Temporal niche expansion in mammals from a nocturnal ancestor after

dinosaur extinction 2

Roi Maor^{1,2,*}, Tamar Dayan^{1,3}, Henry Ferguson-Gow² and Kate E. Jones^{2,4,*}

5

- ¹ School of Zoology, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, 6
- 6997801, Israel. 7

1

3

4

- ² Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and 8
- Environment, University College London, Gower Street, London, WC1E 6BT, United 9
- 10 Kingdom.
- ³ The Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv 6997801, Israel. 11
- 12 ⁴ Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY,
- United Kingdom. 13
- * Correspondence and requests for materials should be addressed to RM 14
- 15 (roimaor@post.tau.ac.il) or KEJ (kate.e.jones@ucl.ac.uk).

16

to nocturnal activity, thought to be the result of a prolonged nocturnal phase or 17 'bottleneck' during early mammalian evolution. Nocturnality may have allowed 18 19 mammals to avoid antagonistic interactions with diurnal dinosaurs during the Mesozoic. However, understanding the evolution of mammalian activity patterns is hindered by 20 scant and ambiguous fossil evidence. While ancestral reconstructions of behavioural 21 22 traits from extant species have the potential to elucidate these patterns, existing studies have been limited in taxonomic scope. Here, we use an extensive behavioural dataset for 23 24 2415 species from all extant orders to reconstruct ancestral activity patterns across 25 Mammalia. We find strong support for the nocturnal origin of mammals and the 26 Cenozoic appearance of diurnality, although cathemerality (mixed diel periodicity) may have appeared in the late Cretaceous. Simian primates are among the earliest mammals 27 28 to exhibit strict diurnal activity, some 52-33 Million years ago (Mya). Our study is 29 consistent with the hypothesis that temporal partitioning between early mammals and dinosaurs during the Mesozoic led to a mammalian nocturnal bottleneck, but also 30 demonstrates the need for improved phylogenetic estimates for Mammalia. 31 32 Species exhibit characteristic patterns of activity distribution over the 24-hour (diel) cycle, and as environmental conditions may change radically, yet predictably between day 33 and night, activity patterns allow individuals to anticipate fluctuations, and time activity 34 optimally^{1,2}. Physiological and behavioural adaptations to different activity patterns are 35 important contributors to individual fitness³, and therefore to species evolutionary success^{4,5}. 36 Moreover, long-term shifts in activity patterns may reveal shifts in selective regimes, caused 37 by changes in biotic and abiotic conditions⁵⁻⁷. Although mammals exhibit striking 38 morphological, behavioural and ecological niche diversity⁸, the distribution of mammalian 39 activity patterns is strongly biased towards nocturnality⁹. Additionally, most mammalian 40

Most modern mammals, including strictly diurnal species, exhibit sensory adaptations

species, including strictly diurnal ones, exhibit visual adaptations to nocturnal activity that are similar to those of nocturnal birds and reptiles¹⁰. For example, mammals (except Haplorrhine primates) lack a fovea – an area in the retina that enables very high visual acuity found in fish, reptiles, and birds that are diurnal visual predators¹¹. Most mammalian eyes have high ratios of corneal diameter to axial ocular length which favour sensitivity to low-light over visual acuity, and are comparable to those found in nocturnal reptiles and birds¹⁰. Compared to all other vertebrates, mammals also exhibit reduced diversity of active photoreceptors which allow colour perception in bright environments^{12,13}. Many day-active mammals (e.g. ungulates, carnivores) have rod-dominated retinae, i.e. have eyes better suited for low-light conditions (night vision), although ratios of retinal rod and cone ratios show high interspecific variability¹⁴. There is also evidence that enhanced olfactory sensitivity¹⁵, broader frequency range hearing¹⁶, and sophisticated whisker-mediated tactile perception¹⁷ may have evolved in mammals to compensate for insufficient visual information^{10,13}.

In his seminal work, Walls¹¹ noted the differences between mammals and other (mostly diurnal) amniotes in eye shape, retinal composition and visual pathways. He proposed that the predominance of nocturnal adaptations in mammals may be the result of a prolonged nocturnal phase in the early stages of mammalian evolution, after which emerged the more diverse patterns observed today^{11,13}. This 'nocturnal bottleneck' hypothesis suggests that mammals were restricted to nocturnal activity by antagonistic interactions with the ecologically dominant diurnal dinosaurs during the Mesozoic^{11,13,18}. The Cretaceous-Paleogene (K-Pg) mass extinction event circa 66Mya, led to the extinction of all non-avian dinosaurs along with the marine- and flying reptiles, and the majority of other vertebrates, and invertebrate and plant taxa^{19,20}. This event marks the end of the Mesozoic 'reign of dinosaurs' and the transition to the mammal-dominated Cenozoic fauna. If an antagonistic interaction with dinosaurs was an important factor in restricting early mammals to nocturnal

activity, then the vast majority of, if not all Mesozoic mammals are expected to have been nocturnal, and diurnal mammals would have only appeared after the K-Pg mass extinction event.

Support for the nocturnal bottleneck hypothesis is drawn from anatomical and morphological studies ^{10,11}, and increasingly from molecular studies ^{12,13}, but remains indirect. For example, some Synapsids, the non-mammalian lineage ancestral to mammals, were adapted to nocturnal activity >300Mya, suggesting that nocturnality, a relatively rare state in amniotes, may have already characterised the Palaeozoic precursors of mammals ²¹. However, inferring activity patterns from fossil morphology may be unreliable ^{22,23}, particularly as all modern mammals (except Haplorrhine primates) have nocturnal-type ocular and cranial morphologies (e.g. high corneal diameter to axial length ratios, a large binocular visual field overlap) regardless of their activity pattern ^{10,23}. Evidence from histological and molecular studies of the evolutionary development of mammalian eyes indicate that nocturnal adaptations preceded diurnal ones ^{12,24}, but this does not help elucidate questions around the timing of these adaptations.

Ancestral reconstructions of behavioural traits using a phylogenetic comparative approach may help to understand both the pattern and timing of the evolution of activity patterns in mammals since activity patterns have been shown to be genetically determined²⁵ yet responsive to selective pressures². However, phylogenetic studies of mammalian activity patterns so far have mostly focused on two mammalian orders – primates²⁶⁻²⁸ and rodents²⁹. Primate activity patterns have been studied extensively, and some evidence suggests that primate diurnality originated in the most recent common ancestor (MRCA) of suborder Haplorrhini (all monkeys, apes and tarsiers)⁵ in the Mesozoic^{30,31}. It is conceivable, although thus far not tested, that diurnal diversifications in other orders of Mesozoic origins, e.g. Scandentia (treeshrews), Macroscelidea (elephant shrews) and Rodentia, could have occurred

before the extinction of dinosaurs, calling for a wider examination of how activity patterns
 evolved across mammals.

Here, we use an extensive dataset of activity patterns for 2415 mammal species, representing 135 of the 148 extant families and all extant orders (Supplementary Table 1) to investigate ancestral activity patterns in mammals, and to understand the timings of the appearance of mammal diurnality. We assign species to one of five activity patterns: (i) nocturnal – active only or mostly in the dark; (ii) diurnal – active only or mostly during daylight hours; (iii) cathemeral – active both during the day and during the night; (iv) crepuscular – active only at twilight, around sunrise and/or sunset; and (v) ultradian – active in cycles of a few hours (see Methods). We map the three main activity patterns (nocturnal, cathemeral, and diurnal) onto two phylogenetic frameworks representing two of the main hypotheses of mammalian evolutionary history for our analyses, termed here short-fuse (SF) following³¹ updated by³², and long-fuse (LF) phylogenies (adapted from³⁰) (Fig. 1). We then use reversible jump Markov Chain Monte Carlo (rjMCMC) methods³³ to estimate transition rates between different activity states, and to infer the posterior probability (PP) of character states at each node in the phylogenies. This allows us to examine the evolution of activity patterns of mammals, and to test the main predictions of the nocturnal bottleneck hypothesis; (i) the most recent common ancestor to all extant mammals was nocturnal, and (ii) mammal diurnality first emerged in the Cenozoic.

Results

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

We find that the modal values of PP_{Noct} (posterior probability of nocturnality) at the ancestral node of extant mammals were 0.74 (Credible Interval, CrI 0.71-0.76) and 0.59 (CrI 0.54-0.64) for SF and LF phylogenies, respectively, offering support for a noctural ancestor (Fig. 2). In contrast, a cathemeral or a diurnal ancestral state is much less well supported: modal

value of PP_{Cath} (posterior probability of cathemerality) = 0.24 (CrI 0.23-0.26) and 0.31 (CrI 115 0.29-0.33) for SF and LF, respectively, or PP_{Diur} (posterior probability of diurnality) = 0.02116 (CrI 0.01-0.03) SF and 0.1 (CrI 0.07-0.14) LF (Fig. 2). The narrow and non-overlapping 117 118 distributions of PP values across the activity pattern reconstructions indicate that our results are consistent and robust across samples of the rjMCMC chains, although the distributions 119 120 are wider using the LF phylogeny (Fig. 2). 121 The first strong evidence (where the reconstructed activity pattern was supported by 122 modal PP values >0.67) in mammals of an expansion of temporal niche into cathemerality, is in the early Paleogene (Cenozoic) for the SF phylogeny (no later than 65.8Mya), or in the late 123 124 Cretaceous (Mesozoic) for the LF phylogeny (no later than 74.7Mya) (Figs. 3 and 4). 125 Although the LF phylogeny supports a Mesozoic shift to cathemerality, the modal PP values of the remaining 41 Mesozoic nodes were either nocturnal (23 nodes), or unclear – where all 126 three activity patterns were supported by modal PP values <0.67 (18 nodes). Using the SF 127 phylogeny, we reconstruct the first transition to cathemerality in the MRCA of order 128 129 Cetartiodactyla (cetaceans and even-toed ungulates). This taxa was likely to be cathemeral 130 (PP_{Cath} = 0.79 CrI 0.72-0.87), and almost certainly exhibited considerable daytime activity 131 $(PP_{Noct} = 0.02 \text{ CrI } 0.01\text{-}0.04)$ (Fig. 3). Using the LF phylogeny, the first cathemeral transition was in the MRCA of families Soricidae (shrews) and Talpidae (moles) (PP_{Cath} = 0.81 CrI 132 0.61-0.91; $PP_{Diur} = 0.07 \text{ CrI } 0.03-0.15$) (Fig. 4). 133 134 Evidence of the evolution of diurnality (modal PP values >0.67) first appears in the early Paleogene (no later than 52.4Mya or 63.8Mya for SF and LF phylogeny, respectively) 135 (Figs. 3 and 4). Using the SF phylogeny, we reconstruct transition to diurnality in the MRCA 136 of the Simiiformes (all monkeys and apes) (PP_{Diur} = 0.76, CrI 0.75-0.78; PP_{Cath} = 0.23, CrI 137 0.22-0.25) (Fig.3). Using the LF phylogeny, the first taxon to exhibit diurnal activity was the 138 MRCA of the family Macroscelididae (elephant shrews) (PP_{Diur} = 0.77, CrI 0.76-0.80; PP_{Cath} 139

= 0.22, CrI 0.19-0.23; 63.8Mya), followed by the MRCA of families Ctenodactylidae (comb rats, Rodentia) (PP_{Diur} = 0.76; CrI 0.73-0.78; 61.6Mya), Camelidae (Cetartiodactyla) (PP_{Diur} = 0.74, CrI 0.72-0.77; 59.6Mya), and Tupaiidae (treeshrews, Scandentia) (PP_{Diur} = 0.99, CrI 0.99-0.99; 51.1Mya) in rapid succession (Fig. 4). For both SF and LF phylogenies, we find that transition rates from a cathemeral pattern to either noctural or diurnal are about three times higher than the transition rates from either nocturnal or diurnal to cathemeral (Table 1). Furthermore, the transition rates in the SF reconstruction are three orders of magnitude lower than the respective rates in the LF reconstruction.

Discussion

We have shown that extant mammals likely originated from a nocturnal ancestor, and that these ancestors remained nocturnal throughout the Mesozoic until either 9 Million years (Myr) before the K-Pg event (LF reconstruction), or just after it (SF reconstruction). On balance, our evidence suggests that mammals likely remained nocturnal throughout the Mesozoic as nocturnal activity is strongly supported at most Mesozoic nodes in both SF and LF reconstructions. We find strong evidence that the shift to strict diurnality occurred after the K-Pg event (both SF and LF reconstructions), although cathemerality may have appeared in the late Cretaceous (74.7Mya LF reconstruction). Combined with other sources of evidence, such as the morphology of mammalian eyes^{10,23}, composition and reduced diversity of retinal photoreceptors^{12,13,24,34}, and the emphasis on alernative sensory systems^{11,15-17}, our analysis helps to further establish the nocturnal ancestry of mammals and that diurnality only orignated in mammals after the dissapearance of the dinosaurs, as predicted by the nocturnal bottleneck hypothesis.

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

Even if we accept the appearance of cathemeral mammals as an expansion of the temporal niche before the K-Pg event, it does not necessarily provide strong evidence against the nocturnal bottleneck hypothesis. Declines in dinosaur diversity long before the K-Pg event have been suggested, either globally, starting at least 40Myr before the K-Pg event³⁵, or locally – herbivorous dinosaurs in present-day North America were declining for up to 15Myr prior to the event²⁰. In contrast, fossils show that mammals had evolved considerable eco-morphological diversity as early as the mid-Jurassic period (174-164 Mya), and diversified along all axes of the ecological niche^{36,37}, except the temporal axis. Moreover, extensive mammal radiations occurred following the Cretaceous Terrestrial Revolution (KTR, 120-80Mya), whereby angiosperms rose to dominate the global flora, and revolutionised ecospace^{30,38,39}. Under such conditions, a partial invasion of mammals into the temporal niche of declining dinosaurs does not violate the assumption of temporal partitioning. Indeed, evidence of a shift in retinal opsin sensitivity (linked to more diurnal activity patterns) in some mammalian clades (Cetartiodactyls, primates, carnivores, and some Afrotheria orders) more than 70Mya^{24,34}, offers further support for a transition occurring during this period. The MRCA of infraorder Simiiformes (monkeys and apes) was among the first taxa to have evolved diurnality (52.4Mya, SF reconstruction), and this is consistent with their evolution of diurnally-adapted vision, specifically trichromacy and a low ratio of corneal diameter to axial length 10,12,23 – unique in mammals. Other diurnal clades such as squirrels (Sciuridae) and elephant-shrews (Macroscelididae) evolved at about the same time as the Similformes^{30,31} and presumably had similar opportunity to evolve comparable visual adaptations to diurnality. However, these groups rely on high ratios of retinal cones to rods for daylight vision¹⁴, suggesting that diurnality in Similformes may have evolved

considerably earlier than the minimum date of 52.4Mya. Similformes lie on an evolutionary

branch that originates 83.2Mya (SF), when they diverged from tarsiers – their closest living

relatives in the suborder Haplorrhini. Tarsiers are strictly nocturnal, but share with the Simiiformes several adaptations for high visual acuity, typical to diurnal vision^{28,40}. The morphological and physiological adaptations to nocturnality in tarsiers are unlike those of any other nocturnal primate, suggesting that tarsiers originated from a diurnal ancestor, the MRCA of Haplorrhini, and secondarily adapted to nocturnal life^{5,6}. The Haplorrhine MRCA was a Mesozoic species that lived until 83.2Mya (SF) or 78.1Mya (LF). This would imply that Mesozoic mammals were able to break out of the nocturnal bottleneck and endure direct interaction with dinosaurs following the KTR. Nevertheless, both reconstructions here, as well as other reconstructions of primate activity patterns based on different sets of data, including data on visual physiology, find weak or no evidence to the diurnality of the Haplorrhine MRCA²⁶⁻²⁸.

There are other uncertainties around the dates for three of the four taxa identified as shifting to diurnality within 7Myr after the K-Pg in the LF reconstruction (Macroscelididae, Ctenodactylidae, Camelidae). This is due to how we re-scaled the terminal-branches in³⁰ to produce the species-level LF phylogeny. However, according to the dates given in³⁰ and additional studies supporting the LF hypothesis⁴¹⁻⁴⁴, these families originated in the Cenozoic, so our prediction of Cenozoic origins to mammal diurnality remains intact. The MRCA of Tupaiidae (Scandentia) and their closest living relative – the nocturnal Ptilocercidae (Pentailed tree shrews, a monotypic family) – has been placed in the Cenozoic, 60.1 Mya³⁰ The LF reconstruction shows that this species was probably diurnal or cathemeral, but neither pattern was supported by PP values >0.67.

On both SF and LF reconstructions, the rates of transition from cathemeral activity to either nocturnal or diurnal imply that the diurnal and nocturnal niches may be more favourable for mammals. However, our results unequivocally support the persistence of cathemerality in mammals since the K-Pg. In primates, cathemerality has been argued

adaptive under fluctuating environmental conditions^{26,45} and cathemeral species show higher speciation rates (although lower overall diversification rates) compared to nocturnal and diurnal species²⁷. If these patterns are also true for the rest of Mammalia, they could explain the persistence of mammal cathemerality against the net outflow of species and slow diversification rates. In Lepidoptera (moths and butterflies), the persistence of a mixed (cathemeral) diel activity pattern has been argued to be the result of conflicting predation pressures, from bats during the night and birds during the day⁴⁶. Hence, cathemeral activity may be preferred when strong selective forces are acting in opposite directions. The appearance of mammal cathemerality may have been due to high nocturnal predation risk on one side (perhaps from other mammals making the nocturnal niche less advantageous), and the difficulties of adapting to a diurnal niche on the other.

The higher transition rates for the LF tree are likely a result of the method we used to construct the species-level LF phylogeny, i.e. re-scaling the branch lengths of species-level clades from the SF phylogeny³¹ to maintain the length of the corresponding terminal branch provided by³⁰. SF branch lengths were usually scaled down in this process, because the SF generally estimates older divergence dates than the LF, reflecting the difference between the two phylogenetic models. A consequence of our grafting procedure is that a band of artificially short branches is formed near these graft points, which implies rapid change. Higher rates allow for more change along tree branches, and reduce the precision of the results, which probably contributed to our LF reconstruction yielding fewer decisive predictions and lower statistical support compared with the SF reconstruction (Figs. 2, 3 and 4). Whilst a direct comparison of transition rates between the two phylogenetic hypotheses is therefore precluded, the broad pattern of transitions (i.e. low transition rates into cathemerality and high transition rates out of it in either direction) is supported in both

analyses, as is the general pattern of temporal niche evolution that emerges from the node reconstructions.

Although we have demonstrated the importance of the phylogenetic comparative approach to the investigation of the evolution of behavioural traits in mammals, ancestral reconstruction methods rely heavily on the accuracy of phylogenetic estimates. The LF hypothesis of mammalian evolutionary history is well supported^{30,41,44}, but phylogenetic estimates are only available at family-level, and further modification was required to add the species-level information for our analysis. Despite the attention attracted recently by studies of mammalian phylogenies^{30,41,44,47}, only the SF hypothesis is represented by a species-level phylogeny, making the incorporation of the LF hypothesis and the explosive model problematic for phylogenetic comparative analyses that are based on detailed species-level data.

In conclusion, we argue that the activity patterns of Mesozoic mammals are consistent with the prediction of temporal partitioning, and that the gradual acquisition of daytime activity in mammals, first cathemerality then diurnality, coincided with the decrease in pressure from dinosaurs, whether due to their decline or extinction. Given the current evidence, temporal partitioning within Mesozoic amniotes mostly followed the phylogenetic (mammal-archosaur) division, but while some dinosaurs invaded the nocturnal niche²², we find little support for Mesozoic mammals invading the diurnal niche. The constraints on mammals becoming diurnal during the Mesozoic would have been strong enough to counteract the ecological pressure to diversify, following at least 100Myr of mammalian sensory and eco-morphological radiations that sub-divided their nocturnal niches. Mammals diversified rapidly once they expanded outside the nocturnal niche, but whether invading the diurnal niche facilitated mammals' Cenozoic success remains to be answered.

Methods

extant orders and 135 of 148 extant families from the PanTHERIA database⁸, and from published sources such as research articles, field guides, and encyclopaedias (Supplementary Table 1). To achieve maximal representation of taxonomic diversity, we specifically targeted under-represented orders, and repeated the process for under-represented families.

Nonetheless, any records we found in this process were incorporated into our data set, whether of a target taxon or not, unless a similar record (same species and activity pattern) was previously obtained. Although activity pattern data was only available for just under half of all known species⁴⁸ (44.6%), 91.2% of families were represented in the database. The most under-represented taxa were the largest orders (Rodentia 59% missing species, Chiroptera 74% and Soricomorpha 82%). Bats are almost entirely nocturnal, and Soricomorpha is predominantly cathemeral (except the nocturnal Erinaceomorpha). In rodents too, activity patterns closely follow phylogeny²⁹. Therefore, the inclusion of the missing species would likely have only a minor effect, if any, on the character transition rate matrix and the overall reconstruction results.

We assigned each species into one of five activity patterns: (i) nocturnal – active only or mostly in the dark; (ii) diurnal – active only or mostly during daylight hours; (iii) cathemeral – active both during the day and during the night; (iv) crepuscular – active only at twilight, around sunrise and/or sunset; and (v) ultradian – active in cycles of a few hours. We considered species nocturnal or diurnal based on qualitative descriptions in sources, as precise quantitative measurements are rare, where species described as 'nocturnal' or 'active at night' were assigned to nocturnal and species described as 'diurnal' or 'active during daylight' were assigned to diurnal. We also categorised species to these two categories if those descriptions were preceded by 'only', 'exclusively', 'strictly', 'mostly',

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

'predominantly', almost exclusively', or 'mainly. Species which were described as 'nocturnal and diurnal', 'active day and night', 'active at all hours', 'arrhythmic', 'nocturnal in summer and diurnal in winter' were assigned as having a cathemeral activity pattern. Crepuscular activity was assigned to species described as 'mostly or mainly or predominantly crepuscular', 'active at dusk', 'active at dusk and dawn', 'around sunrise and sunset', 'activity peaks in late afternoon or early evening'. Ultradian patterns were assigned when species were described as 'ultradian' or the source described several rhythmic cycles of activity and rest over a 24hour period. We follow the taxonomy and species binomials in Mammal Species of the World, 3rd Edition⁴⁸, with one exception: we use Cetartiodactyla, instead of separate orders Artiodactyla and Cetacea, following ^{49,50}. We resolved conflicts where sources disagreed on species activity pattern as follows: (i) records of crepuscular activity (dusk or dawn), when in conjunction with nocturnal or diurnal activity, were changed to nocturnal or diurnal, respectively; (ii) records from complied sources were preferred over localised studies (which are prone to idiosyncrasies); and (iii) records from more recent sources were preferred. This left 29 species unresolved and these species were excluded from subsequent analyses, giving a total number of species = 2386 (1426 nocturnal, 615 diurnal, 322 cathemeral, 22 crepuscular, and one ultradian species).

Phylogenetic framework. We used two phylogenetic frameworks representing two of the main hypotheses of mammalian evolutionary history for our analyses: the short-fuse (SF) hypothesis is represented by the species-level "best dates" supertree³¹ updated from³², and the long-fuse (LF) hypothesis is represented by the amino-acid supermatrix phylogeny³⁰ (Fig.1). The SF hypothesis asserts that the most recent common ancestor (MRCA) of all extant mammals diverged into its daughter lineages (Prototheria and Theria) in the mid-Jurassic, 166.2Mya, whereas according to the LF hypothesis this divergence took place in the late-Triassic, 217.8Mya. Both hypotheses agree that multiple extant lineages diverged in the

Cretaceous and survived the K-Pg event (Fig. 1), but the SF hypothesis posits that intra-311 ordinal divergence of placental mammals had already begun prior to the K-Pg event, while 312 the LF hypothesis places intra-ordinal divergence in the Cenozoic. A third evolutionary 313 hypothesis, the explosive model, is supported by fossil evidence and morphological data⁴⁷, 314 but has been criticised for implying impossibly-high rates of evolution in the early-Cenozoic 315 radiation of placental mammals, and for other problems^{41,51}, so we do not consider it here. 316 Here, we represent the LF hypothesis using the family-level supermatrix phylogeny³⁰ 317 318 (downloaded from TreeBASE; http://purl.org/phylo/treebase/phylows/study/TB2:S11872 on 01MAR2015). For our analyses we rendered it ultrametric, i.e. all the tips (species) of the tree 319 are equidistant from the root, so that branch lengths are proportional to time. The LF 320 hypothesis has recently gained support from several studies 41-44, but it lacks species-level 321 resolution, which is essential for our analysis. We therefore used each terminal branch of the 322 supermatrix phylogeny (representing a taxonomic family) as a root branch onto which we 323 appended the internal branching pattern of the family, as given in³¹ updated from³². In order 324 to retain the original LF timeline, we scaled the appended branching pattern to 85% of its 325 326 original supermatrix phylogeny branch length, and the root branch completed the remaining 327 15%. Other proportions, for example 70:30 or 50:50 branch scaling would have compressed intra-family branching patterns, resulting in branch lengths that were very different from their 328 original values. For this process we used functions from packages ape⁵² and phangorn⁵³ in R 329 version 3.2.3⁵⁴. Species that we had data for but that were absent from the phylogenetic 330 331 frameworks were omitted from the analyses: 33 species from the SF phylogeny, and an additional 38 species and 3 families missing from the LF phylogeny. as families Aotidae, 332 333 Pitheciidae and Lepilemuridae (Primates) were not originally included in the supermatrix phylogeny³⁰. It is unlikely that the omission of these three families would have had an impact 334 on our analysis, as of these three families, Pitheciidae and Lepilrmuridae are entirely diurnal

335

and nocturnal, respectively, and conform to the activity pattern of the respectively clades within which they are nested. Aotidae, on the other hand, is nocturnal. While this can potentially alter ancestral reconstruction results, Aotidae is nested within the otherwise exclusively diurnal Platyrrhini (new world monkeys)²⁷, so its effect on the LF reconstruction is would be minimal beyond the node immediately ancestral to Aotidae.

Analyses. We used *BayesTraits* v3³³ to reconstruct the evolution of mammalian activity patterns. *BayesTraits* implements Markov Chain Monte Carlo (MCMC) methods to sample from the posterior distributions of transition rates for a transition matrix describing the evolution of a discrete character. The obtained posterior distribution allows the user to infer the posterior probability of each character state at the root and at each internal node of the phylogeny. By employing reversible jump MCMC (rjMCMC), *BayesTraits* is also able to sample from the posterior distribution of model configurations and optimise the number of parameters in the model. This removes the need for comparing models with different number of parameters by sampling from model space and parameter space concurrently⁵⁵.

We only consider the three main activity patterns across mammals in our analysis (nocturnal diurnal and cathemeral) in order to reduce the complexity of the model and increase its biological interpretability (four transition rates instead of 16). Additionally, we remove ultradian activity patterns as these are mostly found with polar and subterranean species, where the 24-hour cycle is of reduced importance. This made the total number species used as 2330 species, 135 families (nocturnal species = 1399, diurnal = 610, and cathemeral = 321), and 2292 species, 132 families (nocturnal species = 1384, diurnal = 588, and cathemeral = 320) for the SF and LF analysis, respectively. We use an ordered model of trait evolution: Nocturnal ↔ Cathemeral ↔ Diurnal, whereby direct Nocturnal ↔ Diurnal transitions are not allowed (set to zero). A transition from diurnal to nocturnal (or *vice versa*) would therefore involve at least two 'steps', passing through cathemeral, although both steps

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

may occur along the same branch. This ordered model reflects the continuous and mutuallyexclusive nature of morphological and histological adaptations to diurnality and nocturnality (e.g. retinal rod to cone ratio, corneal diameter to axial length ratio, front-facing versus lateral-facing eye sockets), while cathemerality involves an intermediate state of the relevant phenotypes^{23,56}. Our underlying hypothesis is that during shifts from diurnality to nocturnality (and vice versa) species go through a phase of cathemeral capability, where they are equally well adapted to both. All other transition rates were free to take any value. We used rjMCMC to estimate the optimal model configuration⁵⁵. As activity pattern in our analyses was not a binary trait, we used the 'multistate' mode of BayesTraits to sample from the posterior distribution of transition rates between activity pattern categories. For each phylogeny, we opted for the reversible-jump MCMC procedure, and set a wide uniform prior, bounded between 0 and 100 for all transition rates, to ensure that our prior did not have a strong effect on the nature of the posterior. Each rJMCMC chain was run until convergence was reached (at least one million iterations), after which point the chains were sampled every 4000 iterations until a posterior of 1000 samples was obtained. We chose this wide sampling interval in order to minimise autocorrelation in our posterior samples. We ran twelve replicates of each chain (corresponding a phylogeny) in order to ensure consistency, and that each independent run converged on the same posterior distribution. The marginal likelihoods of each chain were calculated using the stepping stone sampler⁵⁷ as implemented in BayesTraits (500 stones, 1000 iterations per stone) and compared between independent replicates to ensure consistency.

In order to estimate the character state at each internal node, we used the modal value of the PP of each character state, calculated as the peak value of the kernel density of each posterior distribution. For each posterior probability distribution, we report the 95% Credible Interval (CrI), the highest density interval covering 95% of the posterior distribution. We

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

used the R package *phytools* ⁵⁸ to plot the PP values of each node on the mammal phylogenies (Figs. 3 and 4). To measure the accumulation of mammalian temporal niches over time, we calculated the running total of nodes (lineages) where an activity pattern was supported with PP >0.67, and plotted this along the mammal evolution timeline (Figs. 3 and 4). A confidence threshold of 0.67 means that the PP values of the best-supported state is at least 0.34 higher (or twice as likely) than the second most probable state. The PP distributions of either state would have to be extremely flat to make the difference between two peak values smaller than two standard deviations. The threshold of 0.67 thus ensures small to no overlap between two distributions.

Estimates of character transition rates and reconstructions of ancestral states can be inaccurate if certain character states lead to very different diversification rates⁵⁹, and methods such as BayesTraits (BT) do not account for the effects of character states on diversification rates. We reanalysed our data to investigate the robustness of our analysis with an additional method, Multistate Speciation and Extinction (MuSSE⁶⁰), to control for differences in diversification rates. However, this method requires fully bifurcating phylogenetic trees, or, if polytomies are present, that all branches in the phylogenies descending from them are collapsed⁶⁰. To enable a MuSSE reconstruction, we used Maximum Clade Credibility (MCC) implemented in the R package phangorn⁵³ to summarise a single, fully-bifurcating tree from a distribution of 100 fully bifurcating trees⁶¹ randomly derived from the SF phylogeny used in the BT analysis. We could only perform this analysis on the SF phylogeny as the mosaic nature of the LF phylogeny meant that the resulting tree from random resolution was very similar to the SF tree. We acknowledge that random resolution of polytomies may result in unlikely topologies and incorrect branch lengths, but is a pragmatic solution to the incompleteness of mammalian phylogenetic information available. As the results of the MuSSE reconstruction are very similar to those obtained by the BT analysis, and do not

411 change our overall conclusions (Supplementary Figure 1, Supplementary Table 2), our results are likely robust to the differential diversification rates in activity patterns. 412 Code Availability. Computer code essential for replicating the results in this study is 413 available on Figshare (doi: 10.6084/m9.figshare.4797367). 414 415 Data Availability. The authors declare that all data supporting the findings of this study are 416 available within the paper and its supplementary information files. All data is available on Figshare a (doi: 10.6084/m9.figshare.4775416; doi:10.6084/m9.figshare.4774648). Reprints 417 418 and permissions information are available at www.nature.com/reprints. 419

420 References

- 421 1 Aronson, B. D. et al. Circadian rhythms. Brain Research Reviews 18, 315-333,
- 422 doi:10.1016/0165-0173(93)90015-R (1993).
- 423 2 Kronfeld-Schor, N. & Dayan, T. Partitioning of Time as an Ecological Resource.
- 424 Annual Review of Ecology, Evolution, and Systematics **34**, 153-181,
- doi:10.1146/annurev.ecolsys.34.011802.132435 (2003).
- 426 3 DeCoursey, P. J. Diversity of Function of SCN Pacemakers in Behavior and Ecology
- of Three Species of Sciurid Rodents. *Biological Rhythm Research* **35**, 13-33,
- doi:10.1080/09291010412331313214 (2004).
- 429 4 Hut, R. A., Kronfeld-Schor, N., van der Vinne, V. & De la Iglesia, H. in *Progress in*
- 430 Brain Research: The Neurobiology of Circadian Timing Vol. 199 (eds A. Kalsbeek,
- 431 M. Merrow, T. Roenneberg, & R.G. Foster) Ch. 17, 281-304 (Elsevier, 2012).
- 432 5 Joffe, B., Peichl, L., Hendrickson, A., Leonhardt, H. & Solovei, I. Diurnality and
- Nocturnality in Primates: An Analysis from the Rod Photoreceptor Nuclei Perspective.
- 434 Evolutionary Biology 41, 1-11, doi:10.1007/s11692-013-9240-9 (2014).
- 435 6 Melin, A. D., Matsushita, Y., Moritz, G. L., Dominy, N. J. & Kawamura, S. Inferred
- 436 L/M cone opsin polymorphism of ancestral tarsiers sheds dim light on the origin of
- anthropoid primates. Proceedings of the Royal Society B: Biological Sciences 280,
- doi:10.1098/rspb.2013.0189 (2013).
- 439 7 Gutman, R. & Dayan, T. Temoral partitioning: A experiment with two species of
- spiny mice. *Ecology* **86**, 164-173, doi:10.1890/03-0369 (2005).
- 441 8 Jones, K. E. et al. PanTHERIA: a species-level database of life history, ecology, and
- geography of extant and recently extinct mammals. *Ecology* **90**, 2648-2648,
- doi:10.1890/08-1494.1 (2009).

9 Refinetti, R. The diversity of temporal niches in mammals. Biological Rhythm 444 Research 39, 173-192, doi:10.1080/09291010701682690 (2008). 445 10 Heesy, C. P. & Hall, M. I. The Nocturnal Bottleneck and the Evolution of Mammalian 446 447 Vision. Brain, Behavior and Evolution 75, 195-203 (2010). 11 Walls, G. L. The Vertebrate Eye and its Adaptive Radiation. (Cranbrook Institute of 448 Science, 1942). 449 450 12 Davies, W. I. L., Collin, S. P. & Hunt, D. M. Molecular ecology and adaptation of visual photopigments in craniates. *Molecular Ecology* **21**, 3121-3158, 451 doi:10.1111/j.1365-294X.2012.05617.x (2012). 452 13 Gerkema, M. P., Davies, W. I. L., Foster, R. G., Menaker, M. & Hut, R. A. The 453 454 nocturnal bottleneck and the evolution of activity patterns in mammals. *Proceedings* of the Royal Society B: Biological Sciences 280, doi:10.1098/rspb.2013.0508 (2013). 455 14 456 Peichl, L. Diversity of mammalian photoreceptor properties: Adaptations to habitat 457 and lifestyle? The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology 287A, 1001-1012, doi:10.1002/ar.a.20262 (2005). 458 15 Hayden, S. et al. Ecological adaptation determines functional mammalian olfactory 459 subgenomes. Genome Research 20, 1-9, doi:10.1101/gr.099416.109 (2010). 460 16 Coleman, M. N. & Boyer, D. M. Inner Ear Evolution in Primates Through the 461 462 Cenozoic: Implications for the Evolution of Hearing. *The Anatomical Record:* Advances in Integrative Anatomy and Evolutionary Biology 295, 615-631, 463 doi:10.1002/ar.22422 (2012). 464 465 17 Diamond, M. E., von Heimendahl, M., Knutsen, P. M., Kleinfeld, D. & Ahissar, E. 'Where' and 'what' in the whisker sensorimotor system. Nat Rev Neurosci 9, 601-612, 466 467 doi:10.1038/nrn2411 (2008).

- Crompton, A. W., Taylor, C. R. & Jagger, J. A. Evolution of homeothermy in
- 469 mammals. *Nature* **272**, 333-336, doi:10.1038/272333a0 (1978).
- 470 19 Barnosky, A. D. et al. Has the Earth/'s sixth mass extinction already arrived? Nature
- **471**, 51-57, doi:10.1038/nature09678 (2011).
- 472 20 Brusatte, S. L. et al. The extinction of the dinosaurs. Biological Reviews 90, 628-642,
- 473 doi:10.1111/brv.12128 (2015).
- 474 21 Angielczyk, K. D. & Schmitz, L. Nocturnality in synapsids predates the origin of
- mammals by over 100 million years. Proceedings of the Royal Society B: Biological
- 476 Sciences **281**, doi:10.1098/rspb.2014.1642 (2014).
- 477 22 Schmitz, L. & Motani, R. Nocturnality in Dinosaurs Inferred from Scleral Ring and
- 478 Orbit Morphology. *Science*, doi:10.1126/science.1200043 (2011).
- 479 23 Hall, M. I., Kamilar, J. M. & Kirk, E. C. Eye shape and the nocturnal bottleneck of
- 480 mammals. Proceedings of the Royal Society B: Biological Sciences 279, 4962-4968,
- doi:10.1098/rspb.2012.2258 (2012).
- Emerling, C. A., Huynh, H. T., Nguyen, M. A., Meredith, R. W. & Springer, M. S.
- Spectral shifts of mammalian ultraviolet-sensitive pigments (short wavelength-
- sensitive opsin 1) are associated with eye length and photic niche evolution.
- 485 Proceedings of the royal Society B: Biological Sciences 282, 20151817,
- doi:10.1098/rspb.2015.1817 (2015).
- 487 25 Reppert, S. M. & Weaver, D. R. Molecular Analysis of Mammalian Circadian
- 488 Rhythms. *Annual Review of Physiology* **63**, 647-676,
- doi:10.1146/annurev.physiol.63.1.647 (2001).
- 490 26 Griffin, R. H., Matthews, L. J. & Nunn, C. L. Evolutionary disequilibrium and
- activity period in primates: A bayesian phylogenetic approach. *American Journal of*
- 492 *Physical Anthropology* **147**, 409-416, doi:10.1002/ajpa.22008 (2012).

Santini, L., Rojas, D. & Donati, G. Evolving through day and night: origin and 493 27 diversification of activity pattern in modern primates. Behavioral Ecology, 494 doi:10.1093/beheco/arv012 (2015). 495 496 28 Heesy, C. P. & Ross, C. F. Evolution of activity patterns and chromatic vision in primates: morphometrics, genetics and cladistics. J Hum Evol 40, 111-149, 497 doi:10.1006/jhev.2000.0447 (2001). 498 499 29 Roll, U., Dayan, T. & Kronfeld-Schor, N. On the role of phylogeny in determining activity patterns of rodents. Evolutionary Ecology 20, 479-490, doi:10.1007/s10682-500 501 006-0015-y (2006). 30 Meredith, R. W. et al. Impacts of the Cretaceous Terrestrial Revolution and KPg 502 Extinction on Mammal Diversification. Science 334, 521-524, 503 doi:10.1126/science.1211028 (2011). 504 31 505 Bininda-Emonds, O. R. P. et al. The delayed rise of present-day mammals. Nature 446, 507-512, doi:10.1038/nature05634 (2007). 506 Fritz, S. A., Bininda-Emonds, O. R. P. & Purvis, A. Geographical variation in 32 507 predictors of mammalian extinction risk: big is bad, but only in the tropics. *Ecology* 508 Letters 12, 538-549, doi:10.1111/j.1461-0248.2009.01307.x (2009). 509 33 Meade, A. & Pagel, M. BayesTraits v3 (2017). 510 511 34 Melin, A. D. et al. Euarchontan Opsin Variation Brings New Focus to Primate Origins. Molecular Biology and Evolution 33, 1029-1041, 512 doi:10.1093/molbev/msv346 (2016). 513 35 Sakamoto, M., Benton, M. J. & Venditti, C. Dinosaurs in decline tens of millions of 514 515 years before their final extinction. Proceedings of the National Academy of Sciences 113, 5036-5040, doi:10.1073/pnas.1521478113 (2016). 516

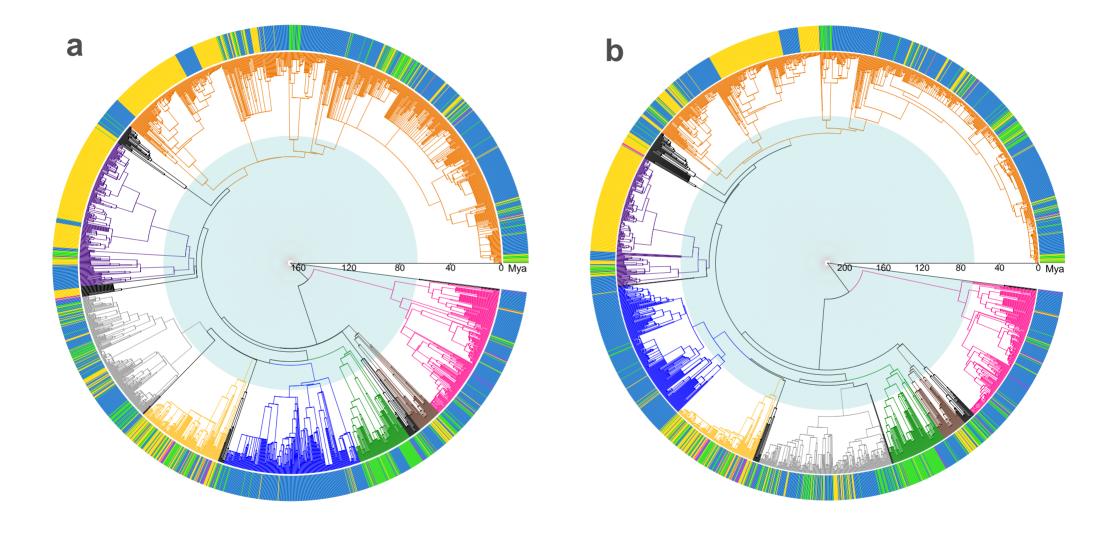
Close, Roger A., Friedman, M., Lloyd, Graeme T. & Benson, Roger B. J. Evidence 517 36 for a Mid-Jurassic Adaptive Radiation in Mammals. Current Biology 25, 2137-2142, 518 doi:10.1016/j.cub.2015.06.047 (2015). 519 520 37 Lee, Michael S. Y. & Beck, Robin M. D. Mammalian Evolution: A Jurassic Spark. Current Biology 25, R759-R761, doi:10.1016/j.cub.2015.07.008 (2015). 521 38 Wilson, G. P. et al. Adaptive radiation of multituberculate mammals before the 522 523 extinction of dinosaurs. *Nature* **483**, 457-460, doi:10.1038/nature10880 (2012). 39 Krause, D. W. et al. First cranial remains of a gondwanatherian mammal reveal 524 525 remarkable mosaicism. *Nature* **515**, 512-517, doi:10.1038/nature13922 (2014). 40 Ross, C. F. Into the Light: The Origin of Anthropoidea. Annual Review of 526 Anthropology 29, 147-194, doi:10.1146/annurev.anthro.29.1.147 (2000). 527 41 dos Reis, M., Donoghue, P. C. J. & Yang, Z. Neither phylogenomic nor 528 529 palaeontological data support a Palaeogene origin of placental mammals. Biology Letters 10, doi:10.1098/rsbl.2013.1003 (2014). 530 42 Foley, N. M., Springer, M. S. & Teeling, E. C. Mammal madness: is the mammal tree 531 of life not yet resolved? Philosophical Transactions of the Royal Society B: Biological 532 Sciences 371, doi:10.1098/rstb.2015.0140 (2016). 533 43 Tarver, J. E. et al. The Interrelationships of Placental Mammals and the Limits of 534 535 Phylogenetic Inference. Genome Biology and Evolution, doi:10.1093/gbe/evv261 (2016).536 44 Springer, M. S. et al. Waking the undead: Implications of a soft explosive model for 537 538 the timing of placental mammal diversification. Molecular Phylogenetics and Evolution 106, 86-102, doi:10.1016/j.ympev.2016.09.017 (2017). 539 540 45 Donati, G. & Borgognini-Tarli, S. M. From darkness to daylight: cathemeral activity in primates. Journal of Anthropological Sciences 84, 7-32 (2006). 541

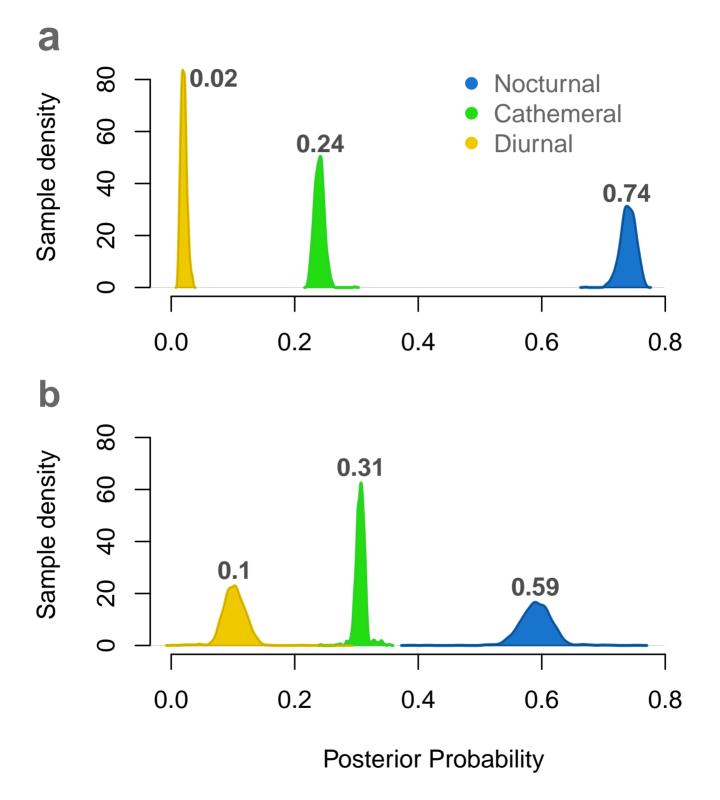
Fullard, J. H. & Napoleone, N. Diel flight periodicity and the evolution of auditory 542 46 defences in the Macrolepidoptera. Animal Behaviour 62, 349-368, 543 doi:10.1006/anbe.2001.1753 (2001). 544 O'Leary, M. A. et al. The Placental Mammal Ancestor and the Post-K-Pg Radiation 545 47 of Placentals. Science 339, 662-667, doi:10.1126/science.1229237 (2013). 546 48 Wilson, D. E. & Reeder, D. A. Mammal Species of the World. (John Hopkins 547 548 University Press 2005). 49 Price, S. A., Bininda-Emonds, O. R. P. & Gittleman, J. L. A complete phylogeny of 549 550 the whales, dolphins and even-toed hoofed mammals (Cetartiodactyla). Biological Reviews 80, 445-473, doi:10.1017/S1464793105006743 (2005). 551 50 552 O'Leary, M. A. & Gatesy, J. Impact of increased character sampling on the phylogeny of Cetartiodactyla (Mammalia): combined analysis including fossils. Cladistics 24, 553 554 397-442, doi:10.1111/j.1096-0031.2007.00187.x (2008). 51 Springer, M. S., Meredith, R. W., Teeling, E. C. & Murphy, W. J. Technical 555 Comment on "The Placental Mammal Ancestor and the Post-K-Pg Radiation of 556 Placentals". Science **341**, 613-613, doi:10.1126/science.1238025 (2013). 557 52 Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution 558 in R language. Bioinformatics 20, 289-290, doi:10.1093/bioinformatics/btg412 (2004). 559 560 53 Schliep, K. P. phangorn: phylogenetic analysis in R. *Bioinformatics* 27, 592-593, doi:10.1093/bioinformatics/btq706 (2011). 561 54 R: A language and environment for statistical computing (R Foundation for Statistical 562 563 Computing, Vienna, Austria, 2015). 55 Pagel, M. & Meade, A. Bayesian analysis of correlated evolution of discrete 564 characters by reversible-jump Markov chain Monte Carlo. The American Naturalist 565 167, 808-825, doi:10.1086/503444 (2006). 566

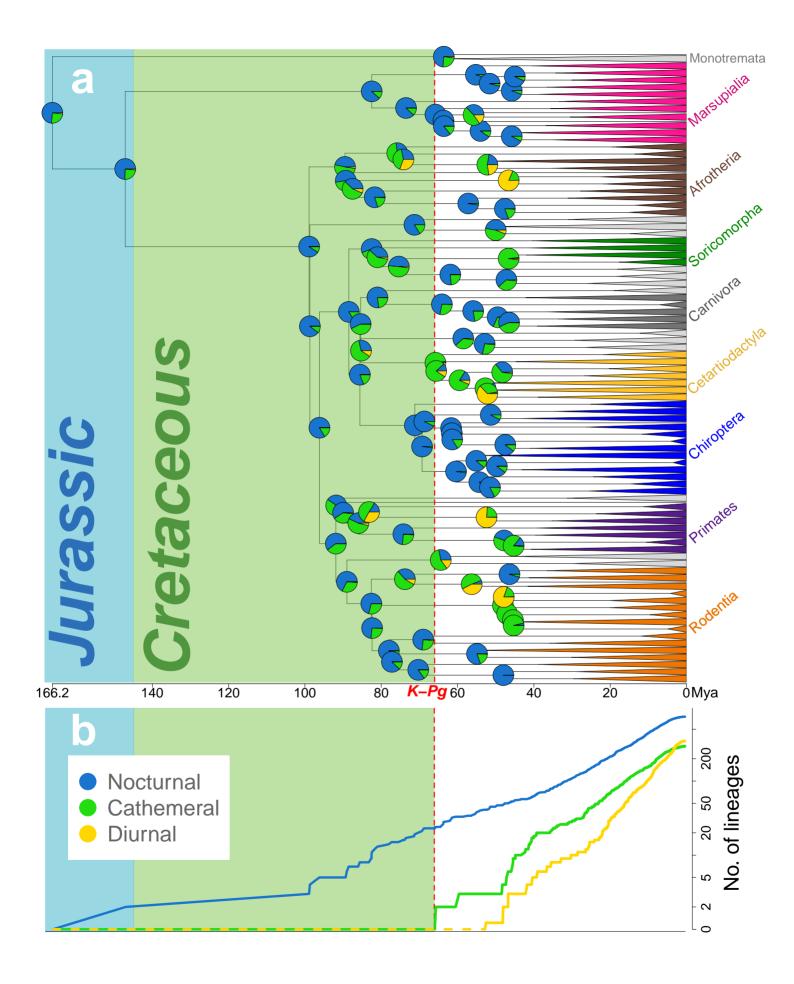
567	56	Kirk, E. C. Effects of activity pattern on eye size and orbital aperture size in primates.
568		<i>J Hum Evol</i> 51 , 159-170, doi:10.1016/j.jhevol.2006.02.004 (2006).
569	57	Xie, W., Lewis, P. O., Fan, Y., Kuo, L. & Chen, MH. Improving Marginal
570		Likelihood Estimation for Bayesian Phylogenetic Model Selection. Systematic
571		Biology 60, 150-160, doi:10.1093/sysbio/syq085 (2011).
572	58	Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other
573		things). Methods in Ecology and Evolution 3, 217-223, doi:10.1111/j.2041-
574		210X.2011.00169.x (2012).
575	59	Maddison, W. P. Confounding asymmetries in evolutionary diverification and
576		character change. Evolution 60, 1743-1746, doi:10.1554/05-666.1 (2006).
577	60	FitzJohn, R. G. Diversitree: comparative phylogenetic analyses of diversification in R.
578		Methods in Ecology and Evolution 3, 1084-1092, doi:10.1111/j.2041-
579		210X.2012.00234.x (2012).
580	61	Kuhn, T. S., Mooers, A. Ø. & Thomas, G. H. A simple polytomy resolver for dated
581		phylogenies. Methods in Ecology and Evolution 2, 427-436, doi:10.1111/j.2041-
582		210X.2011.00103.x (2011).
583		
584		

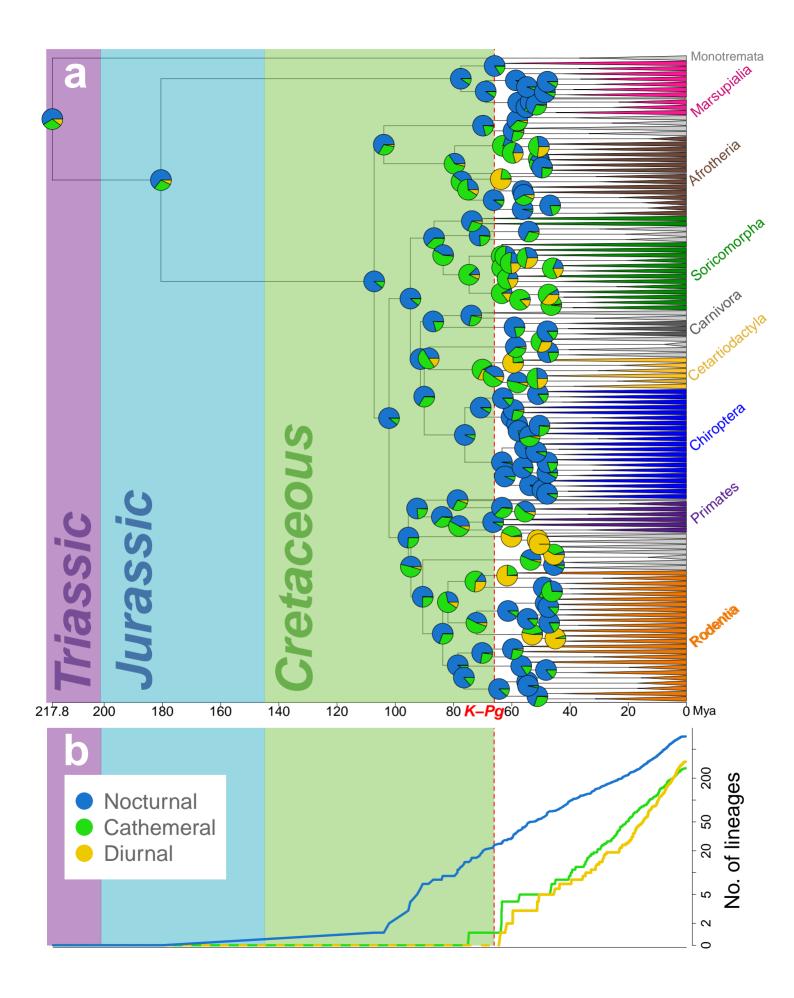
585	Supplementary Information is available in the online version of the paper.				
586					
587	Acknowledgements We thank TCD Lucas, S Meiri, EE Dyer, O Comay and I Pizer-Mason				
588	for technical assistance and providing data, and N Kronfeld-Schor for discussion. This work				
589	was funded with support from ISF grant No. 785/09 (TD), Tel Aviv University GRTF fund				
590	and Naomi Kadar Foundation (RM), and NERC Open CASE PhD studentship				
591	(NE/H018565/1) (HFG).				
592					
593	Author Contributions RM, TD and KEJ developed the overall study design. RM collected				
594	and processed the data, and carried out the analyses with assistance from HFG. RM and KEJ				
595	led on the writing of the manuscript with significant contributions from all authors.				
596					
597	Competing Financial Interests The authors declare no competing financial interests.				

598 Figure 1. Activity patterns distribution across (a) the short-fuse (SF), and (b) the longfuse (LF) estimates of mammalian evolution. Species activity patterns are denoted by 599 600 different colours in the perimeter circle, where nocturnal is denoted as blue; diurnal yellow; 601 cathemeral green; and ambiguous magenta. Branch colours represent taxonomy, where Marsupials are pink; Afrotheria brown; Soricomorpha+Erinaceomorpha green; Chiroptera 602 blue; Cetartiodactyla yellow; Carnivora grey; Primates purple; Rodentia orange; and all other 603 604 orders are black. Mesozoic and Cenozoic eras are denoted by blue and white backgrounds, respectively. SF phylogeny follows³¹ updated by³², and LF phylogeny is adapted from³⁰ (see 605 Methods). Branch lengths are proportional to time (Myr). 606 Figure 2. Posterior probability (PP) density of ancestral activity patterns 607 reconstructions of the most recent common ancestor of crown-group Mammalia from 608 609 (a) SF and (b) LF phylogenies. Distribution curves are calculated from 1000 post-burnin rjMCMC samples, and modal PP values for each distribution are shown in bold. Colours 610 correspond to activity patterns. 611 612 Figure 3. Reconstruction of ancestral activity patterns and character accumulation, across the 'short fuse' (SF) hypothesis of mammalian evolution. (a) Ancestral activity 613 pattern reconstruction across the SF phylogeny³¹ updated by³². Pie charts correspond to 614 ancestral reconstructions at each node, and colours denote the proportional value of the 615 616 posterior probability (PP) of each activity pattern, where nocturnal is blue; cathemeral green; and diurnal yellow. Shading denotes geological era. Branch lengths are proportional to time, 617 with branches younger than 45Mya replaced with wedges for visualisation purposes. The red 618 619 dashed line represents the K-Pg boundary. (b) Lineages through time plot for activity patterns. The predominant activity pattern was assigned to each node based on PP values, with a 620


634


621 minimum value of 0.67. Nodes with reconstructed activity pattern PP values of <0.67 were excluded from the lineages through time plot. 622 Figure 4. Reconstruction of ancestral activity patterns and character accumulation, 623 across the 'long fuse' (LF) hypothesis of mammalian evolution. (a) Ancestral activity 624 pattern reconstruction across the LF phylogeny adapted from³⁰. Pie charts correspond to 625 626 ancestral reconstructions at each node, and colours denote the proportional value of the posterior probability (PP) of each activity pattern, where nocturnal is blue; cathemeral green; 627 628 and diurnal yellow. Shading denotes geological era. Branch lengths are proportional to time, 629 with branches younger than 45Mya replaced with wedges for visualisation purposes. The red dashed line represents the K-Pg boundary. (b) Lineages through time plot for activity patterns. 630 631 The predominant activity pattern was assigned to each node based on PP values, with a minimum value of 0.67. Nodes with reconstructed activity pattern PP values of <0.67 were 632 excluded from the lineages through time plot. 633


allowed (0) under our character state transition model.


Table 1. Character transition rate matrix for SF and LF ancestral activity pattern reconstructions. Transition rates are from the state in the column to the state in the row and represent model posterior values. Direct transitions between nocturnal and diurnal were not

Phylogeny	Transition rates			
		Nocturnal	Cathemeral	Diurnal
Short fuse	Nocturnal	-	0.01	0
Short fuse	Cathemeral	0.03	-	0.03
	Diurnal	0	0.01	-
		Nocturnal	Cathemeral	Diurnal
Long fuse	Nocturnal	-	1.97	0
Long ruse	Cathemeral	7.46	-	7.41
	Diurnal	0	1.96	-

