离子体流体模型提供电子影响下的反应数据，包括电子的输运特征和反应的速率常数等。

1.2 能量损失分数与约化电场强度的关系

在约化电场强度大于 100 Td 的情形下，氮气分子和氧气分子的转动自由度的激发和振动自由度的激发所占的能量损失分数极小，可以被忽略，此时电子的能量大部分用于氧气分子和氮气分子的电离，这些反应包括氧气分子的激发 (ΔE=6.0 eV 和 ΔE=8.4 eV) 和电离、氮气分子的激发 (ΔE=11.03 eV 和 ΔE=13.0 eV) 和电离，分别如图 2 和图 3 所示。

从电子能量分布的观点来看，由于在电子平均能量较高时，在一定的电子能量分布函数下，具有较低能量的电子数目减少，所以仅激发分子转动和振动自由度的碰撞相对较少，而这两个自由度激发所需的能量本来就低于电子自由度的激发所需要的能量，所以转动自由度和振动自由度的激发所消耗的电子能量分数极小，可以忽略不计。

1.3 反应速率系数与平均电子能量的关系

图 4 展示了在在摩尔数比例为 4:1 的氨氮氧气混合物中气体电子自由度的激发和电离反应的速率常数与平均电子能量之间的关系。从图 4 中可以看出，平均电子能量越高，氨气和氧气电离的速率常数越大，而且随着平均电子能量的提升，电离的速率常数都会超过电子自由度激发的速率常数。这是由于分子电离所需的能量要大于其电子自由度的激发，随着平均电子能量的增大，更大比例的电子拥
有足以电离分子的能量。

2 氮氧气气混合物中介质阻挡放电过程模式

介质阻挡放电是有绝缘介质插入放电空间的一种气体放电，介质覆盖在电极上或者悬挂在空间里，其典型结构可以分成平板型和圆筒型。介质阻挡放电表现为均是稳定的放电现象，实际上放电通过大量的细微放电通道进行。在外电场的作用下，电子被加速，通过与气体间的分子碰撞作用使原子分子被激发或电离，产生激发态分子，并在这个过程中产生大量自由基，例如O、OH、O₃、H₂O₂等，这些自由基具有很高的化学活性，虽然不能长期稳定地存在于气体中，但是这些自由基对于燃烧过程中链式反应的发生起着重要的作用。

2.1 等离子体的流体模型

流体模型是等离子体模拟的方法之一，采用流体模型来进行等离子体模拟虽然会丢失一些微观方面的信息，但是流体模型具有易于添加复杂的反应机理，能够体现电子的宏观输运性质，计算量小等优点，因而也是一种有效的模拟手段[11]。其基本假设包括以下几点：

1) 电子和重粒子分别满足连续方程

$$\frac{\partial n_k}{\partial t} + \nabla \Gamma_k = \dot{G}_k$$

(1)

其中，n_k 是第 k 种粒子的数密度，Γ_k 是粒子流。

$$\Gamma_k = \mu_k n_k E - D_k \nabla n_k$$

(2)

式中，μ_k 是第 k 种粒子的粒子迁移率(species mobility)，D_k 是第 k 种粒子的扩散率(species diffusivity)，\dot{G}_k 是第 k 种粒子的源项：

$$\dot{G}_k = \frac{\delta n_k}{\delta t}$$

(3)

放电过程中发生的多种非弹性碰撞，包括电离、复合和电荷交换等，对于第 k 种粒子数量的影响被归入到源项中。也就是说，反应的影响被归入到连续方程的源项中。

2) 将电子动量方程近似为漂移扩散假设

$$\frac{\partial [n_e m_e \bar{v}_e]}{\partial t} + \nabla n_e \bar{v}_e \cdot \bar{E} = - \nabla \cdot (p_e) + q n_e \bar{E} - n_e m_e \bar{v}_e \nu_{nm}$$

(4)

式中，n_e 是电子数密度，β_{nm} 是电子漂移速率，\bar{v}_e 是电子无规则运动平均速率，p_e 是电子压强，p_e 由理想气体模型给出，P_e 在麦克斯韦分布下，$P_e = n_e k_B T_e$。\bar{E} 是电场强度，ν_{nm} 是动量传递系数，s^{-1}，q 是元电荷，也叫基本电荷，$q = e = 1.6 \times 10^{-19}$ C。等离子体中任何带电粒子的带电量都是元电荷的整数倍。

假设电子热运动的速度远远大于漂移速度，则与其他项相比，式 (4) 等号左边第二项近似为零，即 $\nabla n_e m_e \bar{v}_e \cdot \bar{E} \approx 0$，再假设动量传递远远小于电离和复合的频率，则与其他项相比，式 (4) 等号右边第一项近似为零，即 $- \nabla \cdot (p_e) \approx 0$。

于是式 (4) 化简为：

$$\frac{\partial [n_e m_e \bar{v}_e]}{\partial t} = +q n_e \bar{E} - n_e m_e \bar{v}_e \nu_{nm}$$

(5)

3) 电子能量方程满足

$$\frac{\partial n_e}{\partial t} + \nabla \cdot \Gamma_e = R_e$$

(6)

其中，电子的能流项 Γ_e：

$$\Gamma_e = (\mu_e) n_e - \nabla D_e n_e$$

(7)

μ_e 是电子能量迁移率，$m^2 \cdot V^{-1} \cdot s^{-1}$，$D_e$ 是电子能量扩散系数，$m^2 \cdot s^{-1}$。

$$R_e = S_{en} - (u \nabla) n_e - (Q + Q_{gen}) / q$$

(8)
其中等号右边各项分别为：S_e 是非弹性碰撞引起的能量变化，单位是 $\text{V} \cdot \text{m}^{-3} \cdot \text{s}^{-1}$，$Q + Q_{\text{gen}}$ 是热源项，单位是 $\text{W} \cdot \text{m}^{-3}$。

4）电势满足

$$\nabla^2 \varphi = -\frac{e}{\varepsilon_0 \varepsilon_r} \sum_k Z_k n_k \quad (9)$$

其中，ε_0 是真空介电常数，也叫真空电容率，$\varepsilon_0 = 8.85 \times 10^{-12} \text{ F} / \text{m}$，$\varepsilon_r$ 是相对介电常数，Z_k 是第 k 种粒子所带的净电荷数。

由于放电过程中尺度很小，所以重粒子的流动可以忽略，假设重粒子的温度和气体压强为常数，在放电过程中不发生变化。

本文使用商业软件 Comsol Multiphysics 5.0 中的等离子模拟模块计算大气压中介质阻挡放电过程行了一维模拟。电极结构是圆筒形，放电间隙两侧都填充有电介质，具体的结构和边界条件如图 5 所示。放电间隙的网格划分使用了 Comsol 中预定义的分布类型之一，几何序列，单元数为 200，单元长边比为 5，对称分布，模拟的的时间步长小于 0.1 ns，电场强度的起落和不均匀的能量分布，放电过程中的评化电场强度 E/n 的变化决定了电子能量在空间的分布，而平均电子能量则决定了激发和电离的反应速率，所以电子影响下的碰撞反应速率是随时间变化的，激发和电离反应的反应速率常数如图 6 所示，所有碰撞反应的反应速率常数都在 25 ns 达到峰值，这是由于外加激波的峰值电压出现在 25 ns，而在 25 ns 以后，在外加电场和电子积累所形成的电离的共同作用下，平均电子能量出现下降，这就导致了碰撞反应速率的下降。

在放电过程中，电子激发态的氨气分子 $N_2(A^3 \sum^\parallel) (\Delta E=11.03 \text{ eV})$，能够和氧原子发生猝灭反应从

<table>
<thead>
<tr>
<th>编号</th>
<th>表达式</th>
<th>说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>$e + O_2 \rightarrow O_2^*(e6) + e$</td>
<td>电子激发态的激发 $\Delta E=6.0 \text{ eV}$</td>
</tr>
<tr>
<td>R2</td>
<td>$e + O_2 \rightarrow O_2^+(e8) + e$</td>
<td>电子激发态的激发 $\Delta E=8.4 \text{ eV}$</td>
</tr>
<tr>
<td>R3</td>
<td>$e + O_2 \rightarrow 2e + O_2^+$</td>
<td>电离 $\Delta E=12.06 \text{ eV}$</td>
</tr>
<tr>
<td>R4</td>
<td>$e + N_2 \rightarrow N_2^+(e11) + e$</td>
<td>电子激发态的激发 $\Delta E=11.03 \text{ eV}$</td>
</tr>
<tr>
<td>R5</td>
<td>$e + N_2 \rightarrow N_2^+(e13) + e$</td>
<td>电子激发态的激发 $\Delta E=13.0 \text{ eV}$</td>
</tr>
<tr>
<td>R6</td>
<td>$e + N_2 \rightarrow 2e + N_2^+$</td>
<td>电离 $\Delta E=15.6 \text{ eV}$</td>
</tr>
<tr>
<td>R7</td>
<td>$N_2^+(e11) + O_2 \rightarrow N_2 + O + O$</td>
<td>猝灭，正反应速率 $k^f = 1.02 \times 10^{10} \text{ m}^3/(\text{s-mol})$</td>
</tr>
<tr>
<td>R8</td>
<td>$e + O_2 \rightarrow O + O$</td>
<td>猝灭，正反应速率 $k^f = 1.2 \times 10^{14} (300/\text{T})^{0.5} \text{ m}^3/(\text{s-mol})$</td>
</tr>
</tbody>
</table>

注：R1~R6 来自文献 [8],[9]，R7, R8 来自文献 [10]
而形成 O 自由基，这是放电过程中 O 自由基的主要生成途径之一。O 自由基可以影响后续的燃烧反应，因而激发态氮原子的异常（R7）十分重要。在加热电压的激励下，激发态的氮气分子和 O 自由基的浓度如图 7 所示，通过与氮气离子浓度的比较可知，激发态氮分子的浓度始终高于氮离子的浓度，由于氮气分子的浓度在放电过程中几乎不变，所以这是由于氮气激发的反应速率常数比电离的速率高导致的，由于瞬息反应的反应速率在碰撞中被设为常数，且其反应速率远大于离解反应（R8），所以 O 自由基的产生速率主要是由激发态氮气分子的浓度决定的。

2.2.2 粒子浓度在放电空间的分布

在电压逐渐升高的 15 ns 内，电子数密度从初始化的 1×10^9 开始迅速增加，并且在半径的地方增速明显，外加电场方向是指向上方的，所以电子受力方向是沿半径外的方向，电子在外电场的作用下被加速，朝着外壁运动，且在这个过程中获得能量与原子发生激发和电离作用，从图 8 中可以看出在右侧壁面处电子浓度逐渐累积。随着时间的增加，右侧壁面的电子密度逐渐趋于饱和。15 ns 之后右侧壁面电子数密度几乎不再增加，但是 15 ns 后空间中的电子数依然在增加。壁面电子数密度出现极大值，同时整个空间内的电子数密度最大值位置开始向内侧移动。

25 ns 是正弦信号达到其峰值时的时刻，在 25 ns 以后，随着外加电场的减弱，靠近右侧壁面的电子数密度迅速下降。在 25 ns 到 50 ns 之间，右侧近壁面的电子密度下降，电子在电介质上积累的电荷所形成的电场与外加电场的共同作用下发生向左的迁移。

同样，电子激发态的氮气分子在空间的分布也是不均匀的，如图 9 所示，其空间分布随时间的演化规律大致与电子相同，这是由于在电子密度大的地方，激发和电离反应同时发生，激发产生电子激发态的氮气分子，电离将产生电子，所以其空间分布有着相似的趋势。
3 结 论

约化电场强度决定平均电子能量，对电子影响下的碰撞过程有着很大影响，当电子平均能量较高时，分子电子自由度的激发和分子的电离将成为粒子间主要的碰撞形式，电子激发态的 N₂ 分子与 O₂ 的消旋反应可以产生 O 自由基，O 自由基对后续点火过程有很大的影响。本文使用较高约化电场强度下 (高于 100 Td) 简化的化学机理，对介质阻挡放电过程进行模拟，揭示了放电过程中激发态的氧原子的产生，由此而得到的 O 自由基的浓度可以为下一步燃烧过程的模拟提供初始数据。介质阻挡放电过程中的碰撞复杂多变，H, O 等自由基对后续的燃烧过程都有重要影响，详细的等离子碰撞机理和燃料在低温下的化学反应机理仍有待进一步研究。

参 考 文 献