
fig 1 Question LA1:
Joe and Fred are thinking about the pair of numbers 3 and \(11\).

They notice that the **SUM** \((3 + 11)\) is **EVEN**.

They notice that the **PRODUCT** \((3 \times 11)\) is **ODD**.

Joe says: If the **SUM** of two whole numbers is **EVEN**, their **PRODUCT** is **ODD**.

Fred says: If the **PRODUCT** of two whole numbers is **ODD**, their **SUM** is **EVEN**.

a) Are Joe’ s and Fred’ s statements saying the same thing?

b) The **PRODUCT** of two whole numbers is 1271.

Suppose Fred is right.

Which one of these must also be right? Tick (\(\square\)) one box.

- You can be sure that the **SUM** of the two numbers is **EVEN**.
- You can be sure that the **SUM** of the two numbers is **ODD**.
- You can't be sure whether the **SUM** is **ODD** or **EVEN** until you know what the two numbers are.

c) Is Joe’ s statement true?

Explain your answer .

d) Is Fred’ s statement true?

Explain your answer .

fig 2 schematic diagram:

```
Data → Because ← So → Conclusion
         ↓
Since
         ↓
Warrant
         ↓
On account of
         ↓
Backing
```

fig 3 type A:

```
The propositions $p$ and $q$ are just the other way round

Data → Because ← So → Conclusion
         ↓
Since
Reversing the order of propositions makes no difference to an implication
         ↓
On account of
Both statements are true
ON
Both statements are false

```

fig 4 type B:

fig 5 type C:

Warrant

(If two numbers are even, their sum is even but their product is also even)

Data

For 10 and 8, say, the sum is 18 (even, as required) and the product is 80 (even, not as required)

Conclusion/Data

Because

So

Warrant

If there are numbers which make \(p \) true and \(q \) false then \(p \Rightarrow q \) is false

Data

There are numbers which make \(p \) true and \(q \) false

Conclusion/Data

Since

So

Warrant

Joe's statement is false (see above) and Fred's statement is true (see below)

Conclusion

Because

So

Data

For 3 and 3, say, the product is 9 (odd, as required) and the sum is 6 (even, as required)

Conclusion/Data

Because

So

Warrant

There are numbers which make \(q \) true and \(p \) true

Data

If the product of two whole numbers is odd, then the numbers are odd (so their sum is even)

Conclusion/Data

Since

So

Warrant

If the numbers which make \(q \) true make \(p \) true then \(q \Rightarrow p \) is true

fig 6 type D:

The propositions \(p \) and \(q \) are the other way round

Data

Because

So

Conclusion

If \(p \Rightarrow q \) is not the same as \(q \Rightarrow p \)

On account of

Joe's statement is false and Fred's statement is true

Conclusion